IUSYERAS s什长是什么意思 么意思

在法汉-汉法词典中发现10个解释错误,并通过审核,将获赠《法语助手》授权一个
添加笔记:
<div id="correct" title="在法汉-汉法词典中发现10个解释错误,并通过审核,将获赠《法语助手》授权一个">有奖纠错
juif, -vea. 1犹太的, 犹太人的 2贪得无厌的n. 1 J~犹太人2犹太教徒3守财奴, 贪得无厌者; 高利贷者4 le petit~肘尖[尺骨肘部的鹰嘴突]常见用法un Juif orthodoxe一名正统犹太教徒génocide du peuple juif对犹太人的种族灭绝
近义词:, &, &, &反义词:
juifm. 犹太教徒
c\'est comme dans mon school,les juifs qui forment leurs putains de groupes,et &a gène tellement les autres....假如校放把他们按排在一起,那他们就更加没有提高语言的机会。persécution subie par les Juifs犹太人所受到的迫害Pendant la guerre j’ai caché un juif.二次大战的时候我藏过一个犹太人。Que les Chinois apprennent à se battre comme les Juifs, et les Juifs - à se multiplier comme les Chinois.怕中国人像犹太人那样斗争,也怕犹太人像中国人那样生孩子。Quand ils sont venus chercher les Juifs, je n\""ai pas proteste parce que je ne suis pas Juif.接着他们追杀犹太人,我不是犹太人,我不说话;后来他们追杀工会会员,我不是工会会员,我继续不说话;Mémorial des juifs tués pendant la guerre : une forêt des bétons, un labyrinthe !二战遇难犹太人纪念碑群:一座水泥森林迷宫!Deuxièmement, les juifs sont dotés d’une grande prévoyance.二来自其远见卓识。Le peuple juif a une tradition de coopérer avec les autres.看在利益的份上他们也愿望坐下来谈合作。L'extermination des Juifs par les nazis est un génocide.纳粹对犹太人的屠杀就是种族灭绝。Montpellier n'oublie pas qu'elle abritait à la même époque
une communauté juive importante et qu'elle fut un des grands centres de la pensée juive.不能忘记,那个时代,该城是重要的犹太聚居区,是很大的犹太思想中心。Drumont, lui, les a trouvés, et il les désigne : ce sont les Juifs.现在特鲁蒙找到了要负罪责的人,起来予以揭露:罪人者犹太人也!Qu'est-ce que ?a peut vous foutre que ce Juif reste à l'?le du Diable?“那个犹太人呆在魔鬼岛碍你什么事?”Né en 1908 à Bruxelles de parents juifs alsaciens, Claude Lévi-Strauss est re?u en 1931 à l'agrégation de philosophie.列维-斯特劳斯于1908年在布鲁塞尔出生,父母是阿尔萨斯犹太人,1931年获得哲学教师资格。Etant d’une minorité inférieure, si l’on ne respecte pas l’honnêteté, la communauté juive aura déjà disparue.作为一种弱势存在,如果不守诚信,犹太共同体必定早已消失。La presse diffuse quotidiennement contre les Juifs de véritables appels au meurtre et à l'émeute.报刊每天都发表文章,公开煽动对犹太人寻衅闹事或干脆杀害。La grande majorité des personnes juives qui ont été tuées pendant l’Holocauste étaient d’origine ashkénaze.大多数在大屠杀中丧生的犹太人是这一支犹太人的后裔。Une université étatsunienne - c’est l’endroit où les juifs enseignent les maths aux Chinois.美国的大学就是犹太人给中国人上数学课的地方。Le second marqueur le plus commun dans l’ADN d’Hitler montre un lien très fort avec les juifs ashkénazes, une sous-section des juifs de l’époque du Moyen &Age qui étaient établis le long du Rhin.希特勒基因中第二种常见标记显示出与德系犹太人—中世纪一支在莱茵河畔定居的犹太人的强烈联系。Un officier juif vendu à 1"Allemagne, pas étonnant, se disent les gens, ces juifs n"ont pas de patrie, ils feraient n"importe quoi pour de l"argent.人们纷纷议论:一位犹太军官卖身投靠德国人,这不足为奇。因为,他们没有祖国,为了钱,啥都干得出来。
关注我们的微信
下载手机客户端
赞助商链接
在法语课堂快速找到适合自己的法语学习课程/course
欧洲最具活力的中文社区.最大的关于法国的中文网络平台
法语爱好者的家园 留学与考试的助手 提供各种法语相关的信息与服务versión On-line ISSN X
Lat. Am. J. Aquat. Res. v.37 n.2 Valparaíso
http://dx.doi.org/10.-560X3
Lat. Am. J. Aquat. Res., 37(2): 143-159, 2009
DOI: 10.3856/vol37-issue2-fulltext-3
RESEARCH ARTICLE
Biogeography and biodiversity of gastropod
molluscs from the eastern Brazilian continental shelf and slope
Biogeografía y biodiversidad de moluscos gastrópodos
de la plataforma y talud continental brasile?o
Gabriela Benkendorfer1 & Abílio
Soares-Gomes1
1 Marine Biology Department, Universidade
Federal Fluminense, P.O.Box 100.644, Niterói, RJ, Brazil
ABSTRACT. Biogeographic distributional
patterns of gastropods are proposed based on the species' geo-graphic and bathymetric
distribution. Samples were collected along the Brazilian continental margin
between 18° S and 23° S, at 37 stations with depths from 20 m to 1,330 m. The
analysis of the biogeographic distribution patterns confirmed the existence
of a transitional zone from tropical to subtropical waters in the area of both
the continental shelf and slope, suggesting a relationship with water mass circulation.
We observed a high species turnover rate between the shelf and slope. The analysis
of gastropod species distribution revealed a similar pattern on the shelf and
slope and a large difference between shallow and deep-water faunas.
Keywords: macrobenthos, continental margins,
geographical distribution, vertical distribution, soft bottoms, Brazil, southwestern
Atlantic Ocean.
RESUMEN. Los patrones de distribución
biogeográfica de gastrópodos fueron propuestos basados en la distribución geográfica
y batimétrica de las especies. Los muestreos fueron realizados en el margen
continental brasile?o entre 18°S y 23°S, en 37 estaciones de 20 m a 1.330 m
de profundidad. El análisis de los patrones de distribución biogeográfica confirmó
la existencia de una zona de transición de aguas tropicales a aguas subtropicales,
que se encuentra en la zona de la plataforma continental y también en la zona
del talud continental, esto puede sugerir una relación con la circulación de
las masas de agua. Se observó una elevada tasa de turnover de las especies
entre la plataforma y el talud continental. El análisis de las especies de gastrópodos
reveló un patrón similar tanto en la plataforma como en el talud y una gran
diferencia entre las faunas de las aguas someras y profundas.
Palabras clave: macrobentos, margen continental,
distribución geográfica, distribución vertical, fondos blandos, Brasil, océano
Atlántico sudoccidental.
INTRODUCTION
Understanding the patterns of the geographic
distribution of life is a very oíd issue in biology, and one that continues
to be debated. In the sea, geographic patterns (e.g., in species assemblages
and diversity) have been described for both shallow and deep-sea fauna (Rex,
1993; Rex et al, 1993; Clarke & Crame, 1997; Gray, 1998; Willig et
al, 2003; Hillebrand, 2004).
Longitudinal and latitudinal barriers represented
by the arrangement of land masses and oceans, by temperatura gradients, and
by hydrodynamic patterns and water properties divide the oceans into a series
of biogeographic realms with their own characteristic species assemblages (Briggs,
1995; Longhurst, 1998). The sea surface temperature is supposed to be the main
forcé limiting the latitudinal distribution of marine species. Therefore, biogeographic
realms are not expected to be the same along a depth gradient. In general, the
wider a species' vertical distributional range, the wider its geographical distribution
(Harley et al, 2003). Eurybathic taxa (those with a broader vertical
range) show a wider horizontal distribution than stenobathic taxa (those with
a narrow vertical range) (Vinogradova, 1997). Due to the fact that deep-sea
species are mainly stenobathic, abyssal and hadal fauna show higher levels of
endemism (Vinogradova, 1997; Zezina, 1997). The bulk of shallow-sea fauna is
also stenobathic but, according to Menzies et al. (1973), the fauna on
the continental slope has a wider geographical distribution than that of any
other vertical faunal zone.
Several authors have discussed zoogeographic
and diversity patterns for Brazilian shallow waters based on benthic invertebrates
(e.g., Briggs, 1974; Semenov, 1978; Kempf, 1979; Palacio, 1982; Floeter &
Soares-Gomes, 1999), but few have discussed biogeographic patterns of the neighbouring
slope or abyssal zones (Alien & Sanders, 1996 is a good example for abyssal
The effect of the latitudinal gradient is so
strong on the species diversity of marine molluscs that it is also evident at
the genus and family level (Roy et al., 1998; Crame, 2000) and recognized
in fossil assemblages (Crame, 2002; Jablonski et al, 2006). However,
in spite of the fact that molluscs are one of the earliest taxa used to investigate
latitudinal trends in marine biodiversity, some doubts exist as to whether the
latitudinal trends observed in the northern hemisphere also occur in the southern
hemisphere (Crame, 2000; Valdovinos et al, 2003; Linse et al, 2006).
Some results are conflicting. For example, the patterns found for Pacific Ocean
molluscs in the southern hemisphere by Valdovinos et al. (2003) opposed
those found by Fortes & Absal?o (2004).
The present study aimed to investigate patterns
in both the regional and depth distribution of gastropod molluscs, discussing
aspects of slope and shelf diversity and provinciality, contributing to the
discussion about the latitudinal diversity gradient in the southern hemisphere.
MATERIALS AND METHODS
Study area
The study area comprised the slope and continental
shelf between 18°-23°S and 38°-41°W, encompassing an area ranging from the Abrolhos
reef bank, situated in the north of Doce River, to the offshore and near-shore
region in the vicinity of the Paraíba do Sul River. The study area was divided
into two regions: north (18°-19°S), up to 200 km-long, and south (21o-23°S),
where the shelf is narrow and shallow, ranging from 10 to 30 km in width (). The continental slope in both regions is narrow and steep (Emery &
Uchuoi, 1984). The oceanographic conditions consist of oligotrophic area s that
are associated with the tropical waters of the Brazil Current (BC) and mesotrophic
area s due to the seasonal upwelling of the cold, nutri-ent-rich waters of the
South Atlantic Central Water (SACW) south of the Doce River (20°S) (Valentín
et al, 1987). Primary productivity varíes from 0.3 g C m-2
d-1 to 1.1 g C m-2 d-1 (Gaeta et al, 1999)
and the input of the Doce and Paraíba do Sul rivers is about 900 m s" . The
grain-size distribution is not uniform in the area , shallower
stations have coarse sediments and deeper stations have finer sedi-ments. The
clay and silt concentrations revealed a depth gradient as well, with higher
concentrations occurring at deeper stations. Concentration of calcium carbonate
exhibited a patchy distribution, with higher percentages in the western sector
(Soares-Gomes et al, 1999).
Sampling design and data analysis
Data for this study were obtained in April 1995,
dur-ing the Joint Oceanographic Project (JOPS-II/ Leg 8), on board the R/V Victor
Hansen from Bremen Uni-versity, Germany. Sampling was carried out at 41 stations,
between the depths of 20 m and 1,330 m ( and ). Molluscs were present in 37 of these 41 stations (23 stations in the
shelf zone and 14 in the slope zone). The sediment was sampled in triplicate
with a 0.1 m2 van Veen grab and a 60 x 60 x 30 cm box-corer. Samples
were standardized to an area of 0.1 m and 10 L of sediment volume. The macrozoo-benthos
was sieved out with a 0.5 mm mesh size, fixed in 70% ethanol, and sorted under
a stereomicro-scope for taxonomic identification.
The frequency of occurrence (Fo =
number of oc-currences of a species at the shelf or slope stations / total number
of shelf or slope stations) was calculated, and species were classified according
to their value as constant (Fo & 50%), common (10% &#8804;Fo
&#8804;50%), or rare (Fo & 10%). Species distribution over the
shelf and slope was examined by plotting a histogram of the number of species
against the number of stations oc-cupied.
We used Estimates 6.Obi software (Colwell, 1997)
to determine whether the species were classified as "unique" (restricted to
a single site), "duplicates" (occurring at exactly two sites), "singletons"
(represented by a single individual), or "doubletons" (represented by only two
individuáis), following the terminology of Colwell & Coddington (1994).
To perform a species richness scale analysis,
the total data set was divided into four regions according to their location
in geographic area s (north and south) and bathymetric zones (shelf and slope):
north shelf, south shelf, north slope, and south slope. Due to dif-ferent sampling
efforts, randomized species cumula-tives curves were plotted using Primer 6.1.6
software. Thus, we were able to compare species richness among regions, where
the y-axis is the cumulative number of species and the x-axis the station numbers
(north shelf: 17, 6, north slope: 5, south slope: 9). An area of
0.1 m2 was considered for each sampling station. According to Gray
(2002), when sample sizes are different, this method is preferable to rarefaction
curves as proposed by Sanders (1968). Species diversity was also estimated on
a progressive spatial scale, according to Gray's terminology (2000): sample
species richness (SRS) and species richness in large area s (north
shelf, south shelf, north slope, south slope) (SRL). Together, the
four regions comprised the total area species richness (SRT). In
order to calcúlate the proportion by which a given region is richer than the
average of samples within the total area , Whittaker's (1972) original beta
diversity measure (ssW =(&#947;/&#945;) - 1) was used, where
&#947; is the total number of species resulting from merging a number of individual
samples and &#945; is the average number of species per individual sample. Beta
diversity was measured over sectors [ssW = (SRL/meanSRS)]
and total area [ssW = (SRT/meanSRS)]
scales, where meannSRS was the mean sample diversity.
The species' geographic and bathymetric distribution
ranges were determined based on information available in the literature (Abbott,
1974; Merlano & Hegedus, 1994; Rios, 1994, among others) and in the Malacolog
3.1 electronic database (Rosenberg, 1993 - ).
Geographic boundaries were established based on the south-western Atlantic biogeographic
provinces (Tropical, Paulista, Patagonic, Malvinas) defined by Palacio (1982)
using the endemism rate. For a better representation of the geographic distribution
in the area , the species were grouped according to their occurrence in the
north and south regions. The shelf samples provided 211 species: 91 from the
south region, 179 from the north region, and 59 from both regions. From the
slope samples, 96 species were used: 72 from the south region, 55 from the north,
and 31 from both regions. Depending on the bathymetric distribution, species
were designated according to the zonation proposed by Zezina (1997) and Vinogradova
(1997) as: shallow species (0-200 m depth), bathyal species (200-3,000 m), and
abyssal species (3,000-6,000 m). Species found in both the shelf and bathyal
zones were designated eurybathic.
We excluded pelagic species and juveniles (12.25%
of the total number of species) from the analyses due, not only to the difficulties
in identifying juveniles, but also to the aim of the present study, which is
to analyze only benthic species. Only individuáis identified to the species
level or ones that could unequivocally be labelled as species were used in the
Spatial distribution of species
A total of 9,845 specimens, 404 species and morpho-types
(including empty shells), 189 genera, and 73 families were collected over the
entire study area . A set of 243 species, 93 genera, and 28 families was found
exclusively in the shelf zone, whereas 137 species, 43 genera, and 14 families
were exclusive to the slope zone. Only 24 species (6%), 20 genera (10.6%), and
16 families (22%) occurred in both zones ( and ).
Species distribution over the shelf shows that
about half the species (130) were restricted to one station and none occurred
at all stations. The same pattern was found for the slope, with 110 species
restricted to one single site. Considering the shelf and slope, about 3% of
the species occurred at more than 50% of all sites ().
On the shelf, 2% were constant, 32% common, and 66% rare species. On the slope,
the corresponding figures were 1%, 42%, and 57%.
In the whole area , 48% of the species were unique
and 18% were duplicates. Singletons and doubletons represented 34% and 13%,
correspondingly. The north shelf featured 26% unique species and 17% singletons,
and the north slope had 12% unique species and 5% singletons ().
Diversity gradients
The cumulative dominance on the shelf was similar
for both north and south regions. On the slope, there was a great difference
in cumulative dominance be-tween the two regions, with the north presenting
the highest evenness (). Comparing the cumulative
dominance along a vertical gradient, the evenness of the north slope was almost
10% higher than that of the north shelf, whereas the evenness of the south shelf
was 40% higher than that of the south slope ().
The estimated species richness on the north shelf
was higher than on the south shelf. However, when the sampling area was standardized
to 0.6 m2 (considering the area of a station as 0.1 m2,
), the richness was similar on both shelves (). The
south slope displayed a higher total cumulative number of species per area than
did the north slope. Conversely, when standardizing the sampling area to 0.5
m2, richness was higher on the north slope. In the north, species
richness was 0.5 m2 higher in the slope zone than in the shelf zone,
whereas the opposite pattern was observed in the south ().
In terms of diversity scales, the Alpha diversity
(SRS) values found in the study area ranged from 2 to 84 species.
The mean alpha diversity was highest on the north shelf, where 84 species were
found at one station, followed by the south shelf, where richness ranged from
15 to 43 species within stations. The highest value of beta diversity (SRL/meansSRS)
was found on the north shelf (6.66) and the lowest on the north slope (3.22).
ssW values almost doubled on the largest scale (SRT/meansSRS)
compared to the highest value found on the large area scale ().
Appendix 1. Taxonomic
list of species from the continental shelf (25-200 m depth).
Apéndice 1. Lista taxonómica de especies
de la plataforma continental (25-200 m de profundidad).
Family Scissurellidae Gray,
Scissurella sp.
Anatoma aedonia Watson, 1886
Sinezona brasiliensis Mattar, 1987
Family Fissurellidae Fleming,
Diodora jaumei Aguayo & Rehder,
Diodora meta (Ihering, 1927)
Diodora mirifica Métivier, 1972
Diodora sayi (Dalí, 1899)
Diodora sp.
Emarginula "aff. " phrixodes Dalí,
Emarginula pumila (A. Adams, 1851)
Emarginula tuberculosa Libassi,1859
Lucapinella limatula (Reeve, 1850)
Puncturella antillana Farfante, 1947
Puncturella granulata Seguenza, 1863
Family Acmaeidae Carpenter,
Colisella sp.
Family Trochidae Rafinesque,
Calliostoma echinatum Dalí, 1881
Calliostoma gemmosum (Reeve, 1842)
Calliostoma sp.
Calliostoma vinosum Quinn, 1992
Lamellitrochus carinatus Quinn, 1991
Lamellitrochus lamellosus Verrill
& Smith,1880
Lamellitrochus sp.
Mirachelus clinocnemus Quinn, 1979
Solariella staminea Quinn, 1992
Family Skeneidae Thiele, 1929
Cyclostremiscus caraboboensis Weisbord,
Cyclostremiscus ornatus (Olsson &
McGinty,1958)
Cyclostremiscus pentagonus (Gabb,
Haplocochlias "aff."swiftiVanatta,
Parviturbo rehderi Pilsbry &
McGinty, 1945
Parviturbo weberi Pilsbry & McGinty,
Family Turbinidae Rafinesque,
Arene bairdii (Dalí, 1889)
Arene brasiliana (Dalí, 1927)
Arene microforis (Dalí, 1889)
Arene variabilis (Dalí, 1889)
Arene venusta (Woodring, 1928)
Astraea latispina (Philippi, 1844)
Family Tricollidae Robertson,
Gabrielona sulcífera Robertson, 1973
Tricolia "aff" (C.B. Adams, 1850)
Tricolia bella (M. Smith, 1937)
Family Seguenziidae Verrill,
Ancistrobasis costulata (Wattson,
Family Neritopsidae Gray, 1847
Smaragdia viridis (Linnaeus, 1785)
Family Phenacolepadidae Thiele,
Phenacolepas hamillei (Fisher, 1857)
Family Rissoidea Gray, 1847
Alvania valeriae Absal?o, 1993
Alvania aberrans (C.B. Adams, 1850)
Alvania auberiana (Orbigny, 1842)
Alvania sp.
Benthonella tenella (Jeffreys, 1883)
Ceratia rustica (Watson, 1885)
Folinia bermudezi (Aguayo & Rehder,
Rissoina cancellata (Philippi, 1847)
Rissoina decussata Montago, 1803
Rissoina fenestrata Schwartz, 1860
Rissoina princeps (C. B. Adams, 1850)
Rissoina sp.
Family Barleeidae Gray, 1857
Amphithalamus vallei Aguayo &
Jaume, 1947
Barleeia rubrooperculata (Castellanus,
Caelatura barcellosi Absal?o &
Rios, 1995
Caelatura sp.
Family Assimineidae H. &
A. Adams, 1856
Assiminea succinea (Pfeiffer, 1840)
Assiminea sp.
Family Caecidae Gray, 1850
Caecum brasilicum Folin, 1874
Caecum butoti DeYong & Coomans,
Caecum cornucopiae (Carpenter, 1858)
Caecum floridanum Stimpson, 1851
Caecum irregulare Stimpson, 1851
Caecum meioceras Carpenter, 1858
Caecum sp.
Family Vitrinellidae Bush, 1897
Circulus orbignyi (Fischer, 1857)
Solariorbis "aff " shumoi (Vanatta,
Solariorbis infracarinatus Gabb,
Solariorbis mooreana (Vanatta, 1904)
Teinostoma cocolitoris Pilsbry &
McGinty, 1945
Vitrinella cupidinensis Altena, 1966
Family Modulidae Fisher, 1884
Modulus carchedeonius (Lamarck, 1822)
Family Cerithiidae Fleming,
Bittium sp.
Bittium varium (Pfeiffer, 1840)
Cerithium litteratum (Born, 1778)
Family Litiopidae Gray, 1847
Alaba incerta (Orbigny, 1842)
Family Diastomatidae Cossmann,
Finella dubia (Orbigny, 1842)
Family Fossaridae Troschel,
Megalomphalus troubei (Bavay, 1908)
Family Turritellidae Clarke-Woodward,
Turritella exoleta (Linnaeus, 1758)
Turritella hookeri Reeve,1849
Turritella sp.
Family Calyptraeidae Lamarck,
Calyptraea centralis (Conrad, 1841)
Calyptraea sp.
Crucibulum aurícula (Guimelin, 1791)
Crucibulum striatum (Say, 1824)
Family Xenophoridae Troschell,
Xenophora conchyliophora (Born, 1780)
Family Cypraeidae Rafinesque,
Cypraea sp.
Family Triviidae Troschei, 1863
Trivia candidula (Gaskoin, 1836)
Trivia nix Schilder, 1922
Trivia occidentalis Schilder, 1922
Trivia pediculus (Linnaeus, 1758)
Trivia sp.
Trivia suffusa (Gray, 1832)
Family Naticidae Forbes, 1838
Naticapusilla Say, 1822
Natica sulcata (Born, 1778)
Sigatica semisulcata (Gray, 1839)
Family Cerithiopsidae H. &
A. Adams, 1853
Cerithiopsis greenii (C.B. Adams,
Cerithiopsis latum (C.B. Adams, 1850)
Cerithiopsis sp.
Seila adamsi (H. Lea, 1845)
Family Triphoridae Gray, 1847
Metaxia exilis (C.B. Adams, 1850)
Triphora decórala (C.B. Adams, 1850)
Triphora melanura (C.B. Adams, 1850)
Triphora ornata (Deshayes, 1823)
Triphora turristhomae (Holten, 1802)
Family Epitoniidae S.S. Berry,
Amaea retifera Dalí, 1889
Epitonium "aff." multistriatum (Say,
Epitonium sp.
Family Aclididae G.O. Sars,
Graphis sp. (Synonym: Aclis Lovén,
Family Eulimidae Risso, 1826
Eulima auricincta Abbott, 1959
Eulima bifasciata (Orbigny, 1842)
Eulima hypsela (Verril & Bush,
Melanella arcuata (C.B. Adams, 1850)
Scalenostoma sp.
Family Muricidae Rafinesque,
Aspella castor Radwin & D'Attilio,
Attiliosa sp.
Attiliosa striatoides (E. Vokes,
Chicoreus tenuivaricosus (Dautzenberg,
Dermomurex leali Houart, 1991
Dermomurex sp.
Favartia varimutabilis Houart, 1991
Murexiella glypta (M. Smith, 1938)
Murexiella sp.
Muricopsis sp.
Typhis riosi Bertsch & D'Attilio,
Family Buccinidae Rafinesque,
Engina sp.
Engina turbinella (Kiener, 1835)
Pisania bernardoi P. M. Costa &
Gomes, 1998
Family Columbellidae Swainson, 1840
Aesopus metcalfei (Reeve, 1858)
Aesopus sp.
Aesopus stearnsi (Tryon, 1883)
Amphissa cancellata (Castellanos,
Amphissa sp.
Anachis carloslirai P.M. Costa, 1997
Anachis fenneli Radwin, 1968
Anachis isabellei (Orbigny, 1841)
Anachis obesa (C.B. Adams, 1845)
Mitrella "aff." Innata (Say, 1826)
Mitrella albovittata Lopes, Coelho
& Cardoso, 1965
Mitrella sp. 2
Nassarina minor (C.B. Adams, 1845)
Family Nassariidae Iredale,
Nassarius albus (Say, 1826)
Family Fasciolariidae Gray,
Fusinus brasiliensis (Grabau, 1904)
Fusinus sp.
Latirus devyanae Rios, P.M. Costa
& Calvo,1994
Latirus sp.
Family Olividae Latreille, 1825
Ancilla dimidiata (Sowerby, 1850)
Oliva circinata Marrat, 1870
Olivancillaria urceus (Roding, 1798)
Olivella deflorei Klappenbach, 1964
Olivella minuta (Link, 1807)
Olivella puelcha (Duelos, 1840)
Olivella sp.1
Olivella watermani (McGinty, 1940)
Family Marginellidae Fleming,
Dentimargo lasallei Talawera &
Princz, 1985
Eratoidea scalaris (Jousseaume, 1875)
Eratoidea sp. Persicula "aff.
" sagittata (Hinds, 1844)
Family Mitridae Swainson, 1831
Mitra staminea A. Adams, 1853
Granulina clandestinella Bavay,
Granula lavalleana Orbigny, 1842
Family Mitrinae Swainson, 1831
Subcancilla candida (Reeve, 1845)
Family Costellariidae MacDonald,
Vexilum exiguum (C.B. Adams, 1845)
Vexilum hendersoni (Dalí, 1927)
Vexilum lixa Petuchi, 1979
Vexilum sp.
Family Cancellariidae Forbes
& Hanley, 1853
Cancellaria petuchi Harasewych, Petit
& Ver-hecken, 1992
Tritonoharpa lanceolata (Menke, 1828)
Tritonoharpa leali Harasewych, Petit
& Verhecken, 1992
Family Conidae Rafinesque, 1815
Conus jaspideus Guimelin, 1791
Conus mindanus Hwass, 1792
Family Turridae Swainson, 1840
Acmaturris brisis Woodring, 1928
Bellaspira sp.
Benthomangelia macra (Watson, 1881)
Crassispira cubana Melvill, 1923
Crassispira fuscescens (Reeve, 1843)
Crassispira sp.
Driliola sp.
Drilliola comatotropis (Dalí, 1881)
Eucyclotoma stegeri (McGuinty, 1955)
Fenimorea sp.
Glyphostoma sp.
Ithycythara pentagonalis (Reeve,
Ithycythara sp.
Kurtziella dorvillae (Reeve, 1845)
Leptadrillia cookei (E.A. Smith,
Lioglyphostoma jousseaumei (Dautzenberg,
Mangelia barbarae (Lyons, 1972)
Mangelia biconica (Dalí, 1850)
Mangelia rugurima (Dalí, 1889)
Mangelia sp.
Mitrolumna biplicata (Dalí, 1889)
Nannodiella vespuciana (Orbigny,
Neodrillia sp.
Pilsbryspira sp.
Polystira formosissima (E.A. Smith,
Polystira sp.
Pyrgocythara candidissima (C.B. Adams,
Pyrgocythara guaraní (Orbigny)
Pyrgospira sp.
Splendrillia carolinae (Bartsch,
Splendrillia lissotropis (Dalí, 1881)
Splendrillia sp.
Tenaturrisfulgens (E.A. Smith, 1888)
Tenaturris gemma (E.A. Smith, 1884)
Tenaturris sp.
Veprecula morra (Dalí, 1881)
Veprecula sp.
Family Terebridae Morch, 1852
Terebra "aff " duellojuradoi Carcelles,
Family Architectonicidae Gray,
Architectonica nobilis Roding, 1798
Heliacus bissulcatus (Orbigny, 1845)
Family Mathildidae Dalí, 1889
Mathilda barbadensis Dalí, 1881
Mathilda sp.
Family Pyramidellidae Gray,
Chrysallida jadisi Olsson & McGuinty,
Chrysallida sp. 1
Chrysallida toroensis (Olsson &
McGuinty, 1958)
Eulimastoma canaliculatum (C.B. Adams,
Eulimastoma didyma (Verrill &
Bush, 1900)
Eulimastoma sp.
Eulimastoma weberi (Morrison, 1965)
Fargoa bushiana Bartsch,1909
Miralda havanensis (Pilsbry &
Aguayo, 1933)
Odostomia canaliculata C.B. Adams,
Odostomia laevigata (Orbigny, 1842)
Odostomia ovuloide C.B. Adams, 1850
Odostomia seminuda (C.B. Adams, 1837)
Peristichia agria Dalí, 1889
Pyramidella crenulata (Holmes, 1859)
Pyramidella sp.
Sayella crosseana (Dalí, 1885)
Turbonilla "aff. " coomansi van Aartsen,
Turbonilla arnoldoi Jong & Coomans,
Turbonilla iheringi Clessin, 1900
Family Amathinidae Ponder, 1988
Iselica anómala (C.B. Adams, 1850)
Family Acteonidae Orbigny, 1842
Acteon pelecais Marcus, 1981
"Acteon" vagabundus (Mabille &
Rochebrune, 1885)
Family Cylichnidae H. &
A. Adams, 1854
Acteocina bidentata (Orbigny, 1841)
Acteocina búllala (Kiener, 1834)
Acteocina candei (Orbigny, 1842)
Acteocina inconspicua Olsson &
McGinty, 1958
Acteocina lepta Woodring, 1928
Acteocina sp.
Cylichna discus Watson, 1883
Cylichna verrillii Dalí, 1889
Cylichna sp.
Scaphander darius Marcus, 1967
Family Hamineidae Pilsbry, 1895
Atys guildingi (Sowerby, 1869)
Atys mandrewii E.A. Smith, 1872
Atys riiseana (Morch, 1875)
Atys sandersoni Dalí, 1881
Haminoea elegans (Gray, 1825)
Family Retusidae Thiele, 1926
Pyrunculus caelatus (Bush, 1885)
Volvulella paupercula (Watson, 1883)
Volvulella persimilis (Morch, 1875)
Volvulella recta (Morch, 1875)
Volvulella sp. Volvulella texasiana
Harry, 1967
Family Siphonariidae Gray, 1840
Williamia krebsi (Morch, 1877)
Appendix 2. Taxonomic
List of species from the Continental Slope (300-1330 m depth).
Apéndice 2. Lista taxonómica de especies
de la plataforma continental (300-1330 m de profundidad).
Family Scissurellidae Gray,
Anatoma aedonia (Watson, 1886)
Family Fissurellidae Fleming,
Puncturella antillana Farfante, 1947
Puncturella granulata Seguenza, 1863
Puncturella sp.
Family Cocculinidae Dalí, 1882
Cocculina beanii Dalí, 1882
Family Trochidae Rafinesque,
Calliostoma "aff." coronatum Quinn,
Euchelus sp.
Basilissa alta Watson, 1879
Basilissa sp.
Calliotropis actinophora (Dalí, 1890)
Calliotropis "aff " calatha (Dalí,
Calliotropis sp.
Echinogurges "aff" clavatus (Watson,
Echinogurges clavatus (Watson, 1879)
Echinogurges sp.
Echinogurges sp. 1
Echinogurges sp. 2
Echinogurges sp. 3
Microgaza sp.
Mirachelus clinocnemus Quinn, 1979
Solariella lubrica Dalí, 1881
Solariella sp. 1
Solariella sp. 2
Tegula sp.
Family Cyclostrematidae Fisher,
Brookula cónica (Watson, 1885)
Brookula pfefferi A.W.B. Powell,
Brookula sp.
Brookula spinulata Absal?o, Miyaji
& Pimenta, 2001
Granigyra n. sp.
Family Turbinidae Rafinesque,
Homalopoma boffl Marini, 1975
Family Tricoliidae Robertson,
Tricolia aff.inis (C.B. Adams, 1850)
Family Seguenziidae Verrill, 1884
Ancistrobasis costulata (Watson,
Hadroconus altus (Watson, 1879)
Seguenzia hapala Woodring, 1928
Seguenzia sp. 1
Seguenzia sp. 2
Family Rissoidae Gray, 1847
Alvania auberianafaberi Jong &
Coomans, 1988
Alvania xantias (Watson, 1885)
Benthonella sp.
Benthonella tenella (Jeffreys, 1883)
Family Barleeidae Gray, 1857
Barleeia sp.
Family Vitrinellidae Bush, 1897
Teinostoma "aff. " obtectum Pils.
& Mcg., 1945
Teinostoma "aff " reclusa Dalí, 1889
Family Diastomatidae Cossmann,
"Finella"mamillatum (Watson, 1880)
Family Vanikoridae Gray, 1840
Vanikoro oxychone Morch, 1877
Family Cypraeidae Rafinesque,
Cypraea cinérea Gmelin, 1791
Family Naticidae Forbes, 1838
Polinices "aff"fringillus (Dalí,
Family Bursidae Thiele, 1925
Family Epitoniidae S.S. Berry,
Amaea retifera Dalí, 1889
Cylindriscala watsoni (de Boury,
Epitonium "aff" angulatum (Say, 1830)
Epitonium sp. 1
Epitonium sp.2
Opaliopsis aff nítida (Verrill &
Smith, 1885)
Solutiscala formosissima de Boury,
Family Janthinidae Leach, 1823
Recluzia rollandiana Petit, 1853
Family Eulimidae Philippi, 1853
Eulima sp. 1
Eulima sp. 2
Eulima sp. 3
Eulima sp. 4
Melanella "aff" arcuata (C.B. Adams,
Melanella "aff. " sarissa (Watson,
Family Velutininae Gray, 1840
Velutina sp. (?)
Family Muricidae Rafinesque,
Chicoreus tenuivaricosus (Dautzenberg,
Trophon sp.
Family Buccinidae Rafinesque,
Belomitra pourtalesii (Dalí, 1881)
Belomitra sp.
Kryptos tholoides (Watson, 1881)
Family Columbellidae Swainson,
Amphissa cancellata (Castellanos,
Anachis n. sp. 1 Anachis n.
Family Olividae Latreille, 1825
Ancilla dimidiata (Sowerby, 1850)
Olivella amblia Watson, 1882
Olivella (divina) n.sp1
Family Mitrinae Swainson, 1831
Family Cancellariidae Forbes
& Hanley, 1853
Brocchinia "aff." pustulosa Verhecken,
Family Turridae Swainson, 1840
Gymnobela sp.
Bathytoma "aff. " mitrella Dalí,
Benthomangelia macra (Watson, 1881)
Compsodrillia sp.
Leptadrillia sp.
Drillia "aff. "premorra Dalí, 1881
Drilliola comatotropis (Dalí, 1881)
Eubela limacina (Dalí, 1881)
Eucyclotoma sp.
Fenimorea "aff."pagodula (Dalí, 1889)
Kurtziella "aff. " serga (Dalí, 1881)
Kurtziella sp.
Leucosyrinx verrillii (Dalí, 1881)
Leucosyrinx sp.
Drilliola comatotropis (Dalí, 1881)
Nannodiella vespuciana (Orbigny,
Pleurotomella "aff. " benedicti Verrill
& Smith, 1884
Pleurotomella "aff. " blakeana (Dalí,
Pleurotomella "aff " cala (Watson,
Pleurotomella "aff" ipara (Dalí,
Pleurotomella "aff "porcellana (Watson,
Pleurotomella circumvoluta (Watson,
Pleurotomella extensa (Dalí, 1881)
Pleurotomella perparva (Synonym:
Philbertia perparva (Watson, 1881))
Pleurotomella sp. 1
Pleurotomella sp. 2
Pleurotomella sp. 3
Pleurotomella sp. 4
Pleurotomella sp. 5
Pleurotomella sp. 6
Pleurotomella sp. 7
Pleurotomella sp. 8
Spirotropis "aff "phaeacra (Watson,
Spirotropis sp.
Family Mangeliinae Fischer,
Mangelia comatotropis Dalí, 1881
Family Pyramidellidae Gray,
Cingulina babylonia (C.B. Adams,
Eulimastoma sp. 1
Eulimastoma sp. 2
Eulimella smithii Verrill, 1882
Eulimella sp. 1
Eulimella sp. 2
Odostomia "aff " canaliculata C.B.
Adams, 1850
Sayella crosseana (Dalí, 1885)
Turbonilla "aff " unilirata Bush,
Turbonilla sp. 1
Turbonilla sp. 2
Turbonilla sp. 32
Turbonilla sp. 35
Family Acteonidae Orbigny, 1842
"Acteon" vagabundus (Mabille &
Rochebrune, 1885)
Acteon pelecais Marcus, 1981
Acteon perforatus Dalí, 1881
Rictaxis sp.
Family Ringiculidae Philippi,
Ringiculina nítida Verrill, 1874
Family Cylichnidae H. &
A. Adams, 1854
Cylichna "aff."crispulaWatson, 1883
Cylichna discus Watson, 1883
Cylichna verrillii Dalí, 1889
Cylichna vortex Dalí, 1881
Scaphander darius Marcus, 1967
Family Diaphanidae Odhner, 1914
Diaphana seguenzae (Watson, 1886)
Family Bullidae Rafinesque,
Bulla "aff." abyssicola Dalí, 1881
Bulla "aff." ebúrnea (Dalí, 1881)
Family Hamineidae Pilsbry, 1895
Haminoea elegans (Gray, 1825)
Haminoea petitii (Orbigny, 1842)
Haminoea sp.
Atys guildingi (Sowerby, 1869)
Atys mandrewii E.A. Smith, 1872
Family Retusidae Thiele, 1926
Pyrunculus ovatus (Jeffreys, 1870)
Volvulellapersimilis (Morch, 1875)
Biogeographic distribution
For the continental shelf samples, 211 species
and 89 genera were characterized according to their occur-rence in the southwestem
Atlantic zoogeographic provinces: 91 species from the south, 179 from the north,
and 59 species from both regions. For the continental slope samples, 96 species
and 52 genera were characterized: 72 species from the south, 55 from the north,
and 31 from both regions.
In terms of the geographical distribution of
taxa, the number of genera with a wide distributional range (occurring in more
than three provinces) was lower than the genera with narrower distributions
for both shelf and slope stations. However, considering the genera that occurred
in both zones, the number of wide-range distributions was higher than the narrow-range
At the shelf stations, the number of species
co-occurring in both Tropical and Paulista (Tropical-Paulista species) provinces
was greater than the number of Tropical species occurring in both regions. In
addition, the number of Tropical, Paulista, and Tropi-cal-Paulista species decreased
and the number of wide-distribution eurythermic species increased in the southwestem
Atlantic provinces (Tropical-Paulista-Patagonic species) towards the south (). At the slope stations, Tropical species were the majority in both regions.
The number of Tropical, Paulista, Tropi-cal-Paulista, Tropical-Paulista-Patagonic,
and subtropical Paulista-Patagonic species increased towards the south. The
number of endemic species was higher in the north for both shelf and slope stations.
In addi-tion, a greater number of Tropical endemic species was present at the
slope stations in both the south and north, and the shelf stations displayed
the highest occurrence of Paulista endemic species. The number of species occurring
in all Western Atlantic Provinces was greater on the south shelf (). Furthermore, shelf stations showed a higher number of eurybathic species
(with a wide bathymetrical range) than did slope stations ().
DISCUSSION
The shelf-slope transition zone is known to have
a high species turnover rate (Rex et al, 1977). More-over, species typically
found on continental shelves and species from continental slope zones can coexist
there, leading to higher species richness. However, evidence from studies done
on the Brazilian continental slope showed that the depth where this species
turnover begins is variable. In this study, we found high species turnover at
station 16 (300 m depth), where some deep-sea species, such as Alvania xantias
(Watson, 1885), Brookula spinulata (Absal?o, Miyaji & Pimenta,
2001), and Solariella lubrica (Dalí, 1881) showed a high dominance. Miyaji
(2001) found a rough change, with 8% of sampled species occurring exclusively
at depths greater than 400 m, whereas Sumida & Pires-Vanin (1997) found
a different com-munity from shallow area s occurring between 320 m and 500 m
Analyzing the vertical distribution of species
found in this study (), we observed
the occurrence of shallow-water and eurybathic species (shallow-bathyal, shallow-bathyal-abyssal,
bathyal-abyssal distributions) at the slope stations. This pattern might constitute
evidence of the slope's capacity to allow the co-existence of shallow and deep-water
The depth gradient differed between the north
and south regions: the north shelf showed the highest local, regional, and between-habitat
species richness, whereas the south slope had the highest species richness,
with values cióse to the shelf ones. Along local gradients, the general pattern
observed is that species richness changes with depth, increasing from ca. 200
m or more, and then decreasing towards the abyssal plain (Rex
et al, ; Gray, 2002). Nevertheless, those unimodal patterns
do not appear to be universal (Rex et al, 1997; Stuart et al, 2001),
showing that the change in species richness is not related to depth itself (Gray,
The highest species richness values observed
on the north shelf could be a result of the fact that the highest number of
samples were taken in this area , but also of the greater environmental heterogeneity
in the area . Larger area s potentially support more species richness on a variety
of scales and harbor higher over-all richness, whereas the number of habitats
also ulereases, as well as the number of biomes, or of bio-geographic provinces
within them (Rosenzweig, 1995; Willig et al, 2003). On the north shelf,
species can find a wide continental shelf (200 km) featuring a high variety
of bottom types, as well as the presence of coráis and calcareous algae bank
habitats. On the other hand, the south region is characterized by a narrow shelf
area (10-30 km) and a less heterogeneous bottom (Soares-Gomes et al, 1999).
Additionally, because of the constant presence of the Brazil Current, the north
region is oligotrophic, which may limit the abundance of species. Conversely,
the south region is considered to be mesotrophic due to the seasonal upwelling
of cold, nutrient-rich, SACW waters (Gaeta et al, 1999), leading to higher
In addition to the above-mentioned patterns,
environmental features also changed with depth. Both north and south slopes
are narrow and steep, with more homogeneous bottoms that are dominated by silt
fractions and a higher concentration of organic carbon.
The study area is included in a wide transition
zone known as the Paulista province (Palacio, 1982). The present study found
a lower number of tropical species and a higher number of subtropical ones (species
that are common to the Paulista and Patagonic provinces) towards the south.
Moreover, a great presence of species common to both the Tropical and Paulista
provinces was observed over the entire area . Other studies carried out at more
southerly latitudes on the Brazilian coast show the same distribution for molluscs
(Mello, 1993; Miyaji, 1995) and polychaetes (Lana, 1987; Attolini, 1997). Furthermore,
on the Uruguayan coast (Scarabino, 2004), 16 among 182 gastropods were the same
as the species reported in this study (carried out in the Tropical and Paulista
provinces). The presence of species that are considered to be endemic to the
Paulista Province (i.e., Anachis fenelli Radwin, 1968; Favartia varimutabilis
Houart, 1991; Olivella deflorei Klappenbach, 1964) and subtropical
species from the Patagonic Province in the north region (Tropical Province)
corrobórate the notion of a broader transition zone between tropical and températe
waters (Van nucci, 1964; Lana, 1987; Miyaji, 1995; Floeter & Soares-Gomes,
The disappearance of some tropical species towards
the south suggests that the southernmost limit of the Tropical Province is located
cióse to 21°S, ac-cording to the results found for gastropods (Floeter &
Soares-Gomes, 1999); cirripeds (Young, 1995), and polychaetes (Lana, 1987).
Nevertheless, the location of that limit remains uncertain (Absal?o, 1989; Mello,
1993; Briggs, 1995). Recently, Joyeux et al. (2001) and Floeter et
al. (2008) found that, for tropical reef fishes, the southern limit is 28°S.
Many studies have demonstrated that the bounda-ries
of shallow-water faunal distribution are correlated to water masses boundaries
(Stevenson et al, 1998; Culver & Buzas, 2000). The presence of species
with tropical affinities over the shelf area could be ex-plained by the predominance
of the warm and saline water mass of the Brazil Current (BC) (Absal?o, 1989;
Miyaji, ) that flows southwards (parallel to the shelf break) to 35°S
(Emilsson, 1961). In that region, the BC mixes with the cold and less saline
water mass of the Malvina Current and the water character-istics become markedly
subtropical, with salinity and temperature ranging between 36-35 and 20°-10°C,
respectively (Emilsson, 1961). This fact influences the occurrence of cold-water
affinity species (Semenov & Berman, 1977; Palacio, 1982).
However, the most significant factor for the
main-tenance of cold-water species, as well as of eurybathic species in the
shelf zone, particularly in the north region, might be the penetration of the
South Atlantic Central Water (SACW) into the continental shelf re-gions. This
water mass acts as a vehicle for larval dispersal from cold, deeper regions
to warm, shal-lower area s (Absal?o, 1989; Miyaji, ), and extends
northwards to Espirito Santo State (Gaeta et al, 1999).
Important changes occur in the benthic faunal
structure within the large vertical interval of the bathyal zone. The most obvious
difference between shallow and deep-bottoms is the reduction in the number of
latitudinal or climatic belts, both in terms of biomass and of faunal structures
(Zezina, 1997). As there is a simplification in the water mass structure of
the continental slope floor region, a reduction in the number of faunal provinces
is to be expected (Semenov & Berman, 1977; Zezina, 1997; Culver & Buzas,
2000). Culver & Buzas (2000) found that the differences in benthic foraminifera
fauna between shallow (& 200 m) and deep water (& 200 m) provinces at
the same latitude were greater than between adjacent shallow water provinces.
As expected, species occurring in the shelf zone
were very distinct from those in the slope area , with only 24 (out of 315)
species shared between the two zones. When the latitudinal distribution of slope
species is analyzed, the pattern is similar to the shelf species distribution.
However, the number of Tropical and Tropical-Paulista species increased in the
south region.
Studies on geographical distributions of deep-sea
species have shown a greater number of species with wider horizontal ranges
(Vinogradova, 1997; Zezina, 1997). However, the present study found few species
with wide range distributions towards the slope sta-tions. Similar results were
observed for the geographic distribution of genera. The restricted-range genera
(1 to 2 provinces) were represented by six more genera than the wide-range ones
(& 2 provinces). It is, however, possible that the lower number of samples
for the slope region (14 stations vs. 23 in the shelf zone) might induce such
contradictory results. It is expected that enhanced sampling efforts will not
only tend to increase the more sparsely distributed species, but also the number
of "rare" endemic species (Alien & Sand-ers, 1996).
Comparing the species found in the present study
area (18°-23°S) with their incidence in other geographical regions studied by
others authors along the Brazilian continental slope (Merlano & Hegedus,
1994; Sumida & Pires-Vanin, 1997; Miyaji, 2001; Scarabino, 2004) revealed
some shared species. Nine-teen species were shared between the present study
and works done on the northeast region (11.37%), from a total of 167 species
found. Among those, the most dominant species were Brookula cónica (Watson,
1985), Anatoma aedonia (Watson, 1886), Benthonella tendía (Jeffreys,
1883), and Alvania xantias (Watson, 1885). The southeast region shared
10 (7.57%) of a total of 132 species, with the dominant species being Brookula
pfefferi A.W.B. Powell, 1951; Seguenzia hapala Woodring, 1928; Nannodiella
vespuciana (Orbigny, 1842); and Solariella lubrica (Dalí, 1881).
Finally, the south region shared four (3.15%) of a total of 127 the
most dominant species were Ancilla dimidiata (Sowerby, 1850); Busilis
s a alta (Watson, 1886); Pyrunculus ovatus (Jeffreys, 1870); and
Puncturella granulata (Seguenza, 1863). As Alien & Sanders (1996)
found for the zoogeographic distribution of protobranch bivalves through interbasin
comparisons on the percentage of shared species, the species number is higher
between adjacent basins. Moreover, the majority of shared species are those
firom the Tropical Province and firom both Tropical and Paulista Provinces.
Analyses of the biogeographic distribution of bathyal species indicated a transitional
pattern, as suggested for the shelf zone. However, the higher number of eurythermic
species with tropical affinities found at the slope stations could be an indication
that the limit of tropical bathyal species distribution is wider than that of
tropical shelf boundaries.
Zezina (1997) proposed biogeographic schemes
for the bathyal zone based on a recent brachiopod distribution, which is very
similar to the results found in the present study for gastropods firom the continental
slope. This scheme proposed, for depths greater than 700 m in the northeast
and central Brazilian bathyal zone (similar to the schemes for shallow-water
fauna in the southwestern Atlantic), a sub-area named the Atlantic-Central American
(divided into Caribbean and Brazilian provinces) and the south Brazilian-Uruguayan
subtropical area in the southeast and south bathyal zones. Also, for recent
brachiopods living below 700 m, Zezina (1997) defined only one area for the
entire southwestern Atlantic Ocean: the Amphi-Atlantic Bathyal area within the
central Atlantic Province.
A great species turnover rate was observed between
the shelf and slope. An analysis of the gastro-pod species distribution revealed
a similar pattern of regional distribution in shelf and slope zones and a great
difference between shallow and deep-water faunas. Although the present analysis
of biogeographic distribution patterns confirmed the existence of a transitional
zone firom tropical to subtropical waters in the case of the slope zone, the
sampling effort done on the southeastern Atlantic slope is still too little
and those results should be viewed with caution.
ACKNOWLEDGMENTS
The authors are indebted to Dr. Bastian Knoppers
for the invitation to join in the Joint Oceanographic Project II (JOPS-II),
and to Drs. Ricardo Silva Absal?o and Paulo Márcio Costa for helping with taxonomic
identification. We also thank Dr. Sergio Floeter for some valuable suggestions
that improved the manuscript and Carla Mendes for reviewing the English version.
REFERENCES
Abbott, RJ. 1974. American seashells, Van Nostrand
Reinhold, New York, 663 pp.&&&&&&&&[&#160;&#160;]Absal?o, R.S. 1989. Padr?es distributivos e zoogeografía
dos moluscos da plataforma continental brasileira Parte III. Comiss?o oceanógrafica
Espirito Santo I. Mem. Inst. Oswaldo Cruz, Rio de Janeiro, 84(4): 1-6.&&&&&&&&[&#160;&#160;]Alien, J.A. & H.L. Sanders. 1996. The zoogeography,
diversity and origin of the deep-sea protobranch bivalves of the Atlantic: The
epilogue. Progr. Oceanogr., 38: 95-153.&&&&&&&&[&#160;&#160;]Attolini, F.S. 1997. Composi??o e distribui??o
dos anelídeos poliquetas na plataforma continental da regi?o da Bacia de Campos,
RJ, Brasil. MSc. Thesis, Universidade de S?o Paulo, S?o Paulo, 102 pp.&&&&&&&&[&#160;&#160;]Briggs, J.C. 1974. Marine zoogeography. McGraw-Hill,
New York, 475 pp.&&&&&&&&[&#160;&#160;]Briggs, J.C. 1995. Global biogeography. Developments
in paleontology and stratigraphy. Elsevier, Amsterdam, 472 pp.&&&&&&&&[&#160;&#160;]Clarke, A. & J.A. Crame. 1997. Diversity,
latitude and time: patterns in the shallow sea. In: R.F.G Ormond, J.D. Gage
& M.V. ?ngel (eds.). Marine biodiversity. Patterns and processes, Cambridge
University Press, Cambridge, pp. 122-147.&&&&&&&&[&#160;&#160;]Colwell, R.K. 1997. Estimates: statistical estimation
of species richness and shared species from samples, Version 5. User's guide
and application. Department of Ecology and Evolutionary Biology, University
of Connecticut Storrs, CT, USA. .
Revised: 18 Jun 2008.&&&&&&&&[&#160;&#160;]Colwell, R.K. & J.A. Coddington. 1994. Estimating
terrestrial biodiversity through extrapolation. Phil. Trans. R. Soc. Bull.,
345: 101-118.&&&&&&&&[&#160;&#160;]Crame, J.A. 2000. Evolution of taxonomic diversity
gradients in the marine realm: evidence from the composition of recent bivalve
faunas. Paleobiology, 26: 188-241.&&&&&&&&[&#160;&#160;]Crame, J.A. 2002. Evolution of taxonomic diversity
in the marine realm: a comparison of Late Jurassic and recent bivalve faunas.
Paleobiology, 28: 184-207.&&&&&&&&[&#160;&#160;]Culver, S.J. & M.A. Buzas. 2000. Global latitudinal
species diversity gradient in deep-sea benthic foraminífera. Deep-Sea Res. I,
47: 259-275.&&&&&&&&[&#160;&#160;]Emery, K.O. & E. Uchuoi. 1984. The geology
of the Atlantic Ocean. Springer Verlag, New York, 1050 pp.&&&&&&&&[&#160;&#160;]Emilsson, I. 1961. The shelf and coastal waters
off southern Brazil. Boln. Inst. Oceanogr. S?o Paulo, 11(2): 101-112.&&&&&&&&[&#160;&#160;]Floeter, S.R. & A. Soares-Gomes. 1999. Biogeographic
and species richness patterns of Gastropoda on the southwestern Atlantic. Rev.
Bras. Biol., 59(4): 567-575.&&&&&&&&[&#160;&#160;]Floeter, S.R., L.A. Rocha, D.R. Robertson, J.C.
Joyeux, W.F. Smith-Vaniz, P. Wirtz, AJ. Edwards, J.P. Bareiros, C.E.L. Ferreira,
J.L. Gasparini, A. Brito, J.M. Falcon, B.W. Bowen & G. Bernerdi. 2008. Atlantic
reef fish biogeography and evolution. J. Biogeogr., 35: 22-47.&&&&&&&&[&#160;&#160;]Fortes, R.R. & R.S. Absal?o. 2004. The applicability
of Rapoport's rule to the marine molluscs of the Americas. J. Biogeogr., 31:
.&&&&&&&&[&#160;&#160;]Gaeta, S.A., J.A. Lorenzzetti, L.B. Miranda,
S.M.M., Susini-Ribeiro, M. Popeu & C.E.S. Araújo. 1999. The Vitoria eddy
and its relation to the phytoplankton biomass and primary productivity during
the austral fall of 1995. Arch. Fish. Mar. Res., 47(2/3): 253-270.&&&&&&&&[&#160;&#160;]Gray, J.S. 1998. Gradients in marine biodiversity.
In: R.F.G Ormond, J.D. Gage & M.V. ?ngel (eds.). Marine biodiversity, Cambridge
University Press, Cambridge, pp. 18-34.&&&&&&&&[&#160;&#160;]Gray, J.S. 2000. The measurement of marine species
diversity, with an application to the benthic fauna of the Norwegian continental
shelf. J. Exp. Mar. Biol. Ecol., 250: 23-49.&&&&&&&&[&#160;&#160;]Gray, J.S. 2002. Species richness of marine soft
sediments. Mar. Ecol. Progr. Ser., 244: 285-297.&&&&&&&&[&#160;&#160;]Harley, C.D.G., K.F. Smith & V.L Moore. 2003.
Environmental variability and biogeography: the relationship between bathymetric
distribution and geographical range size in marine algae and gastropods. Global
Ecol. Biogeogr., 12: 499-506.&&&&&&&&[&#160;&#160;]Hillebrand, H. 2004. Strength, slope and variability
of marine latitudinal gradients. Mar. Ecol. Prog. Ser., 273:251-267.&&&&&&&&[&#160;&#160;]Jablonski, D., K. Roy & J.W. Valentine. 2006.
Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient.
Science, 314: 102-106.&&&&&&&&[&#160;&#160;]Joyeux, J.C, S.R. Floeter, C.E.L. Ferreira &
J.L. Gasparini. 2001. Biogeography of tropical reef fish: the South Atlantic
puzzle. J. Biogeogr., 28: 1-11.&&&&&&&&[&#160;&#160;]Kempf, M. 1979. Bionomia bentonica de la costa
del Brasil tropical. Memorias del seminario sobre ecología bentonica y sedimentación
de la plataforma del Atlántico sur. UNESCO, Montevideo, pp. 171-184.&&&&&&&&[&#160;&#160;]Lana, P.C. 1987. Padr?es de distribui??o geográfica
dos poliquetas errantes (Annelida: Polychaeta) do Estado do Paraná. Ciencia
Cul., S?o Paulo, 39(11): .&&&&&&&&[&#160;&#160;]Linse, K., H.J. Griffiths, D.K.A. Barnes &
A. Clarke. 2006. Bidiversity and biogeography of Antarctic and sub-Antarctic
mollusca. Deep-Sea Res. II, 53: 985-1008.&&&&&&&&[&#160;&#160;]Longhurst, A. 1998. Ecological geography of the
sea Academic Press, San Diego, 398 pp.&&&&&&&&[&#160;&#160;]Mello, R.L.S. 1993. Moluscos do Brasil. I. Gastropoda,
bivalvia e scaphopoda coletados durante as viagens do Navio Oceanógrafico "Almirante
Saldanha". Comiss?o Sul I. Considera??es biogeográficas. Bolm. Museu Malacol.,
Recife 1: 31-49.&&&&&&&&[&#160;&#160;]Menzies, R.J., R.Y. George & G.T. Rowe. 1973.
Abyssal environment and ecology of the world ocean. Wiley, New York, 488 pp.&&&&&&&&[&#160;&#160;]Merlano, J.M.D. & M.P. Hegedus. 1994. Moluscos
del Caribe Colombiano. Un catálogo ilustrado. Colciencias, Fundación Natura,
Invernar, Bogotá, 291 pp.&&&&&&&&[&#160;&#160;]Miyaji, C. 1995. Composi??o e distribui??o da
fauna de moluscos gastrópodes e bivalves da plataforma continental da regi?o
da Bacia de Campos (Rio de Janeiro, Brasil). MSc. Thesis, Universidade de S?o
Paulo, S?o Paulo, 128 pp.&&&&&&&&[&#160;&#160;]Miyaji, C. 2001. Gastrópodes prosobr?nquios da
plataforma continental externa e talude superior da costa sudeste brasileira.
PhD Thesis, Universidade de S?o Paulo, S?o Paulo, 128 pp.&&&&&&&&[&#160;&#160;]Palacio, J.F. 1982. Revisión zoogeográfica marina
del Sur del Brasil. Boln. Inst. Oceanogr. S?o Paulo, 31(1): 69-92.&&&&&&&&[&#160;&#160;]Rex, M.A. 1993. Zonation in deep-sea gastropods:
the importance of biological interactions to rates of zonation. Proc. Europ.
Symp. Mar. Biol., 11: 521-530.&&&&&&&&[&#160;&#160;]Rex, M.A., R.J. Etter & C.T. Stuart. 1997.
Large-scale patterns of species diversity in the deep-sea benthos. In: R.F.G
Ormond, J.D. Gage & M.V. ?ngel (eds.). Marine biodiversity. Patterns and
processes. Cambridge University Press, Cambridge, pp. 94-121.&&&&&&&&[&#160;&#160;]Rex, M.A., C.T. Stuart. & G. Coyne. 2000.
Latitudinal gradients of species richness in the deep-sea benthos of the North
Atlantic. Proc. Nata, Acad. Sci. USA, 97: .&&&&&&&&[&#160;&#160;]Rex, M.A., C.T. Stuart, R.R. Hessler, J.A. Alien,
H.L. Sanders. & G.D.F. Wilson. 1993. Global-scale latitudinal patterns of
species diversity in the deep-sea benthos. Nature, 365: 636-639.&&&&&&&&[&#160;&#160;]Ríos, E.C. 1994. Seashells of Brazil. Museu Oceanógrafico
da Funda??o Universidade de Rio Grande, Rio Grande, 368 pp.&&&&&&&&[&#160;&#160;]Rosenberg, G. 1993. A database approach to studies
of molluscan taxonomy, biogeography and diversity, with examples from western
Altantic marine gastropods. Am. Malacol. Bull., 10(2): 257-266.&&&&&&&&[&#160;&#160;]Rosenzweig, M.L. 1995. Species diversity in space
and time. Cambridge University Press, Cambridge, 436 pp.&&&&&&&&[&#160;&#160;]Roy, K., D. Jablonski, J.W. Valentine & G.
Rosenberg. 1998. Marine latitudinal diversity gradients: tests of casual hypotheses.
Proc. Natn. Acad. Sci. USA, 95: .&&&&&&&&[&#160;&#160;]Sanders, H.L. 1968. Marine benthic diversity:
a comparative study. Am. Natur., 102: 243-282.&&&&&&&&[&#160;&#160;]Scarabino, F. 2004. Lista sistemática de los
Gastropoda marinos y estuarinos vivientes de Uruguay. Comum. Soc. Malacol. Uruguay,
8(84-85)/(86-87): 305-346.&&&&&&&&[&#160;&#160;]Semenov, V.N. 1978. Geographical distribution
of benthos on the South American shelf as a function of the distribution of
coastal waters. Oceanology, 18(1): 77-87.&&&&&&&&[&#160;&#160;]Semenov, V.N. & I.S Berman. 1977. Biogeographic
aspects of the distribution and dynamics of water masses off the South American
coast. Oceanology, 17(6): 710-718.&&&&&&&&[&#160;&#160;]Soares-Gomes, A., C.M.R.C. Abreu, T.M. Absher
& A.G. Figueiredo. 1999. Abiotic features and the abundance of macrozoobenthos
of continental margin sediments of east Brazil. Arch. Fish Mar. Res., 47(2-3):
321-334.&&&&&&&&[&#160;&#160;]Stevenson, M.R., D. Dias-Brito, J.L. Stech &
M. Kampel. 1998. How do cold water biota arrive in a tropical bay near Rio de
Janeiro, Brazil? Cont. Shelf Res., 18: .&&&&&&&&[&#160;&#160;]Stuart, C.T., M.A. Rex & RJ. Etter. 2001.
Large scale spatial and temporal patterns of deep-sea benthic species diversity.
In: P.A. Tyler (ed.). Ecosystems of the world: ecosystems of deep oceans, Elsevier,
Amsterdam, pp. 295-312.&&&&&&&&[&#160;&#160;]Sumida, P.Y.G. & A.M.S. Pires-Vanin. 1997.
Benthic associations of the shelfbreak and upper slope off Ubatuba-SP, south-eastern
Brazil. Estuar. Coast. Shelf Sci., 44(6): 779-784.&&&&&&&&[&#160;&#160;]Valdovinos, C, A.S. Navarrete & P.A. Marquet.
2003. Mollusc species diversity in the southeastern Pacific: why are there more
species towards the pole? Ecograph., 26: 139-144.&&&&&&&&[&#160;&#160;]Valentin, J.L., D.L. André & A.S. Jacob.
1987. Hydrobiology in the Cabo Frió (Brazil) upwelling: two-dimensional structure
and variability during a wind cycle. Cont. Shelf Res., 7(1): 77-88.&&&&&&&&[&#160;&#160;]Vannucci, M. 1964. Zoogeografía marinha do Brasil.
Bola Int. Pesq. Mar. Rio de Janeiro, 7: 113-121.&&&&&&&&[&#160;&#160;]Vinogradova, N.G. 1997. Zoogeography of the abyssal
and hadal zones. Adv. Mar. Biol., 32: 325-387.&&&&&&&&[&#160;&#160;]Whittaker, R.H. 1972. Evolution and measurement
of species diversity. Taxon, 21: 213-251. &&&&&&&&[&#160;&#160;]Willig, M.R., D.M. Kaufman & R.D. Stevens.
2003. Latitudinal gradients of biodiversity: patterns,
process, scale, and synthesis. Ann. Rev. Ecol. Evol. Syst, 34: 273-309.&&&&&&&&[&#160;&#160;]Young, P.S. 1995. New interpretations of South America patterns of barnacle distribution. Crustacean Issues, 10: 229-253.&&&&&&&&[&#160;&#160;]Zezina, O.N. 1997. Biogeography of the bathyal
zone. Adv. Mar. Biol., 32: 389-425.&&&&&&&&[&#160;&#160;]&
Received: 8 July 2008; Accepted: 2 March 2009
Corresponding
author: Abílio Soares-Gomes ()

我要回帖

更多关于 什长是什么意思 的文章

 

随机推荐