开关电源的变压器电流计算的初级峰值电流怎么测出...

论坛热门版区:
楼主| 本网技工(118) | |
主题: &开关变压器初级前端的滤波电感,流过的电流值如何计算?
如图所示的 L2电感, 我现在知道的仅是电感值, 现在选型想知道它的电流, 这个电流值如何计算,是不是根据后端输出的功率,反推出来的吗?
这个应该根据后面的功率/效率/C2上的电压得出吧。再适当放点余量吧。
1楼|&助理工程师 (368) |
这个应该根据后面的功率/效率/C2上的电压得出吧。再适当放点余量吧。
2楼|&本网技工 (118) |
比如我后端输出总功率5W, 变压器转化效率50%&& 那么前端就是10W, 假如C2点的电压是400V, 那么电流就是0.025A 对吧?
3楼|&副总工程师 (8297) |
输入功率除以输入电压就是它
4楼|&工程师 (812) |
你这个是带PFC的算法吧?
不带PFC的结果要留余量,因为桥堆后面有大电解滤波的。
6楼|&副总工程师 (8297) |
| | 最新回复 10:30
这个要看楼主问的是什么电流了,峰值电流,有效值电流?平均电流?他没说,我估计他是想知道多少电流,用多大的线?如果是这样,就是我说的那个意见。余量不余量?集肤不集肤?在载流量上考虑一下就可以了。
不过我见楼主已经找到满意答案了,虽然有点糊涂。
5楼|&本网技工 (163) |
不要那么复杂啊,在电路中连个电表不就可以了,推荐用钳表,精度比较高,而且也很简单,上手很快的。
世纪电源网热线:022- 传真:022- e-mail:21dy 邮编:300110
中国电源学会 地址:天津市南开区黄河道467号大通大厦16层(300110) 联系电话:022- 传真:022- e-mail:cpss
广东联络处:7 () 北京联络处:010- ()
上海联络处:021- () 香港联络处:HK(852) China(86)
备案许可证号为:您当前的位置:&>&&>&
如何计算反激式变压器开关电源电路参数
反激式变压器开关电源电路参数计算基本上与正激式变压器开关电源电路参数计算一样,主要对储能滤波电感、储能滤波电容,以及开关电源变压器的参数进行计算。
1-7-3-1.反激式变压器开关电源储能滤波电容参数的计算
前面已经详细分析,储能滤波电容进行充电时,电容两端的电压是按正弦曲线的速率变化,而储能滤波电容进行放电时,电容两端的电压是按指数曲线的速率变化,但由于电容充、放电的曲率都非常小,所以,把图1-19反激式变压器开关电源储能滤波电容两端电压的充、放电波形画成了锯齿波,这也相当于用曲率的平均值来取代曲线的曲率,如图1-26所示。
图1-26中,uo是变压器次级线圈输出波形,Up是变压器次级线圈输出电压正半周波形的峰值,Up-是变压器次级线圈输出电压负半周波形的峰值,Upa是变压器次级线圈输出电压波形的半波平均值,uc是储能滤波电容两端的电压波形,Uo是反激式变压器开关电源输出电压的平均值,i1是流过变压器初级线圈的电流,i2是流过变压器次级线圈的电流,Io是流过负载两端的平均电流。
从图1-26可以看出,反激式变压器开关电源储能滤波电容充、放电波形与图1-7反转式串联开关电源储能滤波电容充、放电波形(图1-8-b))基本相同,只是极性正好相反。因此,图1-19反激式变压器开关电源储能滤波电容参数的计算方法与图1-7反转式串联开关电源储能滤波电容参数的计算方法完全相同。反激式变压器开关电源储能滤波电容参数的计算,除了参考图1-7以外,还可以参考前面串联式开关电源或反转式串联开关电源中储能滤波电容参数的计算方法,同时还可以参考图1-6中储能滤波电容C的充、放电过程。
从图1-26中可以看出,反激式变压器开关电源与反转式串联开关电源中的储能电感一样,仅在控制开关K关断期间才产生反电动势向负载提供能量,因此,即使是在占空比D等于0.5的情况下,储能滤波电容器充电的时间与放电的时间也不相等,电容器充电的时间小于半个工作周期,而电容器放电的时间则大于半个工作周期,但电容器充、放电的电荷是相等的,即电容器充电时的电流大于放电时的电流。
从图1-26可以看出,反激式变压器开关电源,流过负载的电流比正激式变压器开关电源流过负载的电流小一倍,流过负载的电流Io只有流过变压器次级线圈最大电流iLm的四分之一。在占空比D等于0.5的情况下,电容器充电的时间为3T/8 ,电容充电电流的平均值为3iLm/8 ,或3Io/2 ;而电容器放电的时间为 5T/8,电容放电电流的平均值为0.9 Io。因此有:
&DQ =(3Io/2 ) &3T/8 =9IoT/16 && D = 0.5时 (1-116),式中&DQ为电容器充电的电荷,Io流过负载的平均电流,T为工作周期。电容充电时,电容两端的电压由最小值充到最大值(绝对值),相应的电压增量为2&DUc,由此求得电容器两端的波纹电压&DUP-P为:
(1-118)式和(1-119)式,就是计算反激式变压器开关电源储能滤波电容的公式(D = 0.5时)。式中:Io是流过负载电流的平均值,T为开关工作周期,&DUP-P为滤波输出电压的波纹,或电压纹波。一般波纹电压都是取电压增量的峰-峰值,因此,当D = 0.5时,波纹电压等于电容器充电的电压增量,即:&DUP-P = 2&DUc 。
同理,(1-118)式和(1-119)式的计算结果,只给出了计算反激式变压器开关电源储能滤波电容C的中间值,或平均值,对于极端情况可以在平均值的计算结果上再乘以一个大于1的系数。
当开关K工作占空比D小于0.5时,由于流过开关电源变压器次级线圈的电流会不连续,电容器放电的时间将远远大于电容器充电的时间,因此,开关电源滤波输出电压的纹波将显著增大。另外,开关电源的负载一般也不是固定的,当负载电流增大的时候,开关电源滤波输出电压的纹波也将会增大。因此,设计开关电源的时候要留有充分的余量,实际应用中最好按(1-118)式计算结果的2倍以上来选取储能滤波电容的参数。
经过反复的比较和遴选,《今日电子》和21ic中国电子网举办的2013年度产品奖正式揭晓…
() () () () () () () () ()100kHz下,趋肤深度为0.237mm,线径0.47mm以下为宜四,高频变压器的绕制:目前..
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
反激式开关电源的设计计算一反激式开关电源
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口技术与热点应用
您所在的位置: &
开关电源设计技巧连载十:正激式变压器开关电源电路参数的计算
正激式变压器开关电源电路参数计算主要对储能滤波电感、储能滤波电容,以及开关变压器的参数进行计算。
0.1.正激式变压器开关电源储能滤波电感和储能滤波电容参数的计算
图1-17中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法基本相同,因此,我们可以直接引用(1-14)式和(1-18)式,即:
式中Io为流过负载的电流(平均电流),当D = 0.5时,其大小正好等于流过储能电感L最大电流iLm的二分之一;T为开关电源的工作周期,T正好等于2倍控制开关的接通时间Ton ;&DUP-P为输出电压的波纹电压,波纹电压&DUP-P一般取峰-峰值,所以波纹电压等于电容器充电或放电时的电压增量,即:&DUP-P = 2&DUc 。
同理,(1-90)式和(1-91)式的计算结果,只给出了计算正激式变压器开关电源储能滤波电感L和滤波电容C的中间值,或平均值,对于极端情况可以在平均值的计算结果上再乘以一个大于1的系数。
关于电压平均值输出滤波电路的详细工作原理与参数计算,请参看&1-2.串联式开关电源&部分中的&串联式开关电源电压滤波输出电路&内容,这里不再赘述。
1-6-3-2.正激式开关变压器参数的计算
正激式开关变压器参数的计算主要从这几个方面来考虑。一个是变压器初级线圈的匝数和伏秒容量,伏秒容量越大变压器的励磁电流就越小;另一个是变压器初、次级线圈的匝数比,以及变压器各个绕组的额定输入或输出电流或功率。关于开关变压器的工作原理以及参数设计后面还要更详细分析,这里只做比较简单的介绍。
1-6-3-2-1.正激式开关变压器初级线圈匝数的计算
图1-17中,当输入电压Ui加于开关变压器初级线圈的两端,且变压器的所有次级线圈均开路时,流过变压器的电流只有励磁电流,变压器铁心中的磁通量全部都是由励磁电流产生的。当控制开关接通以后,励磁电流就会随时间增加而增加,变压器铁心中的磁通量也随时间增加而增加。根据电磁感应定理:
式中E1为变压器初级线圈产生的电动势,L1为变压器初级线圈的电感量, 为变压器铁心中的磁通量,Ui为变压器初级线圈的输入电压。其中磁通量 还可以表示为:
上式中,S为变压器铁心的导磁面积(单位:平方厘米),B为磁感应强度,也称磁感应密度(单位:高斯),即:单位面积的磁通量。
把(1-93)式代入(1-92)式并进行积分:
&由此求得:
(1-95)式就是计算单激式开关变压器初级线圈N1绕组匝数的公式。式中,N1为变压器初级线圈N1绕组的最少匝数,S为变压器铁心的导磁面积(单位:平方厘米),Bm为变压器铁心的最大磁感应强度(单位:高斯),Br为变压器铁心的剩余磁感应强度(单位:高斯),Br一般简称剩磁,& = Ton,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:秒),一般&取值时要预留20%以上的余量,Ui为工电压,单位为伏。式中的指数是统一单位用的,选用不同单位,指数的值也不一样,这里选用CGS单位制,即:长度为厘米(cm),磁感应强度为高斯(Gs),磁通单位为麦克斯韦(Mx)。
(1-95)式中,Ui&? 就是变压器的伏秒容量,即:伏秒容量等于输入脉冲电压幅度与脉冲宽度的乘积,这里我们把伏秒容量用VT来表示。伏秒容量VT表示:一个变压器能够承受多高的输入电压和多长时间的冲击。
在一定的变压器伏秒容量条件下,输入电压越高,变压器能够承受冲击的时间就越短,反之,输入电压越低,变压器能够承受冲击的时间就越长;而在一定的工作电压条件下,变压器的伏秒容量越大,变压器的铁心中的磁感应强度就越低,变压器铁心就更不容易饱和。变压器的伏秒容量与变压器的体积以及功率无关,而只与磁通的变化量有关。
必须指出Bm和Br都不是一个常量,当流过变压器初级线圈的电流很小时,Bm是随着电流增大而增大的,但当电流再继续增大时,Bm将不能继续增大,这种现象称磁饱和。变压器要避免工作在磁饱和状态。为了防止脉冲变压器饱和,一般开关变压器都在磁回路中留一定的气隙。由于空气的导磁率与铁心的导磁率相差成千上万倍,因此,只要在磁回路中留百分之一或几百分之一的气隙长度,其磁阻或者磁动势将大部分都落在气隙上,因此磁心也就很难饱和。
在没有留气隙的变压器铁心中的Bm和Br的值一般都很高,但两者之间的差值却很小;留有气隙的变压器铁心,Bm和Br的值一般都要降低,但两者之间的差值却可以增大,气隙留得越大,两者之间的差值就越大,一般Bm可取高斯,Br可取500~1000。顺便指出,变压器铁心的气隙留得过大,变压器初、次级线圈之间的耦合系数会降低,从而使变压器初、次级线圈的漏感增大,降低工作效率,并且还容易产生反电动势把电源开关管击穿。
还有一些高导磁率、高磁通密度磁材料(如坡莫合金),这种变压器铁心的导磁率和Bm值都可达10000高斯以上,但这些高导磁率、高磁通密度磁材料一般只用于双激式开关变压器中。
在(1-95)式中虽然没有看到变压器初级线圈电感这个变量,但从(1-92)式可以求得:
上式表示,变压器初级线圈的电感量等于穿过变压器初级线圈的总磁通,与流过变压器初级线圈励磁电流之比,另外,由于线圈之间有互感作用,即励磁电流出了受输入电压的作用外,同时也受线圈电感量的影响,因此,变压器线圈的电感量与变压器线圈的匝数的平方成正比。从(1-95)式和(1-96)式可以看出,变压器初级线圈的匝数越多,伏秒容量和初级线圈的电感量也越大。因此,对于正激式开关变压器来说,如果不考虑变压器初级线圈本身的电阻损耗,变压器初级线圈的匝数是越多越好,电感量也是越大越好。但在进行变压器设计的时候,还要对成本以及铜阻损耗等因素一起进行考虑。
1-6-3-2-2.变压器初、次级线圈匝数比的计算
正激式开关电源输出电压一般是脉动直流的平均值,而脉动直流的平均值与控制开关的占空比有关,因此,在计算正激式开关变压器初、次级线圈的匝数比之前,首先要确定控制开关的占空比D,把占空比D确定之后,根据(1-77)式就可以计算出正激式开关变压器的初、次级线圈的匝数比:
&由(1-77)可以求得:
上式中,n为正激式开关变压器次级线圈与初级线圈的匝数比,即:n = N2/N1 ;Uo为输出直流电压,Ui为变压器初级输入电压,D为控制开关的占空比。
在正常输出负载的情况下,正激式开关电源控制开关的占空比D最好取值为0.5左右。这样,当负载比较轻的时候,占空比D会小于0.5,虽然储能滤波电感会出现断流,储能滤波电容充电时间缩短,放电时间增加,但由于输出电流比较小,储能滤波电容充、放电的电流也很小,所以在电容两端产生的电压纹波不会增大,反而减小;当输出负载比较重的时候,控制开关的占空比D会大于0.5,此时流过储能滤波电感的电流为连续电流,输出电流增大,储能滤波电容充电的时间增加,放电的时间缩短,因此,电容两端产生的电压纹波也不会增大很多。
因此,如果正激式开关电源电路中的储能滤波电感和储能滤波电容充电以及控制开关占空比,三者取得合适,输出电压纹波会很小。
正激式开关变压器次级反电动势能量吸收反馈线圈N3绕组与初线圈N1绕组的匝数比n一般为1 :1 ,即:N3/N1 = 1。如果n大于1,反馈线圈N3绕组与整流二极管D3的限幅保护作用就会增强,但流过反馈线圈N3绕组和整流二极管D3的电流也会增大,从而会增加损耗;如果n小于1,反馈线圈N3绕组与整流二极管D3的限幅保护作用就会减弱,尖峰脉冲很容易把电源开关管击穿。
正激式开关变压器次级反电动势能量吸收反馈线圈N3绕组匝数的计算与限幅稳压二极管的计算方法是很相似的,不过线圈匝数与稳压二极管的击穿电压正好相反,击穿电压取得越高限幅保护的作用反而越弱。
这里顺便提一下,变压器线圈漆包线的电流密度一般取每平方毫米为2~3安培比较合适。当开关电源的工作频率取得很高时,电流密度最好取得小一些,或者用多股线代替单股线,以免电流在导体中产生趋肤效应,增大损耗使导线发热。另外,目前绕制变压器使用的漆包线大部分都不是纯铜线,因此电阻率相对比较大,把这些因素一起考虑,电流密度更不能取高。
更多精彩内容,敬请关注
本文链接:
没有相关信息!
第三届工业计算机及嵌入式系统展IPCE2014上,以医疗健康为核心,以多维度…
电子周刊订阅
日排行周排行月排行您的位置: >
正激式变压器开关电源的优缺点
为了表征各种电压或电流波形的好坏,一般都是拿电压或电流的幅值、平均值、有效值、一次谐波等参量互相进行比较。在开关电源之中,电压或电流的幅值和平均值最直观,因此,我们用电压或电流的幅值与其平均值之比,称为脉动系数S;也有人用电压或电流的有效值与其平均值之比,称为波形系数K。
因此,电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki分别表示为:Sv = Up/Ua —— 电压脉动系数 (1-84)
Si = Im/Ia —— 电流脉动系数 (1-85)
Kv =Ud/Ua —— 电压波形系数 (1-86)
Ki = Id/Ia —— 电流波形系数 (1-87)
上面4式中,Sv、Si、Kv、Ki分别表示:电压和电流的脉动系数S,和电压和电流的波形系数K,在一般可以分清楚的情况下一般都只写字母大写S或K。脉动系数S和波形系数K都是表征电压或者电流好坏的指标,S和K的值,显然是越小越好。S和K的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。
正激式变压器开关电源正好是在变压器的初级线圈被直流电压激励时,变压器的次级线圈向负载提供功率输出,并且输出电压的幅度是基本稳定的,此时尽管输出功率不停地变化,但输出电压的幅度基本还是不变,这说明正激式变压器开关电源输出电压的瞬态控制特性相对来说比较好;只有在控制开关处于关断期间,功率输出才全部由储能电感和储能电容两者同时提供,此时输出电压虽然受负载电流的影响,但如果储能电容的容量取得比较大,负载电流对输出电压的影响也很小。
另外,由于正激式变压器开关电源一般都是选取变压器输出电压的一周平均值,储能电感在控制开关接通和关断期间都向负载提供电流输出,因此,正激式变压器开关电源的负载能力相对来说比较强,输出电压的纹波比较小。如果要求正激式变压器开关电源输出电压有较大的调整率,在正常负载的情况下,控制开关的占空比最好选取在0.5左右,或稍大于0.5,此时流过储能滤波电感的电流才是连续电流。当流过储能滤波电感的电流为连续电流时,负载能力相对来说比较强。
当控制开关的占空比为0.5时,正激式变压器开关电源输出电压uo的幅值正好等于电压平均值Ua的两倍,流过滤波储能电感电流的最大值Im也正好是平均电流Io(输出电流)的两倍,因此,正激式变压器开关电源的电压和电流的脉动系数S都约等于2,而与反激式变压器开关电源的电压和电流的脉动系数S相比,差不多小一倍,说明正激式变压器开关电源的电压和电流输出特性要比反激式变压器开关电源好很多。
正激式变压器开关电源的缺点也是非常明显的。其中一个是电路比反激式变压器开关电源多用一个大储能滤波电感,以及一个续流二极管。此外,正激式变压器开关电源输出电压受占空比的调制幅度,相对于反激式变压器开关电源来说要低很多,这个从(1-77)和(1-78)式的对比就很明显可以看出来。因此,正激式变压器开关电源要求调控占空比的误差信号幅度比较高,误差信号放大器的增益和动态范围也比较大。
另外,正激式变压器开关电源为了减少变压器的励磁电流,提高工作效率,变压器的伏秒容量一般都取得比较大(伏秒容量等于输入脉冲电压幅度与脉冲宽度的乘积,这里用US来表示),并且为了防止变压器初级线圈产生的反电动势把开关管击穿,正激式变压器开关电源的变压器要比反激式变压器开关电源的变压器多一个反电动势吸收绕组,因此,正激式变压器开关电源的变压器的体积要比反激式变压器开关电源的变压器的体积大。
正激式变压器开关电源还有一个更大的缺点是在控制开关关断时,变压器初级线圈产生的反电动势电压要比反激式变压器开关电源产生的反电动势电压高。因为一般正激式变压器开关电源工作时,控制开关的占空比都取在0.5左右,而反激式变压器开关电源控制开关的占空比都取得比较小。
正激式变压器开关电源在控制开关关断时,变压器初级线圈两端产生的反电动势电压是由流过变压器初级线圈的励磁电流产生的。因此,为了提高工作效率和降低反电动势电压的幅度,尽量减小正激式开关电源变压器初级线圈的励磁电流是值得考虑的。
当控制开关的占空比为0.5时,在控制开关关断时刻,电源变压器初级会产生反电动势,反电动势产生的电流方向与输入电压Ui产生的电流方向相同,因此,控制开关两端的电压正好等于输入电压Ui与反电动势Up-之和,即:
Ukp = Ui+Up- —— K关断期间 (1-88)
式中Ukp为控制开关关断时刻,控制开关两端的电压;Up-为变压器初级线圈产生反电动势电压的峰值。根据(1-68)式和图1-16-b可知,Up-一般都大于输入电压Ui,因此Ukp大于两倍Ui。
一般正激式变压器开关电源都设置有一个反电动势能量吸收回路,如图1-17中的变压器反馈线圈N3绕组和整流二极管D3,此时,反电动势电压的峰值一般都被限幅到输入电压Ui的值,如果不考虑变压器初、次级线圈的漏感,则(1-88)式可以改写为:
Ukp = 2Ui —— 带限幅电路 (1-89)
这个电压对于电源开关管来说是很高的。例如电源输入电压为交流220伏,经整流滤波后其最大值就是311伏,根据(1-89)式可求得Uk = 622伏;如果输入电压为交流253伏(±15%),那么,可以求得Ukp = 715伏,这还不算变压器初级线圈漏感产生的反电动势电压。一般图1-17中的变压器反馈线圈N3绕组和整流二极管D3,对变压器初级线圈N1绕组漏感产生的反电动势电压是无法进行吸收的,这一点需要特别注意。为了吸收变压器初级线圈N1绕组漏感产生的反电动势,在变压器初级线圈回路中还要专门设置一个反电动势吸收电路,这一方面内容后面还要更详细介绍。
一般电源开关管的耐压都在650伏左右,因此,正激式变压器开关电源在输入电压为交流220伏的设备中很少使用,或者用两个电源开关管串联来使用。由于正激式变压器开关电源输出电压的瞬态控制特性相对来说比较好,因此,目前在一些对瞬态控制特性要求比较高的场合,用两个电源开关管串联的正激式变压器开关电源也逐步开始增加。
非常好我支持^.^
不好我反对
相关阅读:
( 发表人:发烧友 )
评价:好评中评差评
发表评论,获取积分! 请遵守相关规定!提 交
Powered by: 电子发烧友 (
. .All Rights Reserved 粤ICP备号

我要回帖

更多关于 计算电流 的文章

 

随机推荐