海王星的地球公转周期期约为5.19*10^7...

海王星的公转周期约为5.19*10^7S,地球的为3.16*10^7s_百度知道
海王星的公转周期约为5.19*10^7S,地球的为3.16*10^7s
则海王星与太阳的平均距离约为地球与太阳距离的多少
设海王星距离太阳R1,地球 为R2,则GMm1/R1=m1*(2π/T1)^2*R1即GM/R1=(2π/T1)^2*R1
GMm2/R2=m2*(2π/T2)^2*R2即 GM/R2=(2π/T2)^2*R2把R1,R2乘到左边,两式一比得R1^2/R2^2=T1^2/T2^2即R1/R2=T1/T2=5.19/3.16R1是5.19/3.16倍的R2化简他就行了【战队为您服务,祝您学亥礌掇度墀道峨权法护习愉快】望采纳哦
其他类似问题
按默认排序
其他2条回答
设海王星距离太阳R1,地球 为R2,则GMm1/R1=m1*(2π/T1)^2*R1即GM/R1=(2π/T1)^2*R1
GMm2/R2=m2*(2π/T2)^2*R2即 GM/R2=(2π/T2)^2*R2把R1,R2乘到左边,两式一比得R1^2/R2^2=T1^2/T2^2即R1/R2=T1/T2=5.19/3.16R1是5.19/3.16倍的R2化简他就行了【战队为您服务,祝您学亥礌掇度墀道峨权法护习愉快】望采纳哦
海王星的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁維基百科,自由的百科全書
關於與「海王星」名稱相近的條目,詳見「」。
8.0 to 7.78
2.2" — 2.4"
19.7±0.6 km
海王星是八大行星中距離太陽最遠的,體積是太陽系第四大,但質量排名是第三。海王星的質量大約是的17倍,而類似雙胞胎的因密度較低,質量大約是地球的14倍。海王星以中的(Neptunus)命名,因為尼普頓是海神,所以中文譯為海王星。天文學的符號,是的海神使用的。
海王星的以和為主,還有微量的。在大氣層中的甲烷,只是使行星呈現藍色的一部分原因。因為海王星的藍色比有同樣份量的天王星更為鮮豔,因此應該還有其他的成分對海王星明顯的顏色有所貢獻。 海王星有最強烈的,測量到的高達2,100。 1989年飛掠過海王星,對南半球的和木星的做了比較。海王星雲頂的溫度是-218 °C(55),因為距離太陽最遠,是太陽系最冷的地區之一。海王星核心的溫度約為7,000 °C,可以和太陽的表面比較,也和大多數已知的行星相似。
海王星在日被發現, 是唯一利用數學預測而非有計畫的觀測發現的行星。天文學家利用天王星軌道的推測出海王星的存在與可能的位置。迄今只有曾經在日拜訪過海王星。2003年,提出有如科學水準的,但不使用熱滋生反應提供電力的推進裝置;這項計畫由和一起完成。
在日首度觀測並描繪出海王星,日又再次觀測,但因為觀測的位置在夜空中都靠近木星(在的位置),這兩次機會伽利略都誤認海王星是一顆恆星。 相信是恆星,而不相信自己的發現,是因為1612年12月第一次觀測的,海王星在轉向的位置,因為剛開始退行時的運動還十分微小,以至於伽利略的小查覺不出位置的改變。但在2009年7月,的物理學家大衛·傑美生宣稱,有新的證據表明伽利略至少知道他看見的星星相對於背景的有微量的相對運動。
1821年,(Alexis Bouvard)出版了的表, 隨後的觀測顯示出與表中的位置有越來越大的偏差,使得布瓦假設有一個攝動體存在。在1843年計算出會影響運動的第八顆行星軌道,並將計算結果,他問了亞當斯一些計算上的問題,亞當斯雖然草擬了答案但未曾回覆。
,用數學發現海王星的人。
1846年,法國工藝學院的天文學教師,在得不到同袍的支持下,以自己的熱忱獨立完成了海王星位置的推算。但是,在同一年,也開始擁護以數學的方法去搜尋行星,並說服著手進行。
在多次躭擱之後,查理士在1846年7月勉強開始了搜尋的工作;而在同時,勒維耶也說服了柏林天文台的搜尋行星。當時仍是柏林天文台的學生(Heinrich d'Arrest)表示正好完成了勒維耶預測天區的最新星圖,可以做為尋找新時與恆星比對的參考圖。日晚間,海王星被發現了,與勒維耶預測的位置相距不到1°,但與亞當斯預測的位置相差10°。事後,查理士發現他在8月時已經兩度觀測到海王星,但因為對這件工作漫不經心而未曾進一步的核對。
由於有民族優越感和民族主義的作祟,使得這項發現在英法兩國餘波盪漾,國際間的輿論最終迫使勒維耶接受亞當斯也是共同的發現者。然而,在1998年,史學家才得以重新檢視天文學家(Olin Eggen)遺產中的海王星文件(來自的歷史文件,明顯是被艾根竊取近卅年,在他逝世之後才得重見天日。), 在檢視過這些文件之後,有些史學家認為亞當斯不應該得到如同勒維耶的殊榮。
發現之後的一段時間,海王星不是被稱為天王星外的行星就是勒維耶的行星。伽雷是第一位建議取名的人,他建議的名稱是(羅馬神話中看守門戶的雙面神)。在英國,查理士將之命名為;在法國,建議稱為勒維耶,以回應法國之外強烈的抗議聲浪。法國天文年曆當時以赫歇耳稱呼天王星,相對於以勒維耶稱呼這顆新發現的行星。 同時,在分開和獨立的場合,亞當斯建議修改天王星的名稱為喬治,而勒維耶經由經度委員會建議以Neptune(海王星)作為新行星的名字。 在日於科學院挺身而出支持勒維耶建議的名稱。 很快的,海王星成為國際上被接受的新名稱。在中的Neptune等同於的Poseidon,都是海神,因此中文翻譯成海王星。 新發現的行星遵循了行星以神話中的眾神為名的原則,而除了天王星之外,都是在遠古時代就被命名的。
在、、和,該行星名稱的漢字寫法都是海王星。在印度,這顆行星的名稱是Varuna(即),也是中的海神,與希臘-羅馬神話中的Poseidon/Neptune意義是相同的。
海王星外觀為藍色,原由是其大氣層中的。海王星大氣層85%是,13%是,2%是甲烷,除此之外還有少量。
海王星可能有一個固態的核,其表面可能覆蓋有一層。外面的大氣層可能分層。海王星表面溫度為攝氏-218度,表面風速可達每小時2000公里。
此外,海王星有磁場和極光。還有因甲烷受太陽照射而產生的煙霧。
結合顏色和近的海王星影像,顯示在它的中的帶,和他的4顆:、、和。
在高海拔處,海王星的大氣層80%是和19%是 ,也存在著微量的。主要的吸收帶出現在600奈米以上波長的紅色和紅外線的光譜位置。與天王星比較,它的吸收是大氣層的部分,使海王星呈現藍色的色調, 雖然海王星活潑的不同於天王星柔和的,由於海王星大氣中的甲烷含量類似於天王星,一些未知的大氣成分被認為有助於海王星的顏色。
海王星的大氣層可以細分為兩個主要的區域:低層的,該處的溫度隨高度降低;和,該處的溫度隨著高度增加,兩層邊界的氣壓為0.1 (100kPa)。平流層在氣壓低於10-5至 10-4 (1-10) 處成為,熱成層逐漸過渡為。
海王星高層的雲帶在較低層雲頂形成陰影。
模型表明海王星對流層的雲帶取決於不同海拔高度的成分。高海拔的雲出現在氣壓低於1帕之處,該處的溫度使甲烷可以凝結。壓力在1巴至5巴 (100kPa至500kPa),被認為氨和的雲可以形成。壓力在5巴以上,雲可能包含氨、、硫化氫和水。更深處的水冰雲可以在壓力大約為50巴 (5MPa)處被發現,該處的溫度達到0 °C。在下面,可能會發現氨和硫化氫的雲。
海王星高層的雲會曾經被觀察到在低層雲的頂部形成陰影,高層的雲也會在相同的緯度上環繞著行星運轉。這些環帶的寬度大約在50公里至150公里,並且在低層雲頂之上50公里至110公里。
海王星的建議平流層的低層是朦朧的,這是因為紫外線造成甲烷的產物,例如乙烷和乙炔,凝結。平流層也是微量的和的來源。海王星的平流層因為碳氫化合物的濃度較高,也比天王星的溫暖。
這顆行星的熱成層有著大約750K的異常高溫,其原因至今還不清楚。要從太陽來的輻射獲得熱量,對這顆行星來說與太陽的距離是太遙遠了。一個候選的加熱機制是行星的與離子的交互作用;另一個候選者是來自內部的在大氣層中的消耗。熱成層包含可以察覺到的和水,其來源可能來自外部,例如和塵埃。
海王星有著與天王星類似的,它的磁場相對軸有著高達47°的傾斜,並且偏離核心至少0.55 半徑(偏離13,500 公里)。在旅行者2號抵達海王星之前,天王星的磁層傾斜假設是因為它躺著自轉的結果,但是,比較這兩顆行星的磁場,科學家現在認為這種極端的指向是行星內部流體的特徵。這個區域也許是一層液體(可能是氨、甲烷和水的混合體)形成的流體運動,造成的活動,由於內部巨大的壓力,這些有可能是,甚至可能有等。
磁場的偶極成分在海王星的磁赤道大約是14 (0.14 )。海王星的偶大約是2.2 × 1017 T·m3(14 μT·RN3,此處RN是海王星的半徑)。海王星的磁場因為非偶極成分,包括強度可能超過的強大矩,組合有很大的貢獻,因此在幾何結構上非常的複雜。相較之下,地球、木星和土星的四極矩都非常小,並且相對於自轉軸的傾角也都不大。海王星巨大的四極矩也許是發電機偏離行星的中心和幾何強制性的結果 .。
海王星的,在那兒磁層開始減緩的速度,發生在距離行星34.9行星半徑之處。,磁層的壓力抵銷太陽風的地方,位於23-26.5倍海王星半徑之處,磁尾至少延伸至72倍的海王星半徑,並且還會伸展至更遠。
海王星的圓環,由旅行者2號拍攝。
這顆藍色行星有著暗淡的天藍色圓環,但與比起來相去甚遠。當這些環由以為首的團隊發現時,曾被認為也許是不完整的。然而,「旅行者2號」的發現表明並非如此。
這些有一個特別的「堆狀」結構 其起因目前不明,但也許可以歸結於附近軌道上的小衛星的引力相互作用。
認為海王星環不完整的證據首次出現在80年代中期,當時觀測到海王星在前後出現了偶爾的額外「閃光」。在1989年拍攝的圖像發現了這個包含幾個微弱圓環的行星環系統,從而解決了這個問題。最外層的圓環,,包含三段顯著的弧,現在名為「Liberté」,「Egalité」和「Fraternité」(自由、平等、博愛)。 弧的存在非常難於理解,因為運動定律預示弧應在不長的時間內變成分布一致的圓環。目前認為環內側的衛星的引力作用束縛了弧的運動。
「旅行者」的照相機發現了其他幾個環。除了狹窄的、距海王星中心63,000千米的環之外, 環距中心53,000千米,更寬、更暗的環距中心42,000千米。勒維耶環外側的暗淡圓環被命名為; 再往外是距中心57,000千米的環
2005年新發表的在地球上觀察的結果表明,海王星的環比原先以為的更不穩定。在2002年和2003年拍攝的圖像顯示,與"旅行者2號"拍攝時相比,海王星環發生了顯著的退化,特別是「自由弧」,也許在一個世紀左右就會消失。
海王星和地球大小比較。
以其1.0243×1026 kg的質量, 海王星是介於和(指和)之間的中等大小行星:它的質量既是地球質量的17倍,也是木星質量的1/18。因為它質量較典型類木行星小,而且密度、組成成份、內部結構也與類木行星有顯著差別,海王星和一起常常被歸為類木行星的一個子類:。在尋找太陽系外行星領域,海王星被用作一個通用,指所發現的有著類似海王星質量的系外行星, 就如同天文學家們常常說的那些系外「木星」。
海王星大氣的主要成分是和有著較小比例的氦,此外還含有微蹤質量的甲烷。甲烷分子光譜的主要吸收帶位於可見光譜紅色端的600 奈米波長,大氣中甲烷對紅色端光的吸收使得海王星呈現藍色色調。
因為軌道距離太陽很遠,海王星從太陽得到的熱量很少,所以海王星大氣層頂端溫度只有-218 °C(55 K),而由大氣層頂端向內溫度穩定上升。和天王星類似,星球內部熱量的來源仍然是未知的,而結果卻是顯著的:作為太陽系最外側的行星,海王星內部能量卻大到維持了太陽系所有行星系統中已知的最高速。對其內部熱源有幾種解釋,包括行星核心的放射熱源,行星生成時塌縮能量的散熱,還有對的擾動。
海王星內部結構
海王星內部結構和相似。是一個質量大概不超過一個地球質量的由岩石和冰構成的混合體。海王星總質量相當於10到15個地球質量,富含、、和其它成份。 作為行星學慣例,這種混合物被叫作,雖然其實是高度壓縮的過熱流體。這種高的流體通常也被叫作。 大氣層包括大約從頂端向中心的10%到20%,高層大氣主由80%氫和19%氦組成。甲烷,氨和水的含量隨高度降低而增加。更內部大氣底端溫度更高,密度更大,進而逐漸和行星地函的過熱液體混為一體。海王星核心的壓力是地球表面的數百萬倍。通過比較轉速和可知海王星的質量分布不如天王星集中。
(上面),(中間白色雲彩)和(底部)。
在海王星和天王星之間的一個區別是典型氣象活動的水平。1986年當太空飛行器飛經天王星時,該行星視覺上相當平淡,而在1989年飛越期間,海王星展現了著名的天氣現象。海王星的有太陽系中的最高風速,據推測源於其內部熱流的推動,它的天氣特徵是極為劇烈的風暴系統,其風速達到速度直至大約 2,100 km/h。在赤道帶區域,更加典型的風速能達到大約1,200 km/h。根據即目前所建議的分級,地球風速最大為12級風,約 118 km/h。
旅行者2號所拍攝到的大黑斑。
1989年,的太空飛行器發現了,它是一個大小的颶風系統。這個風暴類似木星上的。然而在日, 在海王星上沒有看見,反而在北半球發現了類似的一場新的風暴。失蹤的原因尚未知曉。一種可能的理論是來自行星核心的熱傳遞擾亂了大氣均衡並且打亂了現有的循環樣式。 滑行車(英文:Scooter)是位於大黑斑更南面的另一場風暴,是一組白色雲團。1989年,當它在造訪前的那幾個月被發現時,就被命名了這個綽號:因為它比大黑斑移動得更快。隨後圖像顯示出還有比滑行車移動得更快的雲團。是一場南部的颶風風暴,在1989旅行者2號訪問期間強度排在第二位。它最初是完全黑暗的,但在"旅行者"接近過程中,一個明亮的核心逐漸形成,並且出現在大多數最高解析度的圖像上。2007年又發現海王星的南極比其表面平均溫度(大約為-200 °C)高出約10 °C。這樣高出10 °C的溫度足以把甲烷釋放到太空,而在其它區域海王星的上層大氣層中甲烷是被凍結著的。這個相對熱點的形成是因為海王星的軌道傾角使得其南極在過去的40年受到太陽光照射,而一海王星年相當於165地球年。 隨著海王星慢慢地移近太陽,它南極將逐漸變暗,並且換成北極被太陽光照亮,這將使得甲烷釋放區域從南極轉移到北極。
海王星在類木行星中的一個獨有特點就是高層雲彩在其下半透明的雲基區域投下陰影。雖然海王星的大氣遠比天王星的活躍,它們都是由相同的氣體和冰組成。天王星和海王星都不是木星和土星那種嚴格意義上的類木行星,而屬於另一類的遠日行星,即它們有一個較大的固體核而且還含有冰作為其組成成份。海王星表面溫度非常底,1989年測到的頂端雲層的溫度低至-224 °C (49 K)。
海王星(上面)和(底部)
海衛一彩色特寫。
海王星有13顆已知的。其中最大的、也是唯一擁有足夠質量成為的在海王星被發現17天以後就被發現了。與其他大型衛星不同,海衛一運行於,說明它是被海王星俘獲的,大概曾經是一個天體。它與海王星的距離足夠近使它被鎖定在上,它將緩慢地經螺旋軌道接近海王星,當它到達時最終將被海王星的引力撕開。海衛一是太陽系中被測量的最冷的天體,溫度為-235 °C(38K)。
海衛一,與的對比
直徑(千米)
質量(千克)
軌道半徑(千米)
軌道週期(日)
2700(月球的80%)
2.15×1022
(月球的30%)
(月球的90%)
(月球的20%)
海王星的衛星
海王星第二個已知衛星(依距離排列)是形狀不規則的,它的軌道是太陽系中最大的衛星軌道之一。 從1989年7月到9月,「旅行者2號」發現了六個新的海王星衛星。其中形狀不規則的以擁有在其密度下不會被它自身的引力變成球體的最大體積而出名。儘管它是質量第二大的海王星衛星,它只是海衛一質量的四百分之一。最靠近海王星的四個衛星,、、和,軌道在海王星的環之內。第二靠外的在1981年它掩星的時候被觀察到。起初掩星的原因被歸結為行星環上的弧,但據1989年「旅行者2號」的觀察,才發現是由衛星造成的。2004年宣佈了在2002年和2003之間發現的五個新的形狀不規則衛星。而現在已知體積最小的一顆衛星,則於2013年7月宣布發現。由於海王星得名於羅馬神話的海神,它的衛星都以低等的海神命名。
發現日期的時間表,參見
看不到海王星,其亮度介乎+7.7和+8.0,比的,
和 、、、和都暗。在天文望遠鏡或優質的雙筒望遠鏡中,海王星顯現為一個小小的藍色圓盤,看上去與很相似。藍色來自在於它大氣中的。 它在視覺上的細小給研究造成了困難; 多數從望遠鏡中獲得的數據是相當有限的,直到出現和大型地基望遠鏡與技術才獲得改觀。
海王星的(年)大約相當於164.79地球年。自從於1846年被發現至今,它只完成繞軌道轉一整圈(以發現點作起點)。海王星於日回到繞日公轉軌道上它被發現時的那個點。 由於地球處於其365.25天周期軌道的不同地點,屆時我們看到的海王星並不會處在它被發現時在天空中的那個位置。從地球上觀察,周期為367天,這些周期使它在2010年4月和7月以及2011年10月和11月接近1846年它被發現時的坐標。在日,海王星將於發現它的1846年中的同一天再度沖日。
海王星的自轉周期(日)大約是15小時58分鐘。由於它的自轉軸傾角為28°,與地球(23.45°)相近,海王星日與地球日時間長度的不同與其漫長的年比起來就算不得什麼了。
日到達距海王星最近的地點。因為這是旅行者2號飛船所要飛近的最後一個主要行星,也就沒有後續軌道限制了,它的軌道非常接近衛星,正如飛越和它的衛星時所選擇的軌道那樣。
這次探測發現了,但後來用觀察海王星時發現大黑斑已經經消失。大黑斑起初被認為是一大塊雲,而據後來推斷,它應該是可見雲層上的一個孔洞。
海王星上的風暴是太陽系中最強的。考慮到它處於太陽系的外圍,所接受的太陽光照比地球上微弱1000倍(仍然非常明亮,視星等-21),這個現象和科學家們的原有的期望不符。曾經普遍認為認為行星離太陽越遠,驅動風暴的能量就應該有越少。木星上的風速已達數百千米/小時,而在更加遙遠的海王星上,科學家發現風速沒有更慢而是更快了(1600千米/小時)。這種明顯反常現象的一個可能原因是,如果風暴有足夠的能量,將會產生,進而減慢風速(正如在木星上那樣)。 然而在海王星上,太陽能過於微弱,一旦開始颳風,它們遇到很少的阻礙,從而能保持極高的速度。 海王星釋放的能量比它從太陽得到的還多, 因而這些風暴也可能有著尚未確定的內在能量來源。
1989年用從「旅行者2號」傳回的圖像作了一個名為Neptune All Night的整晚節目。
. Solarviews. .
Williams, Dr. David R. . NASA. September 01, 2004 .
Yeomans, Donald K. . NASA JPL.
. — 進入網站後,前往「web interface」,之後選擇「Ephemeris Type: ELEMENTS」、「Target Body: Neptune Barycenter」和「Center: Sun」。
Orbital elements refer to the barycenter of the Neptune system, and are the instantaneous
values at the precise
epoch. Barycenter quantities are given because, in contrast to the planetary centre, they do not experience appreciable changes on a day-to-day basis from to the motion of the moons.
Seidelmann, P. K Archinal, B. A.; A』hearn, M. F.; et.al. . Celestial Mech. Dyn. Astr. 2007, 90: 155–180. :. :.
Refers to the level of 1 bar atmospheric pressure
"," Solar System Exploration, .
Suomi, V. E.; Limaye, S. S.; Johnson, D. R. . Science. 1991, 251: 929–932. :. :.
T. R. Spilker and A. P. Ingersoll(日). . 36th DPS Meeting, Session 14 Future Missions.
Hirschfeld, Alan. Parallax:The Race to Measure the Cosmos. 紐約,紐約: Henry Holt. 2001.  .
Littmann, M Standish, E.M. Planets Beyond: Discovering the Outer Solar System. Courier Dover Publications. 2004.  .
Britt, Robert Roy. . MSNBC News. 2009 .
A. Bouvard (1821), , Paris, FR: Bachelier
Kollerstrom, Nick. . Unuiversity College London. 2001 . (存檔於).
(1999年6月); William Sheehan, Nicholas Kollerstrom, Craig B. Waff(2004年12月).
Scientific American.
Hind, J. R. . Astronomische Nachrichten. 1847, 25: 309. : Smithsonian/NASA Astrophysics Data System (ADS).
. Hamilton Amateur Astronomers at amateurastronomy.org.
Hubbard, W. B. . Science. 1997, 275 (5304):
. :.  .
Crisp, D.; Hammel, H. B. . Hubble News Center. June 14, 1995 .
Lunine, Jonathan I.
(PDF). Lunar and Planetary Observatory, University of Arizona. 1993 .
Elkins-Tanton (.
Encrenaz, Therese. . Planet. Space Sci. 2003, 51: 89–103. :. :.
Herbert, F Sandel, Bill R. . Planet.Space Sci. 1999, 47: . :. :.
Stanley, S Bloxham, Jeremy. Convective-region geometry as the cause of Uranus' and Neptune's unusual magnetic fields. Nature. 日, 428: 151–153. :. :.
Holleman, A. F.; Wiberg, E., Inorganic Chemistry, San Diego: Academic Press, 2001,  
Stevenson, D. J. .
(). November 20, 1975, 258: 222–223 . :. :.
Bernal, M. J. M.; Massey, H. S. W. .
( for the ). February 3, 1954, 114: 172–179 . :.
Porter, W. S., Astr. J., 66, 243–245 (1961). 5.
Ramsey, W. H., Planet. Space Sci., 15,
Connerney, J.E.P.; Acuna, Mario H.; Ness, Norman F. . Journal of Geophysics Research. 1991, 96: 19,023–42.
Ness, N. F.; Acu?a, M. H.; Burlaga, L. F.; Connerney, J. E. P.; Lepping, R. P.; Neubauer, F. M. . Science. 1989, 246 (4936):
. :. :.  .
Russell, C. T.; Luhmann, J. G. . University of California, Los Angeles. 1997 .
. The Planetary Society. 2007 .
. USGS - Astrogeology Research Program.
. New Scientist. March 26, 2005 .
. Astrobiology Magazine. 日 .
Crisp, D.; Hammel, H. B. . Hubble News Center. June 14, 1995 .
Williams, Sam.
(). 2004 .
McHugh, J. P., , AAS/Division for Planetary Sciences Meeting Abstracts, p. 53.07, September, 1999
McHugh, J. P. and Friedson, A. J., Neptune's Energy Crisis: Gravity Wave Heating of the Stratosphere of Neptune, Bulletin of the American Astronomical Society, p.1078, September, 1996
Atreya, S.; Egeler, P.; Baines, K.
(pdf). Geophysical Research Abstracts. 2006, 8: 05179.
Hammel, H.B. et al.. . Science. 1989, 245: . :. :.
. Yahoo! News. September 19, 2007 .
Kelly Beatty. . Sky & Telescope. 15 July 2013 .
Holman, Matthew J. et al.. . Nature. August 19, 2004, 430: 865–867. :. :.
. BBC News. August 18, 2004 .
Moore, Patrick. The Data Book of Astronomy. .
. . (存檔於).
Beebe R. . Planetary Report. 1992, 12: 18–21. :.
從維基百科的了解更多有關
「Neptune」的內容:
維基詞典上的
維基共享資源上的
維基學院上的
維基語錄上的
維基文庫上的
維基教科書上的
Bill Arnett的科普網站nineplanets.org
:隱藏分類:物理:6.1《行星的运动》学案(新人教版必修2)_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
36页免费29页免费20页免费28页免费14页免费 22页免费8页免费14页免费3页免费24页1下载券
喜欢此文档的还喜欢6页免费5页免费6页免费44页2下载券23页1下载券
物理:6.1《行星的运动》学案(新人教版必修2)|物​理​:.《​行​星​的​运​动​》​学​案​(​新​人​教​版​必​修)
把文档贴到Blog、BBS或个人站等:
普通尺寸(450*500pix)
较大尺寸(630*500pix)
你可能喜欢6.1行星的运动 课件(人教版必修2)_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
文档贡献者贡献于
评价文档:
36页免费25页免费29页免费28页免费14页免费 20页免费14页免费14页免费29页1下载券18页1下载券
6.1行星的运动 课件(人教版必修2)|
把文档贴到Blog、BBS或个人站等:
普通尺寸(450*500pix)
较大尺寸(630*500pix)
大小:3.21MB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢/21该会员上传的其它文档:12 p.12 p.4 p.8 p.3 p.7 p.3 p.3 p.2 p.3 p.3 p.4 p.3 p.3 p.4 p.2 p.3 p.1 p.1 p.2 p.3 p.4 p.7 p.7 p.教学设计:高中课程标准.物理(人教版)必修2主备人:邵维灵学科长审查签名:一..教学设计:高中课程标准.物理(人教版)必修2主备人:邵维灵学科长审查签名:一、内容及其解析1、内容:本节主要讨论了人们对天体运动的认识的发展过程,并且介绍了“地心说”和“日心...云南专用人教版高一物理:6.1《行星的运动》教案相关文档专题pptdocdocpptpptpptdocdocdocpptdocpptpptdocdocdocdocdocdocdoc关于我们常见问题关注我们官方公共微信

我要回帖

更多关于 地球公转周期 的文章

 

随机推荐