芯片的 去耦电容容怎么接地端如何处理

高速PCB设计指南—混合信号PCB的分区-电子资讯网
&行业资讯:
半导体器件及集成电路生产设备
电真空器件及平板显示器生产设备
电子元件及机电组件生产设备
整机装联及表面贴装设备(SMT设备)
印制电路板生产设备(PCB设备)
环境试验设备
防静电装备
超声波设备
电子通用设备
设备配套用工控自动化
设备配套用零部件
设备配套用电子辅料
电子专用工具/模具
设备行业配套服务
电子设备用户
您当前位置: >>>>查看资讯信息
高速PCB设计指南—混合信号PCB的分区
人次浏览)
[信息来源:http://www.]
&&&摘要:混合信号电路的设计很复杂,元器件的布局、布线以及和地线的处理将直接影响到电路性能和性能。本文介绍的地和的分区设计能优化混合信号电路的性能。&
&&&&如何降低数字信号和模拟信号间的相互干扰呢?在设计之前必须了解(EMC)的两个基本原则:第一个原则是尽可能减小电流环路的面积;第二个原则是系统只采用一个参考面。相反,如果系统存在两个参考面,就可能形成一个偶极天线(注:小型偶极天线的辐射大小与线的长度、流过的电流大小以及频率成正比);而如果信号不能通过尽可能小的环路返回,就可能形成一个大的环状天线(注:小型环状天线的辐射大小与环路面积、流过环路的电流大小以及频率的平方成正比)。在设计中要尽可能避免这两种情况。
&&&&有人建议将混合信号电路板上的数字地和模拟地分割开,这样能实现数字地和模拟地之间的隔离。尽管这种方法可行,但是存在很多潜在的问题,在复杂的大型系统中问题尤其突出。最关键的问题是不能跨越分割间隙布线,一旦跨越了分割间隙布线,电磁辐射和信号串扰都会急剧增加。在设计中最常见的问题就是信号线跨越分割地或而产生EMI问题。&
&&&&如图1所示,我们采用上述分割方法,而且信号线跨越了两个地之间的间隙,信号电流的返回路径是什么呢?假定被分割的两个地在某处连接在一起(通常情况下是在某个位置单点连接),在这种情况下,地电流将会形成一个大的环路。流经大环路的高频电流会产生辐射和很高的地电感,如果流过大环路的是低电平模拟电流,该电流很容易受到外部信号干扰。最糟糕的是当把分割地在处连接在一起时,将形成一个非常大的电流环路。另外,模拟地和数字地通过一个长导线连接在一起会构成偶极天线。&
&&&&了解电流到地的路径和方式是优化混合信号电路板设计的关键。许多设计工程师仅仅考虑信号电流从哪儿流过,而忽略了电流的具体路径。如果必须对地线层进行分割,而且必须通过分割之间的间隙布线,可以先在被分割的地之间进行单点连接,形成两个地之间的连接桥,然后通过该连接桥布线。这样,在每一个信号线的下方都能够提供一个直接的电流路径,从而使形成的环路面积很小。&
&&&&采用光隔离器件或也能实现信号跨越分割间隙。对于前者,跨越分割间隙的是光信号;在采用的情况下,跨越分割间隙的是磁场。还有一种可行的办法是采用差分信号:信号从一条线流入从另外一条信号线返回,这种情况下,不需要地作为路径。&
&&&&要深入探讨数字信号对模拟信号的干扰必须先了解高频电流的特性。高频电流总是选择阻抗最小(电感最低),直接位于信号下方的路径,因此返回电流会流过邻近的电路层,而无论这个临近层是层还是地线层。&
&&&&在实际工作中一般倾向于使用统一地,而将分区为模拟部分和数字部分。模拟信号在电路板所有层的模拟区内布线,而数字信号在数字电路区内布线。在这种情况下,数字信号返回电流不会流入到模拟信号的地。&
&&&&只有将数字信号布线在电路板的模拟部分之上或者将模拟信号布线在电路板的数字部分之上时,才会出现数字信号对模拟信号的干扰。出现这种问题并不是因为没有分割地,真正的原因是数字信号的布线不适当。
&&&&设计采用统一地,通过数字电路和模拟电路分区以及合适的信号布线,通常可以解决一些比较困难的布局布线问题,同时也不会产生因地分割带来的一些潜在的麻烦。在这种情况下,元器件的布局和分区就成为决定设计优劣的关键。如果布局布线合理,数字地电流将限制在电路板的数字部分,不会干扰模拟信号。对于这样的布线必须仔细地检查和核对,要保证百分之百遵守布线规则。否则,一条信号线走线不当就会彻底破坏一个本来非常不错的电路板。&
&&&&在将A/D转换器的模拟地和数字地管脚连接在一起时,大多数的A/D转换器厂商会建议:将AGND和DGND管脚通过最短的引线连接到同一个低阻抗的地上(注:因为大多数A/D转换器内部没有将模拟地和数字地连接在一起,必须通过外部管脚实现模拟和数字地的连接),任何与DGND连接的外部阻抗都会通过寄生将更多的数字噪声耦合到内部的模拟电路上。按照这个建议,需要把A/D转换器的AGND和DGND管脚都连接到模拟地上,但这种方法会产生诸如数字信号去耦的接地端应该接到模拟地还是数字地的问题。&
&&&&如果系统仅有一个A/D转换器,上面的问题就很容易解决。如上图3中所示,将地分割开,在A/D转换器下面把模拟地和数字地部分连接在一起。采取该方法时,必须保证两个地之间的连接桥宽度与等宽,并且任何信号线都不能跨越分割间隙。&
&&&&如果系统中A/D转换器较多,例如10个A/D转换器怎样连接呢?如果在每一个A/D转换器的下面都将模拟地和数字地连接在一起,则产生多点相连,模拟地和数字地之间的隔离就毫无意义。而如果不这样连接,就违反了厂商的要求。&
&&&&最好的办法是开始时就用统一地。如下图4所示,将统一的地分为模拟部分和数字部分。这样的布局布线既满足了器件厂商对模拟地和数字地管脚低阻抗连接的要求,同时又不会形成环路天线或偶极天线而产生EMC问题。&
&&&&如果对混合信号设计采用统一地的做法心存疑虑,可以采用地线层分割的方法对整个电路板布局布线,在设计时注意尽量使电路板在后边实验时易于用间距小于1/2英寸的跳线或0欧姆电阻将分割地连接在一起。注意分区和布线,确保在所有的层上没有数字信号线位于模拟部分之上,也没有任何模拟信号线位于数字部分之上。而且,任何信号线都不能跨越地间隙或是分割之间的间隙。要测试该电路板的功能和EMC性能,然后将两个地通过0欧姆电阻或跳线连接在一起,重新测试该电路板的功能和EMC性能。比较测试结果,会发现几乎在所有的情况下,统一地的方案在功能和EMC性能方面比分割地更优越。&
&&&&#分割地的方法还有用吗?&
&&&&在以下三种情况可以用到这种方法:一些医疗设备要求在与病人连接的电路和系统之间的漏电流很低;一些工业过程控制设备的输出可能连接到噪声很大而且功率高的机电设备上;另外一种情况就是在的布局受到特定限制时。&
&&&&在混合信号pcb板上通常有独立的数字和模拟,能够而且应该采用分割面。但是紧邻层的信号线不能跨越之间的间隙,而所有跨越该间隙的信号线都必须位于紧邻大面积地的电路层上。在有些情况下,将模拟以连接线而不是一个面来设计可以避免面的分割问题。
&&&&#混合信号设计是一个复杂的过程,设计过程要注意以下几点:&
&&&&1.将分区为独立的模拟部分和数字部分。&
&&&&2.合适的元器件布局。&
&&&&3.A/D转换器跨分区放置。&
&&&&4.不要对地进行分割。在电路板的模拟部分和数字部分下面敷设统一地。&
&&&&5.在电路板的所有层中,数字信号只能在电路板的数字部分布线。&
&&&&6.在电路板的所有层中,模拟信号只能在电路板的模拟部分布线。&
&&&&7.实现模拟和数字分割。&
&&&&8.布线不能跨越分割面之间的间隙。&
&&&&9.必须跨越分割之间间隙的信号线要位于紧邻大面积地的布线层上。&
&&&&10.分析返回地电流实际流过的路径和方式。&
&&&&11.采用正确的布线规则。&
版权声明:中国电子资讯网转载作品均注明出处,本网未注明出处和转载的,是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。如转载作品侵犯作者署名权,或有其他诸如版权、肖像权、知识产权等方面的伤害,并非本网故意为之,在接到相关权利人通知后将立即加以更正。联系电话:021-
【发表评论】【查看所有评论】【】【】在PCB上怎样设计“数字地和模拟地”(转)
方法一:按电路功能分割接地面
分割是指利用物理上的分割来减少不同类型线之间的耦合,尤其是通过电源线和地线的耦合。按电路功能分割地线例如图所示,利用分割技术将4个不同类型电路的接地面分割开来,在接地面用非金属的沟来隔离四个接地面。每个电路的电源输入都采用LC滤波器,以减少不同电路电源面间的耦合。对于各电路的LC滤波器的L和C来说,为了给每个电路提供不同的滤波特性,最好采用不同数值。高速数字电路由于其具有高的瞬时功率,高速数字电路放在电源入口处。接口电路考虑静电释放(ESD)和暂态抑制的器件或电路等因素,位于电源的末端。
在一块印刷电路板上,按电路功能接地布局的设计例如图所示,当模拟的、数字的、有噪声的电路等不同类型的电路在同一块印刷电路板上时,每一个电路都必须以最适合该电路类型的方式接地。然后再将不同的地电路连接在一起。
二.采用局部接地面
振荡器电路、时钟电路、数字电路、模拟电路等可以被安装在一个单独的局部接地面上。这个局部接地面设置在PCB的顶层,它通过多个通孔与PCB的内部接地层(0V参考面)直接连接,一个设计例如图5.7.20所示。
&&&将振荡器和时钟电路安装在一个局部接地面上,可以提供一个镜像层,捕获振荡器内部和相关电路产生的共模RF电流,这样就可以减少RF辐射。当使用局部接地面时,注意不要穿过这个层来布线,否则会破坏镜像层的功能。如果一条走线穿过局部化接地层,就会存在小的接地环路或不连续性电位。这些小的接地环路在射频时会引起一些问题。
如果某器件应用不同的数字接地或不同的模拟接地,该器件可以布置在不同的局部接地面,通过绝缘的槽实现器件分区。进入各部件的电源电压使用铁氧体、磁珠和电容器进行滤波。一个设计例如图5.7.21和图5.7.22所示。
&三:PCB采用“无噪声”的I/O地与“有噪声”的数字地分割设计
为了使用电缆去耦或屏蔽技术来抑制共模噪声,在PCB设计时,需要考虑为电缆的去耦(将电流分流到地)和屏蔽提供没有受到数字逻辑电路噪声污染的“无噪声”或者“干净”的地。
如图所示,在PCB设计布局时,将所有的I/O线都布放在PCB上的某一个区域,并为这个区域提供专门分割出来的低电感的I/O地,并将I/O地单点连接到数字逻辑电路的地,使数字逻辑地电流不能够流到“无噪声”的I/O地。
时钟电路和时钟信号线应当远离I/O接口区域。
四:PCB分割的两个问题:隔离和互连
PCB分割需要解决两个问题:一个是隔离,另一个是互连。
PCB上的隔离可以通过使用“壕”来实现,如图所示,即在PCB所有层上形成没有敷铜的空白区,“壕”的最小宽度为50 mil。“壕”将整个PCB按其功能不同分割成一个个的“小岛”。很显然,“壕”将镜像层分割,形成每个区域独立的电源和地,这就可以防止RF能量通过电源分配系统从一个区域进入另一个区域。
&“隔离”不是目的。作为一个系统,各功能区是需要相互连接的。分割是为了更好地安排布局和布线,以实现更好的互连。因此,必须为那些需要连接到各个子功能区域的线路提供通道。通常采用的互连的方法有两种:一种是使用独立的变压器、光隔离器或者共模数据线跨过“壕”,如图10.1.26(a)所示;另一种就是在“壕”搭“桥”,只有那些有“过桥通行证”的信号才能进(信号电流)和出(返回电流),如图10.1.26(b)所示。
&设计一个最优化的分割布局是困难的,还可以采用金属屏蔽等方法将所产生的、不期望的RF能量进行屏蔽,从而控制辐射并增强PCB的抗干扰能力。
五:采用“统一地平面”形式
在ADC或者DAC电路中,需要将ADC或者DAC的模拟地和数字地引脚连接在一起时,一般的建议是:将AGND和DGND引脚以最短的引线连接到同一个低阻抗的地平面上。
如果一个数字系统使用一个ADC,如图10.1.29所示,可以将“地平面”分割开,在ADC芯片的下面把模拟地和数字地部分连接在一起。但是要求,必须保证两个地之间的连接桥宽度与IC等宽,并且任何信号线都不能跨越分割间隙。
如果一个数字系统中有多个ADC,如果在每一个ADC的下面都将模拟地和数字地连接在一起,则会产生多点相连,模拟地和数字地的“地平面”分割也就没有意义。对于这种情况,可以使用一个“统一的地平面”。如图10.1.30所示,将统一的地平面分为模拟部分和数字部分。这样的布局、布线既满足对模拟地和数字地引脚低阻抗连接的要求,同时又不会形成环路天线或偶极天线所产生的EMC问题。
最好的方法是开始设计时就用统一地。如图10.1.30所示,将统一的地分为模拟部分和数字部分。这样的布局、布线既满足对模拟地和数字地引脚低阻抗连接的要求,同时又不会形成环路天线或偶极天线所产生的EMC问题。
因为大多数A/D转换器晶片内部没有将模拟地和数字地连接在一起,必须由外部引脚实现模拟地和数字地的连接,任何与DGND连接的外部阻抗都会由寄生电容将更多的数位噪声耦合到IC内部的模拟电路上。而使用一个“统一的地平面”,需要将A/D转换器的AGND和DGND引脚都连接到模拟地上,但这种方法会产生如数字信号去耦电容的接地端应该接到数字地还是模拟地的问题。
(3)采用数字电源和模拟电源分割的电源面
在数模混合的系统中,通常采用独立的数字电源和模拟电源分别供电。在混合信号的PCB上采用分割的电源平面。应注意的是紧邻电源层的信号线不能跨越电源之间的间隙,而只有在紧邻大面积“地”的信号层上的信号线才能跨越该间隙。可以将模拟电源以PCB走线或填充的形式而不是一个电源平面来设计,就可以避免电源面的分割问题。
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。1.2GHz~2.1GHz的宽带频率合成器设计_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
2页¥1.009页¥2.002页免费4页¥2.002页¥1.00 4页¥3.004页¥2.002页¥3.003页免费52页免费
喜欢此文档的还喜欢5页免费28页免费3页免费37页1下载券3页免费
1.2GHz~2.1GHz的宽带频率合成器设计|
把文档贴到Blog、BBS或个人站等:
普通尺寸(450*500pix)
较大尺寸(630*500pix)
你可能喜欢扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
画PCB的技巧
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口

我要回帖

更多关于 芯片的 去耦电容 的文章

 

随机推荐