如何确IGBT的栅极电压驱动电压

栅极电阻栅极驱动电路的输出级是一种典型的,采用了两个按图腾柱形式配置的MOSFET。两个MOSFET的栅极由相同的驱动。当信号为高电平时,N通道MOSFET导通,当信号为低电平时,P通道MOSFET导通,从而产生一个两推挽输出配置。MOSFET的输出级可有一路或两路输出。根据输出级有一路还是两路输出,可实现具有一个或两个栅极电阻(导通,关断)的用于对称或不对称的解决。
栅极电阻 -
保护IGBT的续流二极管的开关特性也受栅极电阻的影响,并限制栅极阻抗的最小值。这意味着IGBT的导通开关速度只能提高到一个与所用续流二极管反向恢复特性相兼容的水平。栅极电阻的减小不仅增大了IGBT的过应力,而且由于IGBT模块中diC/dt的增大,也增大了续流二极管的过压极限。通过使用特殊设计和优化的带软恢复功能的CAL(可控轴向寿命),使得反向峰值电流小,从而使桥路中IGBT的导通电流小。
栅极电阻 -
形成工艺方法
一种平板结构及平板电容、和的形成工艺方法,它可以简化工艺,降低成本。在所述的平板电容结构中以多晶硅作为它的下极,在平板电容、栅极和电阻的形成工艺方法,它主要包括以下步骤,第一步,多晶硅化学气相沉积成长,并全面磷注入;第二步,层间介质化学气相沉积生长,并以光刻胶为掩膜刻蚀去除电容的下极及高阻以外的层间介质;第三步,金属层溅射;第四步,阻挡氧化层化学气相沉积成长;第五步,通过光刻胶掩膜刻蚀所述阻挡氧化层和所述金属层,形成电容上极和栅极和电阻的金属层,然后再用所述光刻胶和层间介质共同作掩膜刻蚀多晶硅,形成电容的下极和栅极、低阻层电阻、高阻层电阻的。
栅极电阻 -
栅极电阻对于低开关损耗,无IGBT模块振荡,低二极管反向恢复峰值电流和最大dv/dt限制,栅极电阻必须体现出最佳的开关特性。通常在应用中,额定电流大的IGBT模块将采用较小的栅极电阻驱动;同样的,额定电流小的IGBT模块,将需要较大的栅极电阻。也就是说,IGBT数据手册中所给的电阻值必须为每个设计而优化。IGBT数据手册中指定了栅极电阻值。然而,最优的栅极电阻值一般介于IGBT数据表中所列的值和其两倍之间。IGBT数据表中所指定的值是最小值;在指定条件下,两倍于额定电流可被安全地关断。在实际中,由于测试电路和各个应用参数的差异,IGBT数据表中的栅极电阻值往往不一定是最佳值。上面提到的大概的电阻值(即两倍的数据表值),可被作为优化的起点,以相应地减少栅级电阻值。确定最终最优值的唯一途径是测试和衡量最终系统。使应用中的寄生电感最小很重要。这对于保持IGBT的在数据表的指定范围内是必要的,特别是在短路情况下。栅极电阻决定栅极峰值电流IGM。增大栅极峰值电流将减少导通和关断时间以及开关损耗。栅级峰值电流的最大值和栅级电阻的最小值分别由驱动器输出级的性能决定。
栅极电阻 -
设计、布局和疑难解答
为了能够经受住应用中出现的大负载,栅极电阻必须满足一定的性能要求并具有一定的特性。由于栅级电阻上的大负载,建议使用电阻并联的形式。这将产生一个冗余,如果一个栅极电阻损坏,系统可临时运行,但开关损耗较大。选择错误的栅极电阻,可能会导致问题和不希望的结果。所选的栅极电阻值太大,将导致损耗过大,应减小栅极电阻值。应铭记整个应用中的开关性能。过高的栅极电阻值可能会导致IGBT在开关期间在长时间运行在线性模式下,最终导致栅极振荡。然而,万一电阻的功耗和峰值功率能力不够,或者使用了非防浪涌电阻,都会导致栅极电阻过热或烧毁。运行期间,栅极电阻不得不承受连续的脉冲流。因此,栅极电阻必须具有一定的峰值功率能力。使用非常小的栅极电阻,会带来更高的dv/dt或di/dt,但也可能会导致EMI噪声。
应用(直流环节)中的电感过大或者使用的关断栅级电阻小,将导致更大的di/dt,从而产生过大的IGBT电压尖峰。因此应尽量减小电感或者增大关断栅级电阻值。为减小短路时的电压尖峰,可使用软关断电路,它可以更缓慢地关断IGBT。栅极电阻电路和IGBT模块之间的距离应尽可能短。如果栅极电阻和IGBT模块之间的连线过长,将会在栅极-发射极的通道上产生较大的电感。结合IGBT的输入电容,该线路电感将形成一个振荡LC电路。可简单地通过缩短连线或者用比最小值(RG(min)≥2√(Lwire/Cies))大的栅极电阻来衰减这种振荡。
栅极电阻 -
栅极电阻 -
[1]中国金属加工在线
为本词条添加和相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和770多万专业认证智愿者沟通。
您也可以使用以下网站账号登录:
此词条还可添加&
编辑次数:4次
参与编辑人数:2位
最近更新时间: 20:33:20
贡献光荣榜
扫描二维码用手机浏览词条
保存二维码可印刷到宣传品
扫描二维码用手机浏览词条
保存二维码可印刷到宣传品igbt驱动_百度百科
关闭特色百科用户权威合作手机百科 收藏 查看&igbt驱动本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来吧!
绝缘栅双极晶体管 IGBT 安全工作,它集功率晶体管 GTR 和功率MOSFET 的优点于一身,、、自关断、开关频率高 (10-40 kHz) 的特点,是目前发展最为迅速的新一代电力电子器件。广泛应用于小体积、高效率的变频电源、电机调速、 UPS 及逆变焊机当中。 IGBT 的驱动和保护是其应用中的关键技术。分&&&&类第三代电力电子器件峰值电流容量大
在此根据长期使用 IGBT 的经验并参考有关文献对 IGBT 的门极驱动问题做了一些总结,希望对广大 IGBT 应用人员有一定的帮助。
1 IGBT 门极驱动要求
1.1 栅极驱动电压
因 IGBT 栅极 - 发射极阻抗大,故可使用 MOSFET 驱动技术进行驱动,但 IGBT 的输入电容较 MOSFET 大,所以 IGBT 的驱动偏压应比 MOSFET 驱动所需偏压强。图 1 是一个典型的例子。在 +20 ℃情况下,实测 60 A , 1200 V 以下的 IGBT 开通电压阀值为 5 ~ 6 V ,在实际使用时,为获得最小导通压降,应选取 Ugc ≥ (1.5 ~ 3)Uge(th) ,当 Uge 增加时,导通时集射电压 Uce 将减小,开通损耗随之减小,但在负载短路过程中 Uge 增加,集电极电流 Ic 也将随之增加,使得 IGBT 能承受短路损坏的脉宽变窄,因此 Ugc 的选择不应太大,这足以使 IGBT 完全饱和,同时也限制了短路电流及其所带来的应力 ( 在具有短路工作过程的设备中,如在电机中使用 IGBT 时, +Uge 在满足要求的情况下尽量选取最小值,以提高其耐短路能力 ) 。
1.2 对电源的要求
对于全桥或半桥电路来说,上下管的驱动电源要相互隔离,由于 IGBT 是电压控制器件,所需要的驱动功率很小,主要是对其内部几百至几千皮法的输入电容的充放电,要求能提供较大的瞬时电流,要使 IGBT 迅速关断,应尽量减小电源的内阻,并且为防止 IGBT 关断时产生的 du/dt 误使 IGBT 导通,应加上一个 -5 V 的关栅电压,以确保其完全可靠的关断 ( 过大的反向电压会造成 IGBT 栅射反向击穿,一般为 -2 ~ 10 V 之间 ) 。
1.3 对驱动波形的要求
从减小损耗角度讲,门极驱动电压脉冲的上升沿和下降沿要尽量陡峭,前沿很陡的门极电压使 IGBT 快速开通,达到饱和的时间很短,因此可以降低开通损耗,同理,在 IGBT 关断时,陡峭的下降沿可以缩短关断时间,从而减小了关断损耗,发热量降低。但在实际使用中,过快的开通和关断在大电感负载情况下反而是不利的。因为在这种情况下, IGBT 过快的开通与关断将在电路中产生频率很高、幅值很大、脉宽很窄的尖峰电压 Ldi/dt ,并且这种尖峰很难被吸收掉。此电压有可能会造成 IGBT 或其他元器件被过压击穿而损坏。所以在选择驱动波形的上升和下降速度时,应根据电路中元件的耐压能力及 du/dt 吸收电路性能综合考虑。
1.4 对驱动功率的要求
由于 IGBT 的开关过程需要消耗一定的电源功率,最小峰值电流可由下式求出:
I GP = △ U ge /R G +R g ;
式中△ Uge=+Uge+|Uge| ; RG 是 IGBT 内部电阻; Rg 是栅极电阻。
驱动电源的平均功率为:
P AV =C ge △ Uge 2 f,
式中. f 为开关频率; Cge 为栅极电容。
1.5 栅极电阻
为改变控制脉冲的前后沿陡度和防止震荡,减小 IGBT 集电极的电压尖峰,应在 IGBT 栅极串上合适的电阻 Rg 。当 Rg 增大时, IGBT 导通时间延长,损耗发热加剧; Rg 减小时, di/dt 增高,可能产生误导通,使 IGBT 损坏。应根据 IGBT 的电流容量和电压额定值以及开关频率来选取 Rg 的数值。通常在几欧至几十欧之间 ( 在具体应用中,还应根据实际情况予以适当调整 ) 。另外为防止门极开路或门极损坏时主电路加电损坏 IGBT ,建议在栅射间加入一电阻 Rge ,阻值为 10 k Ω左右。
1.6 栅极布线要求
合理的栅极布线对防止潜在震荡,减小噪声干扰,保护 IGBT 正常工作有很大帮助。
a .布线时须将驱动器的输出级和 lGBT 之间的寄生电感减至最低 ( 把驱动回路包围的面积减到最小 ) ;
b .正确放置栅极驱动板或屏蔽,防止功率电路和控制电路之间的耦合;
c .应使用辅助发射极端子连接驱动电路;
d .驱动电路输出不能和 IGBT 栅极直接相连时,应使用双绞线连接 (2 转/ cm) ;
e .栅极保护,箝位元件要尽量靠近栅射极。
1.7 隔离问题
由于功率 IGBT 在电力电子设备中多用于高压场合,所以驱动电路必须与整个控制电路在电位上完全隔离,主要的途径及其优缺点如表 1 所示。
表1 驱动电路与控制电路隔离的途径及优缺点
利用进行隔离
优点:体积小、结构简单、应用方便、输出脉宽不受限制,适用于 PWM 控制器
1 、共模干扰抑制不理想
2 、响应速度慢,在高频状态下应用受限制
3 、需要相互隔离的辅助电源
利用脉冲变压器进行隔离
优点:响应速度快,共模干扰抑制效果好
1 、信号传送的最大脉冲宽度受磁芯饱和特性的限制,通常不大于 50 %,最小脉宽受磁化电流限制
2 、受漏感及集肤影响,加工工艺复杂
2 典型的门极驱动电路介绍
2.1 脉冲变压器驱动电路
脉冲变压器驱动电路如图 2 所示, V1 ~ V4 组成脉冲变压器一次侧驱动电路,通过控制 V1 、 V4 和 V2 、 V3 的轮流导通,将驱动脉冲加至变压器的一次侧,二次侧通过电阻 R1 与 IGBT5 栅极相连, R1 、 R2 防止 IGBT5 栅极开路并提供充放电回路, R1 上并联的二极管为加速二极管,用以提高 IGBT5 的开关速度,稳压二极管 VS1 、 VS2 的作用是限制加在 IGBT5g-e 端的电压,避免过高的栅射电压击穿栅极。栅射电压一般不应超过 20 V 。
图 2 脉冲变压器驱动电路
2.2隔离驱动电路
光耦隔离驱动电路如图 3 所示。由于 IGBT 是高速器件,所选用的光耦必须是小延时的高速型光耦,由 PWM 控制器输出的方波信号加在三极管 V1 的基极, V1 驱动光耦将脉冲传递至整形放大电路 IC1 ,经 IC1 放大后驱动由 V2 、 V3 组成的对管 (V2 、 V3 应选择β &100 的开关管 ) 。对管的输出经电阻 R1 驱动 IGBT4 , R3 为栅射结保护电阻, R2 与稳压管 VS1 构成负偏压产生电路, VS1 通常选用 1 W/5.1 V 的稳压管。此电路的特点是只用 1 组供电就能输出正负驱动脉冲,使电路比较简洁。
图 3 光耦隔离驱动电路
2.3 驱动模块构成的驱动电路
应用成品驱动模块电路来驱动 IGBT ,可以大大提高设备的可靠性,目前市场上可以买到的驱动模块主要有:富士的 EXB840、841,三菱的 M57962L,落木源的KA101、KA102,惠普的 HCPL316J、3120 等。这类模块均具备过流软关断、高速光耦隔离、欠压锁定、故障信号输出功能。由于这类模块具有保护功能完善、免调试、可靠性高的优点,所以应用这类模块驱动 IGBT 可以缩短产品开发周期,提高产品可靠性。 EXB840 和 M57962 很多资料都有介绍,KA101和KA102的资料可以从百度搜索,这里就简要介绍一下惠普公司的 HCPL316J 。典型电路如图 4 所示。
图 4 由驱动模块构成的驱动电路
HCPL316J 可以驱动 150 A/1200 V 的 IGBT ,光耦隔离, COMS/TTL 电平兼容,过流软关断,最大开关速度 500 ns ,工作电压 15 ~ 30 V ,欠压保护。输出部分为三重复合达林顿管,集电极开路输出。采用标准 SOL-16 表面贴装。
HCPL316J 输入、输出部分各自排列在集成电路的两边,由 PWM 电路产生的控制信号加在 316j 的第 1 脚,输入部分需要 1 个 5 V 电源, RESET 脚低电平有效,故障信号输出由第 6 脚送至 PWM 的关闭端,在发生过流情况时及时关闭 PWM 输出。输出部分采用 +15 V 和 -5 V 双电源供电,用于产生正负脉冲输出, 14 脚为过流检测端,通过二极管 VDDESAT 检测 IGBT 集电极电压,在 IGBT 导通时,如果集电极电压超过 7 V ,则认为是发生了过流现象, HCPL316J 慢速关断 IGBT ,同时由第 6 脚送出过流信号。
通过对 IGBT 门极驱动特点的分析及典型应用电路的介绍,使大家对 IGBT 的应用有一定的了解。可作为设计 IGBT 驱动电路的参考。驱动器功率不足或选择错误可能会直接导致 IGBT 和驱动器损坏。以下总结了一些关于IGBT驱动器输出性能的计算方法以供选型时参考。
igbt驱动电路是驱动igbt模块以能让其正常工作,并同时对其进行保护的电路。
绝缘栅双极型晶体管(IGBT)在今天的电力电子领域中已经得到广泛的应用,在实际使用中除IGBT自身外,IGBT 驱动器的作用对整个换流系统来说同样至关重要。驱动器的选择及输出功率的计算决定了换流系统的可靠性。
因此,在IGBT数据手册中给出的电容Cies值在实际应用中仅仅只能作为一个参考值使用。
IGBT 的开关特性主要取决于IGBT的门极电荷及内部和外部的电阻现有技术概述
市场上的驱动器产品简介
TX系列驱动器介绍开关电源中大功率器件驱动电路的设计一向是电源领域的关键技术之一。普通大功率三极管和绝缘栅功率器件(包括VMOS场效应管和IGBT绝缘栅双极性大功率管等),由于器件结构的不同,具体的驱动要求和技术也大不相同。前者属于电流控制器件,要求合适的电流波形来驱动;后者属于电场控制器件,要求一定的电压来驱动。本文只介绍后者的情况。
VMOS场效应管(以及IGBT绝缘栅双极性大功率管等器件)的源极和栅极之间是绝缘的二氧化硅结构,直流电不能通过,因而低频的静态驱动功率接近于零。但是栅极和源极之间构成了一个栅极电容Cgs,因而在高频率的交替开通和关断时需要一定的动态驱动功率。小功率VMOS管的Cgs一般在10-100pF之内,对于大功率的绝缘栅功率器件,由于栅极电容Cgs较大,在1-100nF,甚至更大,因而需要较大的动态驱动功率。更由于漏极到栅极的密勒电容Cdg,栅极驱动功率是不可忽视的。
为可靠驱动绝缘栅器件,目前已有很多成熟电路。当驱动信号与功率器件不需要隔离时,驱动电路的设计是比较简单的,目前也有了一些优秀的驱动集成电路,如IR2110。当需要驱动器的输入端与输出端电气隔离时,一般有两种途径:采用光电耦合器,或是利用脉冲变压器来提供电气隔离。
光电耦合器的优点是体积小巧,缺点是:A.反应较慢,因而具有较大的延迟时间(高速型光耦一般也大于500ns);B.光电耦合器的输出级需要隔离的辅助电源供电。
用脉冲变压器隔离驱动绝缘栅功率器件有三种方法:无源、有源和自给电源驱动。
无源方法就是用变压器次级的输出直接驱动绝缘栅器件,这种方法很简单,也不需要单独的驱动电源,但由于绝缘栅功率器件的栅源电容Cgs一般较大,因而栅源间的波形Vgs将有明显变形,除非将初级的输入信号改为具有一定功率的大信号,相应脉冲变压器也应取较大体积。
有源方法中的变压器只提供隔离的信号,在次级另有整形放大电路来驱动绝缘栅功率器件,当然驱动波形好,但是需要另外提供隔离的辅助电源供给放大器。而辅助电源如果处理不当,可能会引进寄生的干扰。
自给电源方法的已有技术是对PWM驱动信号进行高频(1MHz以上)调制,该信号加在隔离脉冲变压器的初级,在次级通过直接整流得到自给电源,而原PWM调制信号则需经过解调取得,显然,这种方法并不简单, 价格当然也较高。调制的优点是可以传递的占空比不受限制。
分时式自给电源技术,是国内的发明专利技术,其特点是变压器在输入PWM信号的上升和下降沿只传递PWM信息,在输入信号的平顶阶段传递驱动所需要的能量,因而波形失真很小。这种技术的缺点是占空比一般只能达到5-95%。当前市场上的成品驱动器,按驱动信号与被驱动的绝缘栅器件的电气关系来分,可分为直接驱动和隔离驱动两种,其中隔离驱动的隔离元件有光电耦合器和脉冲变压器两种。
不隔离的直接驱动器
在Boost、全波、正激或反激等电路中,功率开关管的源极位于输入电源的下轨,PWM IC输出的驱动信号一般不必与开关管隔离,可以直接驱动。如果需要较大的驱动能力,可以加接一级放大器或是串上一个成品驱动器。直接驱动的成品驱动器一般都采用薄膜工艺制成IC电路,调节电阻和较大的电容由外引脚接入。
目前的成品驱动器种类不少,如TI公司的UCC37XXX系列,TOSIBA公司的TPS28XX系列,Onsemi公司的MC3315X系列,SHARP公司的PC9XX系列,IR公司的IR21XX系列,等等,种类繁多,本文不作具体介绍,读者可查阅相关资料。
使用光电耦合器的上的IGBT。带保护功能的驱动器和驱动板,用户如要测试正常的静态(不加主电情况下)输出波形,需要注意以下几点:
1、如果功率管IGBT或MOSFET已经连接在电路中了,则加上驱动电源和PWM输入信号,就可以在输出端用示波器看到相应的输出信号。
2、如果功率管没有接,只是在做一个输出测试,那么必须将应接功率管集电极和发射极(或漏极和源极)的两点予以短路才行。因为如果集电极或漏极悬空,那么驱动器或驱动板将认为功率管处于短路状态而启动内部的保护机制,这时看到的将是驱动器输出的保护信号波形,无论是波形形状还是周期都与输入的PWM信号完全不同。IGBT在应用中要解决的主要问题就是如何在过流、短路和过压的情况下对IGBT实行比较完善的保护。过流故障一般需要稍长的时间才使电源过热,因此对它的保护都由主控制板来解决。过压一般发生在IGBT关断时,较大的di/dt在寄生电感上产生了较高的电压,这需要用缓冲电路来钳制,或者适当降低关断的速率。短路故障发生后瞬时就会产生极大的电流,很快就会损坏IGBT,主控制板的过流保护根本来不及,必须由驱动电路或驱动器立刻加以保护。
因此驱动器的短路保护功能设计的是否完善,对电源的安全运行至关重要。拿到一个驱动电路,使用前先测试一下它的短路保护功能是否完善,是很有必要的。本文介绍两种测试方法。
1、第一种测试方法
图中PWM信号送到驱动器的信号输入端,故障后再启动电容Creset=10nF,Dhv是高反压快恢复管,限流电阻Rlimit=10-100R,电容C=10-470uF。示波器可在驱动器的输入和输出端监测。如果不接Creset,则驱动器输出端输出的是约1ms的脉冲,也就是IGBT每1ms短路一次。考虑到有的IGBT在这种情况下时间长了仍有可能过热烧毁,接入10nF的Creset后,则为约12ms短路一次,保证了IGBT的安全。
过流动作阈值设置电阻Rn的选取,请根据所试驱动器说明中的关于Rn的说明和所试验IGBT的正向伏安特性曲线选取合适的阻值。
在单管电路的开关电源中,接入适当的Creset后,可以省去通常的短路信号反馈光耦。
2、第二种测试方法
与第一种方法类似,只是不让IGBT始终保持短路,用手工来短路A、B两点。这种短路试验比第一种更严酷,对驱动器的要求也更高,因为手工短路,不可能一下接实,实际是一连串的通断过程。 注意:实验时一定注意人身安全,最好在工频输入处加一个隔离变压器。一、栅极电阻Rg的作用
1、消除栅极振荡
绝缘栅器件(IGBT、MOSFET)的栅射(或栅源)极之间是容性结构,栅极回路的寄生电感又是不可避免的,如果没有栅极电阻,那栅极回路在驱动脉冲的激励下要产生很强的振荡,因此必须串联一个电阻加以迅速衰减。
2、转移驱动器的功率损耗
电容电感都是无功元件,如果没有栅极电阻,驱动功率就将绝大部分消耗在驱动器内部的输出管上,使其温度上升很多。
3、调节功率开关器件的通断速度
栅极电阻小,开关器件通断快,开关损耗小;反之则慢,同时开关损耗大。但驱动速度过快将使开关器件的电压和电流变化率大大提高,从而产生较大的干扰,严重的将使整个装置无法工作,因此必须统筹兼顾。
二、栅极电阻的选取
1、栅极电阻阻值的确定
各种不同的考虑下,栅极电阻的选取会有很大的差异。初试可如下选取:
IGBT额定电流(A)
Rg阻值范围(Ω)
不同品牌的IGBT模块可能有各自的特定要求,可在其参数手册的推荐值附近调试。
2、栅极电阻功率的确定
栅极电阻的功率由IGBT栅极驱动的功率决定,一般来说栅极电阻的总功率应至少是栅极驱动功率的2倍。
IGBT栅极驱动功率 P=FUQ,其中:
F 为工作频率;
U 为驱动输出电压的峰峰值;
Q 为栅极电荷,可参考IGBT模块参数手册。
例如,常见IGBT驱动器(如TX-KA101)输出正电压15V,负电压-9V,则U=24V,
假设 F=10KHz,Q=2.8uC
可计算出 P=0.67w ,栅极电阻应选取2W电阻,最好是2个1W电阻并联。
三、设置栅极电阻的其他注意事项
1、尽量减小栅极回路的电感阻抗,具体的措施有:
a) 驱动器靠近IGBT减小引线长度;
b) 驱动的栅射极引线绞合,并且不要用过粗的线;
c) 线路板上的 2 根驱动线的距离尽量靠近;
d) 栅极电阻使用无感电阻;
e) 如果是有感电阻,可以用几个并联以减小电感。
2、IGBT 开通和关断选取不同的栅极电阻
通常为达到更好的驱动效果,IGBT开通和关断可以采取不同的驱动速度,分别选取 Rgon和Rgoff(也称 aamDw7KUL2dContent-Disposition: form- name=&mc_al_lge&other
新手上路我有疑问投诉建议参考资料 查看主题: &IGBT 栅极-发射极电压取值
IGBT 栅极-发射极正驱动电压20-22V是否过高?
是否绝缘层因栅极发射极电压过高而发生介电击穿?
针对三菱IGBT& CM100DY-24H。
1楼|&总工程师 (16506) |
典型值是12~18V;超过30V比较危险。
2楼|&本网技师 (259) |
如楼上所说,超过18伏以上的很少,电磁炉上的IGBT,驱动电路供电电压最高也不超过18伏。
3楼|&副总工程师 (8544) |
20V~22v我觉得是高了点,大部分我都用+15V与-7.5V(-5V~-10V)驱动。
4楼|&工程师 (726) |
我也觉得 20&22V有点高,可是我这零电流谐振电源(24KW) IGBT(选用FF400R12KE3)的驱动用的就是+21V& ,-5V .运行良好,而此&IGBT的PDF 说明的VGE(max)才+20V 。
5楼|&副总工程师 (8544) |
PDF中的说明一般也是有余量的。假如驱动降为+18V -5V或 +15V -5V是否工作性能就变坏了呢?(只是为了说明问题而做的比喻)
6楼|&总工程师 (16506) |
没必要和他抬杠。
如果他能在K数量级上;对不同温度下;IGBT的失效率做严格统计;他就不会这么讲了。而对于器件制造商讲;K是个实在太小的单位。
7楼|&工程师 (502) |
如果不发生电流突变(如短路),问题不大。
如果短路,有可能产生闩锁现象,直接炸管。
8楼|&总工程师 (16506) |
现在;IGBT已经不会发生擎住效应了。炸管多是关断不及时或关太快引起过压击穿或栅损坏等。
9楼|&总工程师 (16506) |
开关太快也会干掉IGBT。
10楼|&工程师 (502) |
开关快不是炸管原因,开关快的过压才是炸管原因,一定要区分。开关快开关损耗低,但是不解决残留能量问题,我看也就只能降低速度,将功耗消耗在IGBT上了。
我做的驱动开关一贯很快,越快越好(现在300A的IGBT,我的开关速度都是200ns以内)。从不因此炸管。
11楼|&总工程师 (16506) |
短路后;高速关断;看看炸不。
12楼|&工程师 (502) |
又是你这个倔头,都是有条件的。到我博客看看吧。
13楼|&总工程师 (16506) |
电路布局和PCB设计水平;决定了能使用的最高开关速度和最大电流。不是主观想多快都可以的。
IGBT多是短路保护动作后;告诉关断电流引起的过压击毁的。
14楼|&工程师 (502) |
同意。这次到没那么愣。
我都是在主电路解决这些问题的。
15楼|&副总工程师 (8544) |
lesonlee 这位朋友,你对驱动的看法我也都有同感,但许工的看法也不无
道理,大家在一起讨论交流技术,我觉得没必要加上什么[倔]啊 [愣]啊 的,呵呵...
16楼|&工程师 (502) |
抱歉、抱歉。
以前只做技术交流不多,对你们不熟悉。
多多提醒。
17楼|&专家 (43592) |
怎们进你博客?网址多少啊?
18楼|&工程师 (502) |
| 最新回复 20:13
世纪电源网热线:022- 传真:022- e-mail:21dy 邮编:300110
中国电源学会 地址:天津市南开区黄河道467号大通大厦16层(300110) 联系电话:022- 传真:022- e-mail:cpss
广东联络处:7 () 北京联络处:010- ()
上海联络处:021- () 香港联络处:HK(852) China(86)
备案许可证号为:

我要回帖

更多关于 igbt驱动 的文章

 

随机推荐