试叙述分布功率因数提高的意义和节距功率因数提高的意义的物理意义?

华南理工大学电机学第三章思考题_中华文本库
第1页/共5页
第三章思考题
3-3 什么叫相带?相带属性如何确定?在三相电机绕组中为什么常采用60°相带而不用120°相带?
【答】 相带是指把每极下的电枢表面根据相数划分,每相占一等分。我们称每一等分为一相带。由于60°相带绕组的合成电动势比120°相带的大,故除了单绕组变极电机外,一般都用60°相带绕组。
3-6 为什么极相组A 和极相组X 串联时必须反接?如果正接将引起什么后果?
【答】 因极相组A 的电势与极相组X 的电势反相,反接后,两者电势相减,得到更高的电势。若正接将引起电势为0的后果。
3-8 交流绕组的感应电动势公式是如何导出的?它与变压器的电动势公式有何类似和不同之处? 【答】 设气隙中的主极磁场为正弦分布,即b =B 1sin α,式中B 1为气隙密度的基波幅值;设t =0时,导体位于极间、将要进入N 极的位置,转子旋转的角频率为?,则导体中的感应电动势为e 1=blv =B 1lv sin α=2E 1sin ?t ;p 对极的电机一个极下的磁通量为
πD D d α电DlB 1
d α机=?B 1sin α?l =
sin αd α=
DlB 12πD 2
=??lB 1=B 1τl ,感应p π2p π
电动势的频率f =
,转子的线速度v =πD n =2πD pn =2τf ,故导体电动势的有效值为60602p 60
2τf =2fB 1τl =
B 1l τ?=πf Φ1;在考虑短距和分布后,整个线圈2π2??
组的合成电动势E q 1=qE c 1k d 1=q fN c k p 1Φ1k d 1=2f (qN c )k p 1k d 1Φ1=2f (qN c )k w 1Φ1;对于双层绕组,每相绕组有2p 个极相组,设并联支路数为a ,如果一相绕组的总串联匝数2p 2p ?2p ?
qN c ,则相电动势为E ph 1=K q 1=2πf
qN c ?k w 1Φ1=2πfNk w 1Φ1,对a a ?a ?
于单层绕组,每相绕组总共有p 个极相组,则每相绕组的总串联匝数为N =qN c 。而变压
表示为,N =
器一次绕组中感应电动势的有效值E 1=2πfN Φm ,它们的区别主要在于,交流绕组通过短距和分布时,使合成磁动势打了折扣,体现为绕组的基波绕组因数k w 1。
3-9 试述分布因数、节距因数和绕组因数的物理意义。它们是大于1、小于1,还是等于1,为什么?
【答】 分布因数是衡量每极每相的导体分布在每个槽中与集中分布在一个槽电动势或磁动势所打的折扣。节距因数表示线圈短距后电动势或磁动势对比于整距时应打的折扣。绕组因数是既考虑短距又考虑分布时,整个线圈组的合成电动势或磁动势所打的折扣。因分布绕组所产生的电动势或磁动势不能超过集中绕组产生的电动势或磁动势,因此分布因数只能小于或等于1。节距因数是衡量当y 1&τ时,电动势或磁动势与y 1&τ时电动势或磁动势相比
第1页/共5页
寻找更多 ""工具类服务
编辑部专用服务
作者专用服务
集中非叠绕组的绕组因数对电势谐波抑制
为了研究集中非叠绕组永磁同步电机绕组因数对电势谐波的削弱作用,给出了集中非叠绕组的元件连接方式,推导了集中非叠绕组的齿/极配合关系,并在此基础上讨论了集中非叠绕组的节距类型,分析了节距因数和分布因数对电势谐波的影响.分析结果表明:集中非叠绕组的节距因数只能消除电势相数次或相数的倍数次谐波,当每极每相槽数的最简分式分子为1时,分布因数对电势谐波没有削弱作用.为消除电势中特定次谐波,进一步提出了利用槽口因数来消除特定次电势谐波的方法.实例分析和样机研究验证了本文分析的正确性和所提方法的可行性.
ZHU De-ming
WANG Hui-zhen
YAN Yang-guang
作者单位:
南京航空航天大学,航空电源航空科技重点实验室,江苏,南京,210016
ISTICEIPKU
年,卷(期):
机标分类号:
在线出版日期:
基金项目:
国家自然科学基金,国家重点基础研究发展计划(973计划)
本文读者也读过
相关检索词
万方数据知识服务平台--国家科技支撑计划资助项目(编号:2006BAH03B01)(C)北京万方数据股份有限公司
万方数据电子出版社电工术语 旋转电机
我的图书馆
电工术语 旋转电机
UDC&&&& 621.313
GB/T 2900.2594
Electrotechnical terminology
Rotating electrical machines
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
GB/T 2900.2594
GB 2900.2582
Electrotechnical terminology
Rotating electrical machines
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&& (IEC)IEC50(4l1)(2()554574)GB 2900.2582
&&&&&& GBT 2900.l
&&&&&& GB 1.1&& &&
&&&&&& GB 1.6&& &&
&&&&&& GBT 2900.1&& &&
3.1.1&& && electrical machine electric machine
3.1.2&& && (electrical) rotating machine
&&&&&&&&&&&&& ②
3.1.3&& && homopolar machine
3.1.4&& && acyclic machine
3.1.5&& && heteropolar machine
3.1.6&& && direct current machined.c.machine
&&&&&& alternating current machinea.c.machine
3.1.8&& && double-fed machine
3.1.9&& && synchronous machine
3.1.10&& && asynchronous machine
3.1.11&& && induction machine
3.1.12&& && inductor machine
3.1.13&& && permanent magnet machine
3.1.14&& && single-phase machine
3.1.15&& && polyphase machine
3.1.16&& && salient pole machine
3.1.17&& && solid pole shoe machine
3.1.18&& && cylindrical rotor machine
3.1.19&& && non-salient pole machine
3.1.20&& && turbine-type machine
3.1.21&& && disc type machine
3.2.1&& && generator
3.2.2&& && direct current generator
3.2.3& &&& alternating current generator
3.2.4&& && synchronous generator
3.2.5&& && turbine-type generatorturbo-generator
3.2.6&& && hydraulic turbine-driven synchronous generator
3.2.7&& && double wound synchronous generatordouble-winding synchronous gen-erator
3.2.8&& && asynchronous generator
&&induction generator
3.2.10&& && constant voltage generator
3.2.11&& && constant current generator
3.2.12 &&&& exciter
3.2.13&& && main exciter
3.2.14&& && pilot exciter
3.3.1&& && motor
3.3.2&& && direct current motor
3.3.3&& && alternating current motor
3.3.4&& && universal motor
3.3.5&& && synchronous motor
3.3.6 &&&& cage synchronous motor
3.3.7&& && synchronous induction motor
3.3.8&& && reluctance motor
3.3.9&& && subsynchronous reluctance motor
3.3.10&& && asynchronous motor
3.3.11&& && induction motor
3.3.12&& && cage induction motorsquirrel cage induction motor
3.3.13&& && wound-rotor induction motorslip-ring induction motor
3.3.14&& && brushless wound-rotor induction motor
3.3.15&& && hysteresis motor
3.3.16&& && shaded pole motor
3.3.17&& && split phase motor
3.3.18&& && resistance start split phase motor
3.3.19&& && reactor start split phase motor
3.3.20&& && capacitor motor
3.3.21&& && capacitor start motor
3.3.22&& && capacitor start and run motorpermanent split capacitor motor
3.3.23&& && two-value capacitor motor
3.3.24&& && polyphase commutator motor
3.3.25&& && single phase commutator motor
3.3.26&& && Schrage motor
3.3.27&& && repulsion motor
3.3.28&& && Deri motor
3.3.29&& && compensated repulsion motor
3.3.30&& && repulsion start induction motor
3.3.31&& && repulsion induction motor
3.3.32&& && torque motor
3.3.33&& && starting motor
3.3.34&& && conical rotor motor
3.3.35&& && general purpose motor
3.3.36&& && definite purpose motor
3.3.37&& && special purpose motor
3.3.38&& ()&& motor with standardized mounting dimensions
3.3.39&& && small power motor
&&&&&& 1500rmin1.1kW
3.3.40&& && fractional horse-power motor
&&&&&& 1000rmin1hp
3.3.41&& && constant speed motor
3.3.42&& && varying speed motor
3.3.43& &&& multi-speed motor
3.3.44&& && multi-constant speed motor
3.3.45&& && multi-varying speed motor
3.3.46&& && adjustable speed motor
3.3.47&& && adjustable constant speed motor
3.3.48&& && adjustable varying speed motor
3.4.1&& && electrical dynamometer
3.4.2&& && booster
3.4.3&& && dynamotor
3.4.4&& && direct current balancer
3.4.5&& && synchronous compensator&& synchronous condenser
3.4.6&& && phase advancer
3.4.7&& && motor generator set
3.4.8&& && rotary convertor
3.4.9&& && motor convertor
3.4.10&& ()&& (rotating)frequency convertor
3.4.11&& && commutator type frequency convertor
3.4.12&& && frequency changer set
3.4.13&& && induction frequency convertor
3.4.14&& && inductor frequency convertor
3.4.15&& ()&& (rotating)phase convertor
3.4.16&& && electric coupling
3.4.17&& && induction coupling
3.4.18&& && magnetic coupling&& slip coupling
3.4.19&& && eddy current coupling
3.4.20&& && synchronous coupling
3.4.21&& && hystercsis coupling
3.4.22&& && magnetic friction clutch
3.4.23&& && magnetic particle coupling
3.5.1&& -&& Ward-Leonard system
3.5.2&& -&& Ward-Leonard generator set
3.5.3&& && static Kraemer system
3.5.4&& && rotary amplifier
3.6.1&& && separately excited
3.6.2&& && self-excited
3.6.3&& && compositely excited
3.6.4&& && shount
3.6.5&& && series
3.6.6&& && compound excited
3.6.7&& && cumulative compounded
3.6.8&& && differential compounded
3.6.9&& && over-compounded
3.6.10&& && level compoundedflat compounded
3.6.11&& && under-compounded
3.6.12&& ()&& stabilized shunt (for a generator)
3.6.13&& ()&& stabilized shunt (for a motor)
3.6.14&& && self-regulated
3.6.15&& && compensated regulated
3.6.16&& && automatically regulated
3.6.17&& && brushless
3.6.18&& && inverted
4.1.1&& && winding
4.1.2&& && primary winding
4.1.3&& && secondary winding
4.1.4&& && main winding
4.1.5&& && stator winding
4.1.6&& && rotor winding
4.1.7&& && armature winding
4.1.8&& && damping winding
4.1.9&& && starting winding
4.1.10&& && auxiliary starting winding
4.1.11&& && excitation winding
4.1.12&& && field winding
4.1.13&& && compensating winding
4.1.14&& && commutating winding
4.1.15&& && control winding
4.1.16&& && shunt winding
4.1.17&& && series winding
4.1.18&& && distributed winding
4.1.19&& && concentrated winding
4.1.20&& && cage winding squirrel cage winding
4.1.21&& split throw winding
4.1.22&& && concentric winding
4.1.23&& diamond winding
4.1.24&& && chain winding
4.1.25&& && lap winding
4.1.26&& && wave winding
4.1.27&& && frog-leg winding
4.1.28&& && simplex lap winding
4.1.29&& && simplex wave winding
4.1.30&& && simplex frog-led winding
4.1.31&& && duplex lap winding
4.1.32&& && duplex lap winding
4.1.33&& && duplex frog-leg winding
4.1.34&& && multiple lap winding
4.1.35&& && multiplex wave winding
4.1.36&& && single layer winding
4.1.36&& && two layer winding
4.1.38&& && single and two layer winding
4.1.39&& && regular winding
4.1.40&& && preformed winding
4.1.41&& && partly preformed winding
4.1.42&& && random wound winding
4.1.43&& && fed-in winding
4.1.44&& && push-through winding
4.1.45&& && pull-through winding
4.1.46&& && integral slot winding
4.1.47&& && fractional slot winding
4.1.48&& && pole changing winding
4.1.49&& && pole amplitude modulated winding
4.1.50&& && primary circuit
4.1.51&& && secondary circuit
4.1.52&& && armature circuit
4.2.1&& ()&& turn
4.2.2&& && coil section
4.2.3&& && coil
4.2.4&& && multi-section coil
4.2.5&& && half-coil&& bar
4.2.6&& && coil side
4.2.7&& && end winding
4.2.8&& && winding overhang
4.2.9&& && embedded coil sideslot portion
4.2.10&& && open-ended coil
4.2.11&& && hairpin coil
4.2.12&& && field coil
&&&&&&& a.&&
&&&&&&& b.&&
4.2.13&& && tier
4.2.14&& && cranked coil
4.2.15&& && dummy coil
4.2.16&& && equalizer
4.2.17&& && tap
4.2.18&& && tooth pitch
4.2.19&& && coil spancoil pitch
4.2.20&& front span
4.2.21&& && back span
4.2.22&& && pole pitch
4.2.23&& && winding pitch
4.2.24&& && full pitch winding
&&&&&& 100%
4.2.25 &&&& short pitch winding
&&&&&& 100%
4.2.26&& && long pitch winding
&&&&&& 100%
4.2.27&& && commutator pitch
4.2.28&& && transposition
4.2.29&& 360°&& Roebel transposition
4.2.30&& && distribution factorspread factor
4.2.31&& && pitch factor
&&&&&& 100%
4.2.32&& && winding factor
4.2.33&& && skewed slot
4.2.34&& && skew factor
4.2.35&& && effective turns per phase
4.3.1&& && conductor insulation
&&&&&& 4.2.l
4.3.2&& && strand or lamination insulation
4.3.3&& && turn insulation
4.3.4&& && interturn insulation
4.3.5&& && coilbarinsulation
4.3.6&& && encapsulated
4.3.7&& && vacuum-pressure impregnation
4.3.8&& && corona shielding
4.3.9&& && resistance grading (of corona shielding)
4.3.10&& && coil side separator
4.3.11&& && slot packing
4.3.12&& && slot liner
4.3.13&& && overhang packing
4.3.14&& && comb
4.3.15&& && belt insulation
4.3.16&& && phase coil insulation
4.3.17&& && banding insulation
4.3.18&& && winding overhang support
4.3.19& &&& winding overhang support insulation
4.3.20&& && field spool
field spool insulation
4.3.22&& && pole body insulation
4.3.23&& && field coil flange
4.3.24&& && up-shaft insulationbore-hole lead insulation
4.4.1&& && core
4.4.2&& && laminated core
4.4.3&& && corce end plate
4.4.4&& && field pole
4.4.5&& && non-salient pole
4.4.6&& && salient pole
4.4.7&& && pole body
4.4.8&& && pole shoe
4.4.9&& && pole tips
4.4.10&& && pole face
4.4.11&& && pole face bevel
4.4.12&& && pole face shaping
4.4.13&& && pole end plate
4.4.14&& && yoke
4.4.15&& && frame yoke
4.4.16&& && rotor yokehub
4.4.17&& && air gap
4.4.18&& && main air gap
4.4.19&& && slot
4.4.20&& && tooth
4.4.21&& && tooth support
4.4.22&& && duct spacer
4.5.1&& && brush
4.5.2&& && brush flexibleshunt
4.5.3&& & &brush holder
4.5.4&& && brush box
4.5.5&& && brush pressure system
4.5.6&& && brush holder fixing arraneement
4.5.7&& && brush holder supporting structure
4.5.8&& ()&& brush holder rocker
4.5.9&& ()&& brush holder rocker yoke
4.5.10&& && brush holder rocker gear
4.5.11&& && flash barrier
4.5.12&& && collector ringslip-ring
4.5.13&& && commutator
4.5.14&& && commutator segment
4.5.15&& V&& commutator V-ring
4.5.16&& V&& commutator V-ring insulation
4.5.17&& && commutator segment insulation
4.5.18&& && commutator riser
4.5.19&& ()&& terminal
4.5.20&& && termination
4.5.21&& && stud terminal
4.5.22&& && strip terminal
4.5.23&& && earth terminal
4.5.24&& && field winding terminals
4.5.25&& && loose leads
4.5.26&& && terminal boxterminal enclosureterminal housing
4.5.27&& && separate terminal enclosure
4.5.28&& && cable coupler
4.5.29&& && open terminal box
4.5.30&& && pressure relief terminal box
4.5.31&& && pressure containing terminal box
4.5.32&& && flameproof terminal box
4.5.33&& && air insulated terminal box
4.5.34&& && phase insulated terminal box
4.5.35&& && phase separated terminal box
4.5.36&& && phase segregated terminal box
4.5.37&& && terminal board
4.6.2&& && rotor
4.6.3&& && armature
4.6.4&& && field system
4.6.5&& && shaft
4.6.6&& && shaft extension
4.6.7&& && shaft end
4.6.8&& && spider
4.6.9&& && retaining ring
4.6.10&& && binding band
4.6.11&& && slot wedge
4.6.12&& && end bracketbearing bracket
4.6.13&& && end shield
4.6.14&& && stator frame
4.6.15&& && box frame
4.6.16&& && type of construction
4.6.17&& && mounting arrangement
4.6.18&& ()&& drive end of a machine()D&& D-end
4.6.19&& ()&& non-drive end of a machine()N&& N-end
4.6.20&& && direction of rotation
4.6.21&& && end bracket type bearing
4.6.22&& && pedestal bearing
4.6.23&& && thrust bearing
4.6.24&& && guide bearing
4.7.1&& && cooling
4.7.2&& && coolant
4.7.3&& && primary coolant
4.7.4&& && secondary coolant
4.7.5&& && final coolant
4.7.6&& ()&& surrounding medium (of a machine)ambient medium(of a machine)
4.7.7&& ()&& remote medium (of a machine)
4.7.8&& && direct cooled winding&& inner cooled winding
4.7.9&& && indirect cooled winding
4.7.10&& && heat exchanger
4.7.11&& ()&& pipeduct(of a cooling system)
4.7.12&& && open circuit (of a cooling system)
4.7.13&& && closed circuit (of a cooling system)
4.7.14&& && piped or ducted circuit (of a cooling system)
4.7.15&& && standby or emergency cooling system
4.7.16&& && fan housing
4.7.17&& && fan shroud
4.7.18&& && radial core duct
4.7.19&& && axial core duct
4.7.20&& && guide
4.7.21&& && air trunking
4.7.22&& && open machine
4.7.23&& && closed machine
4.7.24&& && sealed machine
4.7.25&& && pressurized machine
4.7.26&& && gas or vapour-proof machine
4.7.27&& && canned machine
4.7.28&& && frame surface cooled machine
4.7.29&& -&& air-to-air cooled machine
4.7.30&& -&& air-to-water cooled machine
4.7.31&& && direct water-cooled machine
4.7.32&& && self-cooled machine
4.7.33&& && separately-cooled machine
5.1.1&& && saturation characteristic
5.1.2&& && open-circuit characteristic&& no-load characteristic
5.1.3&& && load characteristic
5.1.4&& && short-circuit characteristic
5.1.5&& ()&& locked-rotor impedance characteristi(of an asynchronous ma-chine)
5.1.6&& && zero power-factor characteristic
5.1.7&& && voltage regulation characteristic
5.1.8&& && speed regulation characteristic
5.1.9&& V&& V-curve characteristic
5.1.10&& && load angle characteristic
5.1.11&& && circle diagram
5.1.12&& ()&& frequency response characteristic (of an a.c.machine)
&&&&&& ()()
5.1.13&& && capability diagram
5.2.1&& && load torque
5.2.2&& ()&& break loose torque (of the load)
5.2.3&& ()&& load starting torque
5.2.4&& && load full torque
5.2.5&& && rated torque
5.2.6&& && locked-rotor torque
5.2.7&& ()&& starting torque
5.2.8&& && accelerating torque
5.2.9&& ()&& pull-up torque (of an a.c.motor)
5.2.10&& && pull-in torque
5.2.11&& && nominal pull-in torque
&&&&&& 95%
5.2.12&& ()&& breakdown torque(of an asynchronous motor)
5.2.13&& ()()&& pull-out torque(of a synchronous motor)
5.2.14&& && braking torque
5.2.15&& && inherent braking torque
5.2.16&& && moment of inertia
5.2.17&& && unit accelerating time
5.2.18&& && locked-rotor current
5.2.19&& && locked-rotor current of a motor and starter
5.2.20&& ()&& starting current
5.2.21&& && peak-switching current
5.2.22&& && steady short-circuit current
5.2.23&& && initial periodic short-circuit current
5.2.24&& && initial aperiodic component of short-circuit current
5.2.25&& && maximum aperiodic short-circuit current
5.2.26& &&& transient current
5.2.27&& && sub-transient current
5.2.28&& && aperiodic time constant
5.2.29&& && direct-axis transient open-circuit time constant
&&&&&& 1e0.368
5.2.30&& && direct-axis transient short-circuit time constant
&&&&&& le0.368
5.2.31&& && direct-axis sub-transient open-circuit time constant
&&&&&& le0.368
5.2.32&& && direct-axis sub-transient short-circuit time constant
&&&&&& 1e0.368
5.2.33&& && short-circuit time constant of armature winding
&&&&&& 1e0.368
5.2.34&& && quadrature-axis transient open-circuit time constant
&&&&&& 1e0.368
5.2.35&& && quadrature-axis transient short-circuit time constant
&&&&&& 1e0.368
5.2.36&& && quadrature-axis sub-transient open-circuit time constant
&&&&&& le0.368
5.2.37&& && quadrature-axis sub-transient short-circuit time constant
&&&&&& 1e0.368
5.2.38&& && critical build-up resistance
5.2.39&& && critical build-up speed
5.2.40&& && ceiling voltage
5.2.41&& && angular displacement in synchronous generators
5.2.42&& && critical whirling speeds
5.2.43&& && critical torsional speeds
5.2.44&& && excitation system
5.2.45&& && excitation-system stability
5.2.46&& && excitation system output terminals
5.2.47&& && excitation system rated current
5.2.48&& && excitation system ceilling current
5.2.49&& && excitation system ceilling current
5.2.50&& && excitation system ceilling voltage
5.2.51&& && rated field current
5.2.52&& && rated field voltage
5.2.53&& && nominal excitation system ceilling voltage
5.2.54&& && excitation response
5.2.55&& && initial excitation system response
5.2.56&& && excitation response ration
5.3.1&& ()&& ampere-conductors (of a distributed winding)current linkage (of a distributed winding)
5.3.2&& && ampere-turns
&&&&&& ()()
5.3.3&& ()&& electric loading(of a machine)
5.3.4&& ()&& electric loading (of a distributed winding)
5.3.5&& && magnetic loading
5.3.6&& && synchronous speed
5.3.7&& && slip
5.3.8&& && armature reaction
5.3.9&& && synchronous generated voltage
5.3.10&& && direct-axis component of current
5.3.11& &&& quadrature-axis component of current
5.3.12&& && direct-axis component of current
5.3.13&& && quadrature-axis component of current
5.3.14&& && direct-axis component of synchronous generated voltage
5.3.15&& && quadrature-axis component of voltage
5.3.16&& && direct-axis component of voltage
5.3.17&& && quadrature-axis component of voltage
5.3.18&& && direct-axis sub-transient voltage
5.3.19&& && quadrature-axis sub-transient voltage
5.3.20&& && direct-axis transient voltage
5.3.21&& && quadrature-axis transient voltage
5.3.22&& && synchronous impedance
5.3.23&& && asynchronous impedance
5.3.24&& && negative phase-sequence impedance
5.3.25&& && zero phase-sequence impedance
5.3.26&& && asynchronous reactance
&&&&&& ()()
5.3.27&& && effective synchronous reactance
5.3.28&& && direct-axis synchronous reactance
5.3.29&& && quadrature-axis synchronous reactance
5.3.30&& && direct-axis transient reactace
5.3.31&& && quadrature-axis transient reactance
5.3.32&& && direct-axis sub-transient reactance
5.3.33&& && quadrature-axis sub-transient reactance
5.3.34&& && potier reactance
5.3.35&& && positive phase-sequence reactance
5.3.36&& && negative phase-sequence reactance
5.3.37&& && zero phase-sequence reactance
5.3.38&& && asynchronous resistance
5.3.39&& && positive phase-sequence resistance
5.3.40&& && negative phase-sequence resistance
5.3.41&& && zero phase-sequence resistance
5.3.42&& && short-circuit ratio
5.3.43&& && saturation factor
5.3.44&& && synchronizing coefficient
5.3.45&& && synchronizing power coefficient
5.4.1&& && load
5.4.2&& && no-load
5.4.3 &&&& rest and de-energized
5.4.4&& ()&& output power(of a machine)
5.4.5&& ()&& input power(of a machine)
5.4.6&& && duty
5.4.7&& && duty cycle
5.4.8&& && thermal equilibrium
5.4.9&& && cyclic euration factor
5.4.10&& && full load
5.4.11&& && full load value
5.4.12&& && periodic duty
5.4.13&& && duty type
5.4.14&& S1&& continuous running dutyduty type S1
5.4.15&& S2&& short-time dutyduty type S2
5.4.16&& S3&& intermittent periodic dutyduty type S3
5.4.17&& S4&& intermittent periodic duty with startingduty type S4
5.4.18&& S5&& intermittent periodic duty with electric brak-ingduty type S5
5.4.19&& S6&& continuous-operation periodic duty-duty type S6
5.4.20&& S7&& continuous-operation periodic duty with ele-tric brakingduly type S7
5.4.21&& -S8&& continuous-operation periodicduty with related load-speed changesduty type S8
5.4.22&& S9&& duty with non-periodic load and speed variationsduty type S9
5.4.23&& && rated value
5.4.24&& && rating
5.4.25&& && maximum continuous rating
5.4.26&& && short-time rating
5.4.27&& && equivalent continuous rating
5.4.28&& && duty-cycle rating
6.1.2&& && breakaway
6.1.3&& && accelerating
6.1.4&& && synchronizing
6.1.5&& && ideal synchronizing
6.1.6&& && random synchronizing
6.1.7&& && motor synchronizing
6.1.8&& && coarse synchronizing
6.1.9&& && reluctance synchronizing
6.1.10&& && synchronous operation
6.1.11&& && asynchronous operation
6.1.12&& pulling into synchronism
6.1.13&& && pulling out of synchronism
6.1.14&& && rising out of synchronism
6.1.15&& && direct-on-line startingacross the line starting
6.1.16&& -(Y-)&& star-delta starting
6.1.17&& && auto-transformer starting
6.1.18&& && open(circuit)transition auto-transformer starting
6.1.19&& && closed circuit transition auto-transformer starting
6.1.20&& && reactor starting
6.1.21&& && rotor resistance starting
6.1.22&& && stator resistance starting
6.1.23&& && series-parallel starting
6.1.24&& && part-winding starting
6.1.25&& && series connected starting-motor starting
6.1.26&& && cyclic irregularity
6.1.27&& && hunting
6.1.28&& && phase swinging
6.1.29&& && exciter response
6.1.30&& && voltage build-up
6.1.31&& && impedance drop
6.1.32&& && current pulsation
6.1.33&& ()&& regulation(of a generator)
6.1.34&& ()&& regulation(of a motor)
6.1.35&& ()&& inherent regulation(of a generator)
6.1.36&& ()&& inherent regulation(of a motor)
6.1.37&& && compounding characteristics
6.1.38&& && neutral zone
6.1.39&& && black band
6.1.40&& && pole slipping
6.1.41&& && single-phasing
6.1.42&& && inching
6.1.43&& && crawling
6.1.44&& ()&& creeping(of a d.c.motor)
6.1.45&& && electromagnetic braking
6.1.46&& && electric braking
6.1.47&& && dynamic braking
6.1.48&& && capacitor braking
6.1.49&& && d.c.injection brakingd.c.braking
6.1.50&& && regeneraative braking
6.1.51&& && over-synchronous braking
6.1.52&& && plug brakingplugging
6.1.53&& && eddy-current braking
6.2.1&& && performance test
6.2.2&& && type test
6.2.3&& && duplicate test
6.2.4&& ()&& routine test
6.2.5&& && sampling test
6.2.6&& ()()&& commissioning test
6.2.7&& && acceptance test
6.2.8&& && efficiency
6.2.9&& && total loss(of a machine)power losses(of a machine)
6.2.10&& && direct calculation of efficiency
6.2.11&& && indirect calculation of efficiency
6.2.12&& && calculation of efficiency from total loss
6.2.13&& && calculation of efficiency from summation of losses
6.2.14&& && brake text
6.2.15&& && dynamometer test
6.2.16&& && calorimetric test
6.2.17&& && calibrated driving machine test
6.2.18&& && mechanical back-to-back test
6.2.19&& && electrical back-to-back text
6.2.20&& && retardatin test
6.2.21&& && no-load test
6.2.22&& && open-circuit test
6.2.23&& && sustained short-circuit test
6.2.24&& && sudden short-circuit test
6.2.25&& && light load test
6.2.26&& && zero power-factor test
6.2.27&& && unity power-factor test
6.2.28&& && temperature-rise test
6.2.29&& && waveform test
6.2.30&& && waveform analysis
6.2.31&& && harmonic test
6.2.32&& && locked-rotor test
6.2.33&& && starting test
6.2.34&& ()&& pull-in test (of a synchronous motor)
6.2.35&& && pull-out testbreakdown test
6.2.36&& && commutation test
6.2.37&& && black-band test
6.2.38&& && resistance test
6.2.39&& && core test
6.2.40&& && overspeed test
6.2.41&& && balance test
6.2.42&& && vibration test
6.2.43&& && noise-level test
6.2.44&& && shaft-voltage test
6.2.45&& && rotation test
6.2.46&& && phase-sequence test
6.2.47&& && polarity test
6.2.48&& && segment to segment test
6.2.49&& && insulation resistance test
6.2.50&& && high-voltage test&& dielectric test
6.2.51&& && low-frequency dielectric test
&&&&&& 0.11.0
6.2.52&& && loss tangent measurement&& dissipation f3ctor test
6.2.53&& && discharge inception test
6.2.54&& && partial discharge inception test corona inception test
discharge energy test
6.2.56&& && impulse test
6.2.57&& && interturn testturn-to-turn test
TA的最新馆藏[转]&[转]&[转]&[转]&
喜欢该文的人也喜欢

我要回帖

更多关于 功率因数提高的意义 的文章

 

随机推荐