一农民有田2亩,根据他的经验:若种水稻...

一农民有基本农田2亩,根据往年经验:_百度知道
一农民有基本农田2亩,根据往年经验:
若种水稻,则每季每亩产量为400公斤,但需成本240元;若种花生,则每季每亩产量为100公斤,但成本只需80元。种花生每公斤可卖5元,稻米买公斤可卖3元。现该农民手上有400元,两种作物各种多少,才能获得最大收益???
我有更好的答案
按默认排序
分析:先设该农民种x亩水稻,y亩花生时,能获得利润z元,根据约束条件画出可行域,再利用几何意义求最值,目标函数表示直线在y轴上的截距的420倍,只需求出可行域直线在y轴上的截距最大值即可.解答:解:设该农民种x亩水稻,y亩花生时,能获得利润z元.则z=(3×400-240)x+(5×100-80)y=960x+420y即y=-167x+z420…(2分)x+y≤2240x+80y≤400x≥0y≥0即
x+y≤23x+y≤5x≥0y≥0…(4分)作出可行域如图阴影部分所示,…(8分)作出基准直线y=-167x,在可行域内平移直线y=-167x+z420,可知当直线过点B时,纵截距z420有最大值,…(10分)由x+y=23x+y=5解得B(32,12),…(12分)故当x=1.5,y=0.5时,zmax=1650元,…(13分)答:该农民种1.5亩水稻,0.5亩花生时,能获得最大利润,最大利润为1650元.…(14分)点评:本题主要考查了简单的线性规划在实际生活中的应用,以及利用几何意义求最值.在解决线性规划的问题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域②求出可行域各个角点的坐标③将坐标逐一代入目标函数④验证,求出最优解.
我算了半天.不过我一初中生
其他类似问题
基本农田的相关知识
您可能关注的推广回答者:回答者:
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁还可以输入150字
标题已超出10个字
您发布过于频繁,请2分钟后重新发布
登录后才可以发表评论哦!可以选择
赶紧当第一个评论者吧!
您可能感兴趣的新闻:
24小时42区 TOP 10
应该报警的,不能纵容,不是每个人觉悟都这么高的,其他的做好事的遇到这个人怎么办?
陌陌一开始是以约泡作为卖点,现在做大了想洗白了,老夫第一个反对
我觉得他爸爸做的很对,尤其是在孩子塑造三观的成长期,一件小事往往就能改变性格信念乃至于人生信条。教孩子学习好习惯不是想要他成为什么什么样的人,而是当他面对社会上各种浮躁的混蛋事的时候,哪怕曲意逢迎,在心底也能确切的知道,究竟什么才是真的“对”。
除了广电总局 我所知管得最宽的一个组织
“大哥我说完了能把枪放下了么”
被捞出来后发现嫖娼用户体验性太差,果断有了陌陌
请问您知道“请吃饭”是怎么来的么
世界变成什么样不知道,反正求知欲极强的我会精尽人亡的您的位置:&&
&&(新人教A)高三数学第二轮复习教案第10讲参数取值问题的题型与方法(4课时)
(新人教A)高三数学第二轮复习教案第10讲参数取值问题的题型与方法(4课时)
地区:全国
上传人:HdbM****@
版本:通用
类型:期中/期末
下载扣点:2点
上传时间:
已有3710人下载该资源
(新人教A)高三数学第二轮复习教案第10讲参数取值问题的题型与方法(4课时)
高三数学第二轮复习教案
参数取值问题的题型与方法
求参数的取值范围的问题,在中学数学里比比皆是,这一讲,我们分四个方面来探讨。
一、若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。
例1.已知当xR时,不等式a+cos2x<54sinx+恒成立,求实数a的取值范围。
分析:在不等式中含有两个变量a及x,其中x的范围已知(xR),另一变量a的范围即为所求,故可考虑将a及x分离。
解:原不等式即:4sinx+cos2x3即>a+2
上式等价于或,解得a<8.
说明:注意到题目中出现了sinx及cos2x,而cos2x=12sin2x,故若把sinx换元成t,则可把原不等式转化成关于t的二次函数类型。
另解:a+cos2x<54sinx+即
a+12sin2x0,( t[1,1])恒成立。
设f(t)= 2t24t+4a+则二次函数的对称轴为t=1,
f(x)在[1,1]内单调递减。
只需f(1)>0,即>a2.(下同)
例2.已知函数f(x)在定义域(,1]上是减函数,问是否存在实数k,使不等式f(ksinx)f(k2sin2x)对一切实数x恒成立?并说明理由。
分析:由单调性与定义域,原不等式等价于ksinx≤k2sin2x≤1对于任意x∈R恒成立,这又等价于
对于任意x∈R恒成立。
不等式(1)对任意x∈R恒成立的充要条件是k2≤(1+sin2x)min=1,即1≤k≤1----------(3)
不等式(2)对任意x∈R恒成立的充要条件是k2k+≥[(sinx)2]max=,
即k≤1或k≥2,-----------(4)
由(3)、(4)求交集,得k=1,故存在k=1适合题设条件。
说明:抽象函数与不等式的综合题常需要利用单调性脱掉函数记号。
例3.设直线过点P(0,3),和椭圆顺次交于A、B两点,试求的取值范围.
分析:本题中,绝大多数同学不难得到:=,但从此后却一筹莫展, 问题的根源在于对题目的整体把握不够. 事实上,所谓求取值范围,不外乎两条路:其一是构造所求变量关于某个(或某几个)参数的函数关系式(或方程),这只需利用对应的思想实施;其二则是构造关于所求量的一个不等关系.
思路1: 从第一条想法入手,=已经是一个关系式,但由于有两个变量,同时这两个变量的范围不好控制,所以自然想到利用第3个变量——直线AB的斜率k. 问题就转化为如何将转化为关于k的表达式,到此为止,将直线方程代入椭圆方程,消去y得出关于的一元二次方程,其求根公式呼之欲出.
解1:当直线垂直于x轴时,可求得;
当与x轴不垂直时,设,直线的方程为:,代入椭圆方程,消去得,
因为椭圆关于y轴对称,点P在y轴上,所以只需考虑的情形.
当时,,,
思路2: 如果想构造关于所求量的不等式,则应该考虑到:判别式往往是产生不等的根源. 由判别式值的非负性可以很快确定的取值范围,于是问题转化为如何将所求量与联系起来. 一般来说,韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于不是关于的对称关系式. 原因找到后,解决问题的方法自然也就有了,即我们可以构造关于的对称关系式.
解2:设直线的方程为:,代入椭圆方程,消去得
在(*)中,由判别式可得 ,
解得.结合得.
说明:范围问题不等关系的建立途径多多,诸如判别式法,均值不等式法,变量的有界性法,函数的性质法,数形结合法等等. 本题也可从数形结合的角度入手,给出又一优美解法.
二、直接根据图像判断
若把等式或不等式进行合理的变形后,能非常容易地画出等号或不等号两边函数的图象,则可以通过画图直接判断得出结果。尤其对于选择题、填空题这种方法更显方便、快捷。
例4.(2003年江苏卷第11题、天津卷第10题)已知长方形四个顶点A(0,0),B(2,0),C(2,1)和D(0,1).一质点从AB的中点P沿与AB夹角为θ的方向射到BC上的点P1后,依次反射到CD、DA和AB上的点P2、P3和P4(入射角等于反射角).设P4的坐标为(x4,0).若1< x4<2,则的取值范围是 (
分析: 《高中数学课程标准》提倡让学生自主探索, 动手实践, 并主张在高中学课程设立“数学探究”学习活动, 03年数学试题反映了这方面的学习要求,在高考命题中体现了高中课程标准的基本理念.本题可以尝试用特殊位置来解,不妨设与AB的中点P重合(如图1所示),则P1、P2、P3分别是线段BC、CD、DA的中点,所以.由于在四个选择支中只有C含有,故选C.
当然,本题也可以利用对称的方法将“折线”问题转化成“直线”问题来直接求解(如图2所示).
说明 由本题可见, 03年试题强调实验尝试, 探索猜想在数学学习中的地位.这也是选择题的应有特点.
例5.当x(1,2)时,不等式(x1)2<logax恒成立,求a的取值范围。
分析:若将不等号两边分别设成两个函数,则左边为二次函数,图象是抛物线,右边为常见的对数函数的图象,故可以通过图象求解。
解:设y1=(x1)2,y2=logax,则y1的图象为右图所示的抛物线,要使对一切x(1,2),y11,并且必须也只需当x=2时y2的函数值大于等于y1的函数值。
故loga2>1,a>1,10,则根据函数的图象(直线)可得上述结论等价于
ⅰ)或ⅱ)亦可合并定成
同理,若在[m,n]内恒有f(x)2p+x恒成立的x的取值范围。
分析:在不等式中出现了两个字母:x及P,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将p视作自变量,则上述问题即可转化为在[2,2]内关于p的一次函数大于0恒成立的问题。
略解:不等式即(x1)p+x22x+1>0,设f(p)= (x1)p+x22x+1,则f(p)在[2,2]上恒大于0,故有:
例8.设f(x)=x22ax+2,当x[1,+)时,都有f(x)a恒成立,求a的取值范围。
分析:题目中要证明f(x)a恒成立,若把a移到等号的左边,则把原题转化成左边二次函数在区间[1,+)时恒大于0的问题。
解:设F(x)= f(x)a=x22ax+2a.
ⅰ)当=4(a1)(a+2)<0时,即2<a0.则原方程有解即方程t2+(4+a)t+4=0有正根。
解法2(利用根与系数的分布知识):
即要求t2+(4+a)t=0有正根。设f(x)= t2+(4+a)t+4.
10.=0,即(4+a)216=0,∴a=0或a=8.
a=0时,f(x)=(t+2)2=0,得t=20,符合题意。
20. >0,即a0时,
∵f(0)=4>0,故只需对称轴,即a<4.
∴a0,y>0,x,y∈Z)。
计年利润为s,那么s=3x+6y-2.4x-4y,即s=0.6x+2y
作出不等式表示的平面区域。问题转化为求直线0.6x+2xs=0截距的最大值。过点A作0.6x+2y=0的平行线即可求出s的最大值。
联立得A(18,12)。
将x=18,y=12代入s=0.6x+2y求得Smax=34.8。
设经过n年可收回投资,则11.6+23.2+34.8(n2)=1200,可得n=33.5。
学校规模初中18个班级,高中12个班级,第一年初中招生6个班300人,高中招生4个班160人。从第三年开始年利润34.8万元,大约经过36年可以收回全部投资。
说明:本题的背景材料是投资办教育,拟定一份计划书,本题是计划书中的部分内容。要求运用数形结合思想,解析几何知识和数据处理的综合能力。通过计算可知,投资教育主要是社会效益,提高整个民族的素质,经济效益不明显。
五、强化训练
1.(南京市2003年高三年级第一次质量检测试题)
若对个向量存在个不全为零的实数,使得成立,则称向量为“线性相关”.依此规定, 能说明,,“线性相关”的实数依次可以取
(写出一组数值即可,不必考虑所有情况).
2.已知双曲线,直线过点,斜率为,当时,双曲线的上支上有且仅有一点B到直线的距离为,试求的值及此时点B的坐标。
3.设函数f(x)=2x-12-x-1,xR,若当0时,f(cos2+2msin)+f(2m2)>0恒成立,求实数m的取值范围。
4.已知关于x的方程lg(x+20x) lg(8x6a3)=0有唯一解,求实数a的取值范围。
5.试就的不同取值,讨论方程所表示的曲线形状,并指出其焦点坐标。
6.某公司计划在今年内同时出售变频空调机和智能型洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大。已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:
单位产品所需资金(百元)
月资金供应量(百元)
空调机 洗衣机
成本 30 20 300
(工资) 5 10 110
单位利润 6 8
试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?
7.某校伙食长期以面粉和大米为主食,而面食每100克含蛋白质6个单位,含淀粉4个单位,售价0.5元,米食每100克含蛋白质3个单位,含淀粉7个单位,售价0.4元,学校要求给学生配制盒饭,每盒饭至少有8个单位的蛋白质和10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少?
8.发电厂主控室的表盘,高m米,表盘底边距地面n米。问值班人员坐在什么位
置上,看得最清楚?(值班人员坐在椅子上眼睛距地面的高度一般为1.2米)
9. 某养鸡厂想筑一个面积为144平方米的长方形围栏。围栏一边靠墙,现有50米铁丝网,筑成这样的围栏最少要用多少米铁丝网?已有的墙最多利用多长?最少利用多长?
六、参考答案
1.分析:本题将高等代数中维向量空间的线形相关的定义,移植到平面向量中,定义了个平面向量线性相关.在解题过程中,首先应该依据定义,得到,即,于是,所以即则.所以,的值依次可取(是不等于零的任意实数).
2.分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段. 从“有且仅有”这个微观入手,对照草图,不难想到:过点B作与平行的直线,必与双曲线C相切. 而相切的代数表现形式是所构造方程的判别式. 由此出发,可设计如下解题思路:
解题过程略.
分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B到直线的距离为”,相当于化归的方程有唯一解. 据此设计出如下解题思路:
解:设点为双曲线C上支上任一点,则点M到直线的距离为:
于是,问题即可转化为如上关于的方程.
由于,所以,从而有
于是关于的方程
方程的二根同正,故恒成立,于是等价于
由如上关于的方程有唯一解,得其判别式,就可解得
说明:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.
3.分析与解:从不等式分析入手,易知首先需要判断f(x)的奇偶性和单调性,不难证明,在R上f(x)是奇函数和增函数,由此解出cos2+2msin0,t∈[0,1]--------------------(*)
恒成立时,求实数m的取值范围。
接下来,设g(t)=t22mt+(2m+1),按对称轴t=m与区间[0,1]的位置关系,分类使g(t)min>0,综合求得m>.
本题也可以用函数思想处理,将(*)化为2m(1t)>(t2+1),t∈[0,1]
⑴当t=1时,m∈R;
⑵当0≤th(t)=2[(1t)+],由函数F(u)=u+在(1,1]上是减函数,易知当t=0时,h(x)max=1, ∴m>,综合(1)、(2)知m>。
说明:本题涉及函数的奇偶性、单调性、二次函数的条件极值、不等式等知识,以及用函数的思想、数形结合、分类讨论、转化和化归的思想方法解题,是综合性较强的一道好题。
4.分析:方程可转化成lg(x2+20x)=lg(8x6a3),从而得x2+20x=8x6a3>0,注意到若将等号两边看成是二次函数
y= x2+20x及一次函数y=8x6a3,则只需考虑这两个
函数的图象在x轴上方恒有唯一交点即可。
解:令y1= x2+20x=(x+10)x6a3,则如图所示,y1的图象为一个定抛物线,y2的图象是一条斜率为定值8,而截距不定的直线,要使y1和y2在x轴上有唯一交点,则直线必须位于l1和l2之间。(包括l1但不包括l2)
当直线为l1时,直线过点(20,0)此时纵截距为6a3=160,a=;
当直线为l2时,直线过点(0,0),纵截距为6a3=0,a=
∴a的范围为[,)。
5.解:(1)当时,方程化为,表示轴。
(2)当时,方程化为,表示轴
(3)当时,方程为标准形式:
①当时,方程化为表示以原点为圆心,为半径的圆。
②当时,方程(*)表示焦点在轴上的双曲线,焦点为
③当时,方程(*)表示焦点在轴上的椭圆,焦点为
④当时,方程(*)表示焦点在轴上的椭圆,焦点为
⑤当时,方程(*)表示焦点在轴上的双曲线,焦点为
6.解:设空调机、洗衣机的月供应量分别是x、y台,总利润是P,则P=6x+8y
由题意:30x+20y ≤300
5x+10y≤110
x≥0,y≥0
x、y均为整数
画图知直线 y=-3/4x+1/8P 过M(4,9)时,纵截距最大,这时P也取最大值Pmax=6×4+8×9=96(百元)
故:当月供应量为:空调机4台,洗衣机9台时,可获得最大利润9600元。
7.解:设每盒盒饭需要面食x(百克),米食y(百克)
则目标函数为S=0.5x+0.4y
且x,y满足 :
x≥0 ,y≥0
画图可知,直线 y=-5/4x+5/2S
过A(13/15,14/15)时,纵截距5/2S最小,即S最小。
故每盒盒饭为13/15百克,米食14/15百克时既科学又费用最少。
8.解答从略,答案是: 值班人员的眼睛距表盘距离为
(米)。本题材料背景:仪表及工业电视,是现代化企业的眼睛,它总是全神贯注地注视着生产内部过程,并忠实地把各种指标显示在值班人员的面前。这就要在值班人员和仪表及工业电视之间,建立某种紧密的联系,联系的纽带是值班人员的眼睛!因此只有在最佳位置上安排值班人员的座位,才能避免盲目性。
9.解:假设围栏的边长为x米和玉米,于是由题设可知x>0,y>0,且
双曲线xy=144在第一象线内的一支与直线2x+y=50的交点是A(),B(),满足条件(1)、(2)的解集是在双曲线xy=144(),这一段上的点集(即如图中双曲线A、B之间的一段),当过双曲线A、B之间上的任一点作一点作直线2x+y=k(k>0)就是相应需用铁丝网的长度,直线2x+y=k(k>0)与双曲线xy=144相切。这时,相应的k值最小,消去y得x的二次方程: ,从△=0得,
即k=24(米)所需用铁丝网的最短长度为24米。从图中知,利用已有墙的最大长度由点A的纵坐标给出,即米,利用墙的最短长度由B纵坐标给出,即米。
高考学习网-中国最大高考学习网站 | 我们负责传递知识!
把直线l’的方程代入双曲线方程,消去y,令判别式
点Q的轨迹方程
利用点Q满足直线AB的方程:y = k (x—4)+1,消去参数k
将直线方程代入椭圆方程,消去y,利用韦达定理
由判别式得出k的取值范围
AP/PB = —(xA / xB)
关于所求量的不等式
构造所求量与k的关系式
xA+ xB = f(k),xA xB = g(k)
把直线l的方程y = kx+3代入椭圆方程,消去y得到关于x的一元二次方程
由判别式得出k的取值范围
AP/PB = —(xA / xB)
得到所求量关于k的函数关系式
xA= f(k),xB = g(k)
把直线l的方程y = kx+3代入椭圆方程,消去y得到关于x的一元二次方程
所求量的取值范围
直线l’在l的上方且到直线l的距离为
转化为一元二次方程根的问题
关于x的方程有唯一解

我要回帖

更多关于 一亩三分田txt 的文章

 

随机推荐