分动器工作原理中桥输出轴是干什么用的

君,已阅读到文档的结尾了呢~~
汽车 分动器 设计 说明书
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
汽车 分动器 设计 说明书
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口分动器装配图
主视图左视图俯视图
ID文件名称文件格式文件大小(KB)操作
正在加载...请等待或重新刷新本页面!
汽车分动器装配图,为大家提供一款汽车分动器的cad装配图。欢迎大家下载学习,为三轴式分动器,输入轴,前桥输出轴,后桥输出轴,中桥输出轴,采用结合套进行换挡,前桥采用结合套进行结合,有换挡杆等,希望大家下载学习
下载地址 (所需点数:8沐风币)
图纸发布者
作者热门图纸
作者其他图纸
当前分类本月下载排行
购买之前,如有问题,请分动器和差速器是指什么_百度知道
分动器和差速器是指什么
分动器和差速器是指什么?有什么区别,总是混淆,请专家通俗易懂的方式解释
简单点说吧 分动器一般是4轮以上驱动车型装备的主要用于驱动力的分配而差速器是“车”就有主要是在车辆进行转弯形式的时候由于内外侧车轮滚过的路程不一样所以为了减少轮胎磨损等原因 要对内外侧车轮的转速和转矩进行分配。
其他类似问题
为您推荐:
您可能关注的推广
分动器的相关知识
其他2条回答
越野车需要经常在坏路和无路情况下行驶,尤其是军用汽车的行驶条件更为恶劣,这就要求增加汽车驱动轮的数目,因此,越野车都采用多轴驱动。例如,如果一辆前轮驱动的汽车两前轮都陷入沟中(这种情况在坏路上经常会遇到),那汽车就无法将发动机的动力通过车轮与地面的摩擦产生驱动力而继续前进。而假如这辆车的四个轮子都能产生驱动力的话,那么,还有两个没陷入沟中的车轮能正常工作,使汽车继续行驶。
在多轴驱动的汽车上,为了将输出的动力分配给各驱动桥设有分动器。分动器一般都设有高低档,以进一步扩大在困难地区行驶时的传动比及排挡数目。
分动器的功用就是将变速器输出的动力分配到各驱动桥,并且进一步增大扭矩。分动器也是一个齿轮传动系统,它单独固定在车架上,其输入轴...
在下非专家,呵……一楼那兄弟的的太太复杂了……我给你说个简单的,分动器,就是分配动力的,根据情况需要将动力传给驱动桥。差速器,就是允许左右驱动轮以不同转速转动的。呵呵……简单明了哈?
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁人人文库美如初恋!
&&&&&&DOC文档下载
您还没有登陆,请先登录。登陆后即可下载此文档。
合作网站登录:
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,文档经过压缩,下载后原文更清晰&&&
&&&&&&侵权投诉
矿用半挂车分动器设计【2013年最新整理毕业论文】
本科毕业设计论文题目矿用半挂车分动器设计系别机电信息系专业机械设计制造及其自动化班级学生学号指导教师2013年5月I矿用半挂车分动器设计摘要本设计主要了解矿用半挂车,以及矿用半挂车的载重,常见矿用半挂车的分动器基本原理和基本结构的型式,矿用半挂车属于非公路运输用的重型和超重型自卸挂车主要承担大型矿山、工程等运输任务,工程方面,比一般载重车更耐用,工作环境恶劣、负载重、劳动强度高。分动器的功用就是将分动器输出的动力分配到各驱动桥,并且进一步增大扭矩。分动器也是一个齿轮传动系统,它单独固定在车架上,其输入轴与分动器的输出轴用万向传动装置连接,分动器的输出轴有若干根,分别经万向传动装置与各驱动桥相连。本设计主要说明了分动器的设计计算过程。设计部分较详细的叙述了分动器的设计过程,选择结构方案、主要参数、齿轮设计、轴设计、计算校核、其他结构部件的设计。关键词矿用半挂车分动器齿轮轴IIDesignofPowerTransferCaseforthemineSemitrailerAbstractThisdesignmainlyknowminesemitrailer,andminesemitrailertruck,commonminingsemitrailertransferbasicprincipleandbasicstructureofthemodel,miningsemitrailerbelongstothehighwaytransportationofheavyandsuperheavydumptrailermainlybearthetransportationtaskssuchaslargescalemining,engineering,engineering,thetruckismoredurablethannormal,workenvironmentbad,negativeload,highlaborintensity.Transferfunctionistotransfertheoutputofthepowerallocatedtoeachdriveaxle,andfurtherincreasetorque.Transferboxisageartransmissionsystem,itseparatelyfixedontheframe,itsinputshaftconnectedtothetransferboxoutputshaftwithauniversaltransmissiondevice,thereareafewroottransferboxoutputshaft,respectivelybytheuniversaldrivingdeviceconnectedwiththedriveaxle.Thisdesignmainlyillustratesthedesignandcalculationoftransferprocess.Designpartindetaildescribesthetransferofthedesignprocess,choosethestructurescheme,themainparameter,designofgear,shaftstructuredesign,calculationandchecking,otherpartsofthedesignKeywordsminesemitrailergearshaftIII目录1绪论11.1概述.....................................................................................................................11.2分动器简介.........................11.2.1带轴间差速器的分动器....................................................................11.2.2不带轴间差速器的分动器................................................................21.2.3装有超越离合器的分动器................................................................21.3分动器的构造及原理....................................................................................21.4分动器的轮型.............................21.4.1分时四驱............................................................................................................21.4.2全时四驱............................................................................................................21.4.3适时驱动............................................................................................................31.5分动器结构方案的选择.........................................................................................31.6完成本课题的工作方案及进度计划(按周次填写).....51.7毕业设计的工作量要求.....52分动器主要参数的选择62.1档数及传动比62.2中心距.................72.3齿轮参数.................72.3.1齿轮模数...........................................................................................................72.3.2齿形、压力角?、螺旋角β和齿宽b..............................................................82.4高低档传动比及其齿数的确定92.4.1确定抵挡齿轮的齿数........................................................................................92.4.2确定高挡齿轮的齿数........................................................................................93分动器齿轮强度计算及材料选择113.1齿轮失效形式与原因113.2齿轮强度计算与校核113.2.1斜齿轮弯曲应力..............................................................................................113.2.2齿轮接触应力..................................................................................................124轴的计算与校核144.1轴的失效形式及设计准则144.2轴的计算..............14IV4.2.1输入轴的初选及校核......................................................................................144.2.2输出轴的初选及校核......................................................................................154.3分动器轴承的选择...............154.3.1轴的结构设计..................................................................................................154.4键的计算...............................................................................................................185同步器205.1同步器的结构类型205.2锁环式同步器的工作原理205.3惯性锁止式同步器的主要结构参数225.3.1摩擦锥面的半锥角?和摩擦系数f....225.3.2摩擦锥面的平均半径R和同步锥环的镜像厚度W.....................................225.3.3摩擦锥面的工作面宽b..................................................................................225.3.4锁止角β...........................................................................................................235.3.5同步时间Tt与轴向推力aF.............................................................................235.3.6同步器摩擦副的材料......................................................................................236工艺分析................................................................................................................246.1壳体加工工艺.......................................................................................................246.2拨叉加工工艺.......................................................................................................256.3齿轮加工工艺.......................................................................................................256.4轴的加工工艺.......................................................................................................256.5总成的装配...........................................................................................................267总结......28参考文献...29致谢.....30毕业设计(论文)知识产权声明.....31毕业设计(论文)独创性声明......321绪论11绪论21绪论1.1概述本课题主要研究矿用半挂车分动器设计,在多轴驱动的汽车上,为了将变速器输出的动力分配到各驱动桥,通常装有分动器。矿用半挂车的牵引车是在矿车底盘基础上改进设计的双后桥驱动结构,针对桥驱动结构设计中的关键设备专用分动器,通过分析双后桥驱动原理以及分动器的原理和功能,根据动力分配、底盘结构、传递扭矩及传动方式的要求,确定出分动器的设计方案和整体结构特点1。在近百年中,汽车设计技术也经历了由经验设计发展到以科学实验和技术分析为基础的设计阶段。课题设计的目的矿用半挂车有更好的前景,汽车分动器的发展到了第五代产品,第一代的分动器基本上为分体结构,直齿轮传动,双换档轴操作,铸铁壳体2。第二代分动器虽然也是分体结构,但已改为全斜齿轮传动,单换档轴操作,铝合金壳体。因而,在一定程度上提高了传动效率、简便了换档、降低了噪音与油耗。第三代分动器在上代的基础上增加了同步器,使四轮驱动系统具备汽车在行进中换档的功能。第四代分动器的重大变化在于采用了连体结构以及行星齿轮加链传动,从而优化了换档及大大提高了传动效率和性能。1996年6月北京先后举办了两个国际汽车展览会,众多国内外厂商展出多台汽车分动器,其中国外展台展出的型分动器的一个结构上的特点是前输出轴传导系统皆采用低噪声的多排链条传动。本课题设计使我们更加了解矿用半挂车分动器设计3。1绪论31.2分动器简介装于多桥驱动矿车的变速器后,用于传递和分配动力至各驱动桥,兼作副变速器之用。常设两个档,低档又称为加力档。为了不使后驱动桥超载常设联锁机构,使只有结合前驱动桥以后才能挂上加力档,并用于克服矿车在坏路面上和无路地区的较大行程阻力及获得最低稳定车速(在发动机最大转矩下一般为2.5~5km/h)。高档为直接档或亦为减速档4。1.2.1带轴间差速器的分动器各输出轴可以以不同的转速旋转,而转矩分配则由差速器传动比决定。据此,可将转矩按轴荷分配到各驱动桥。装有这种分动器的矿车,不仅挂加力档时可使全轮驱动,以克服坏路面和无路地区地面的较大阻力,而且挂分动器的高档时也可使全轮驱动,以充分用附着重量及附着力,提高矿车在好路面上的牵引性能。毕业设计(论文)41.2.2不带轴间差速器的分动器各输出轴可以以相同的转速旋转,而转矩分配则与该驱动轮的阻力及其传动机构的刚度有关。这种结构的分动器在挂低档时同时将接通前驱动桥而挂高档时前驱动桥则一定与传动系分离,使变为从动桥以避免发生功率循环并降低矿车在好路面上行驶时的动力消耗及轮胎等的磨损。1.2.3装有超越离合器的分动器利用前后轮的转速差使当后轮滑转时自动接上前驱动桥,倒档时则用另一超越离合器工作。分动器的功用就是将变速器输出的动力分配到各驱动桥,并且进一步增大扭矩,是4x4矿用车矿车传动系中不可缺少的传动部件,它的前部与矿车变速箱联接,将其输出的动力经适当变速后同时传给矿车的前桥和后桥,此时矿车全轮驱动,可在冰雪、泥沙和无路的地区地面行驶。大多数分动器由于要起到降速增矩的作用而比变速箱的负荷大,所以分动器中的常啮齿轮均为斜齿轮,轴承也采用圆锥滚子轴承支承5。1.3分动器的构造及原理分动器的输入轴与变速器的第二轴相连,输出轴有两个或两个以上,通过万向传动装置分别与各驱动桥相连。分动器内除了具有高低两档及相应的换档机构外,还有前桥接合套及相应的控制机构。当矿用车在良好路面上行驶时,只需后轮驱动,可以用操纵手柄控制前桥接合套,切断前驱动桥输出轴的动力。分动器的工作要求如下先接前桥,后挂低速档先退出低速档,再摘下前桥上述要求可以通过操纵机构加以保证。1.4分动器类型1.4.1分时四驱Part-time4WD这是一种驾驶者可以在两驱和四驱之间手动选择的四轮驱动系统,由驾驶员根据路面情况,通过接通或断开分动器来变化两轮驱动或四轮驱动模式,这也是一般矿用车或四驱SUV最常见的驱动模式。最显著的优点是可根据实际情况来选取驱动模式,比较经济6。1.4.2全时四驱Full-time4WD这种传动系统不需要驾驶人选择操作,前后车轮永远维持四轮驱动模式,行毕业设计(论文)5驶时将发动机输出扭矩按5050设定在前后轮上,使前后排车轮保持等量的扭矩。全时驱动系统具有良好的驾驶操控性和行驶循迹性,有了全时四驱系统,就可以在铺覆路面上顺利驾驶。但其缺点也很明显,那就是比较废油,经济性不够好。而且,车辆没有任何装置来控制轮胎转速的差异,一旦一个轮胎离开地面,往往会使车辆停滞在那里,不能前进7。1.4.3适时驱动Real-time4WD采用适时驱动系统的车辆可以通过电脑来控制选择适合当下情况的驱动模式。在正常的路面,车辆一般会采用后轮驱动的方式。而一旦遇到路面不良或驱动轮打滑的情况,电脑会自动检测并立即将发动机输出扭矩分配给前排的两个车轮,自然切换到四轮驱动状态,免除了驾驶人的判断和手动操作,应用更加简单。不过,电脑与人脑相比,反应毕竟较慢,而且这样一来,也缺少了那种一切尽在掌握的征服感和驾驶乐趣8。本设计具体参数如下表所示表1.1分动器设计参数项目参数最高时速171km/h轮胎型号235/60R16发动机型号CVVT最大扭矩184/4500最大功率104/6000最高转速6000r/min主减速比4.625整车整备质量分动器结构方案的选择分动器的结构形式是多种多样的,各种结构形式都有其各自的优缺点,这些优缺点随着主观和客观条件的变化而变化。因此在设计过程中我们应深入实际,收集资料,调查研究,对结构进行分析比较,并尽可能地考虑到产品的系列化、通用化和标准化,最后确定较合适的方案。机械式具有结构简单、传动效率高、制造成本低和工作可靠等优点,在不同形式的汽车上得到广泛应用。本设计采用的结构方案如图21所示。毕业设计(论文)6一般齿轮式分动器一般齿轮式分动器驱动前、后桥的两根输出轴,在接合前驱动啮合套时为刚性连接。其缺点是不能保证前、后轮的地面速度相等,在行驶过程中不可避免地要产生功率循环现象,这将使驱动轮载荷大幅度增加,轮胎及机件磨损加剧,燃油经济性下降。另外,一般齿轮式分动器分配给前、后桥的转矩比例不定随此两桥所受附着力的比例而变。这样虽然会增加附着条件较好驱动桥的驱动力,但可能使该桥因超载而损坏。带轴间差速器的分动器带轴间差速器的分动器在前、后输出轴和之间有一个行星齿轮式轴间差速器。它正好克服了上述缺点,两根输出轴可以不同的转速旋转,并按一定的比例将转矩分配给前、后驱动桥,既可使前桥经常处于驱动状态,又可保证各车轮运动协调,所以不需另设接离前桥驱动的装置。特点是承载能力大、工作平稳、噪声小、寿命长。1.1带轴间差速器的分动器如图带轴间差速器的分动器1.1所示(A)B所示数字所带表的意思1.输入轴2.高低挡啮合套3.后输出轴4.前输出轴5.轴间差速器6.轴间差速锁。图(A)(B)在前后输出轴4和3之间有一个行星轮式轴间差速器5。它克服了一般齿轮式分动器的缺点,两根输出轴可以不同的转速旋转,并按一定的比例将转矩分配给前、后驱动桥,即可以使前桥经常处于驱动状态,又可保证各车轮运动协调。毕业设计(论文)7为了避免打滑时完全丧失驱动力,分动器加轴间差速锁7,以便在车轮打滑的情况下将分动器的前、后输出轴锁为一体,提高通过性。综上比较,分动器选择带轴间差速器的分动器,选择(B)所示的结构设计。1.6完成本课题的工作方案及进度计划(按周次填写)1~3周调研并收集资料4~6周确定设计方案和整体结构特点7~11周完成结构设计计算12~15周完成分动器结构设计的总装配图16~18周完成论文撰写,准备答辩。1.7毕业设计的工作量要求毕业设计论文一篇,不少于10000字实验(时数)或实习(天数)2周图纸(幅面和张数)A0图纸(折合)2张其他要求外文翻译不少于3000字,参考文献不少于15篇。2分动器主要参数的选择8max2egITrTiGr???2max0rgIeTGriTi???max0maxmaxmaxcossinegITrTiimgfmgr???????maxmax0rgemgriTi???2分动器主要参数的选择2.1挡数及传动比根据驱动车轮与路面的附着条件,档数和传动比为了增强矿车在不好道路的驱动力,目前,四驱车一般用2个档位的分动器,分为高档和低档.本设计也采用2个档位。选择最低档传动比时,应根据矿车最大爬坡度、驱动轮与路面的附着力、矿车的最低稳定车速以及主减速比和驱动轮的滚动半径等来综合考虑、确定。矿车爬陡坡时车速不高,空气阻力可忽略,则最大驱动力用于克服轮胎与路面间的滚动阻力及爬坡阻力。故有则由最大爬坡度要求的分动器低档传动比为(2.1)式中,m矿车总质量g重力加速度max?道路最大阻力系数r驱动轮的滚动半径maxeT发动机最大转矩oi主减速比?矿车传动系的传求得的分动器低档传动比为(2.2)式中,G2矿车满载静止于水平路面时驱动桥给路面的载荷φ路面的附着系数,计算时取φ0.50.6。由已知条件m2090kg毕业设计(论文)93IAmaxAKT?r334mmmaxeT184N.moi4.625?0.85根据公式(31)可得低i2.05本设计取高档传动比高i1.082.2中心距中心距对变速器的尺寸及质量有直接影响,所选的中心距、应能保证齿轮的强度。三轴式变速器的中心局A(mm)可根据对已有变速器的统计而得出的经验公式初定式中,KA中心距系数。对轿车,KA8.9~9.3对货车,KA8.6~9.6TImax变速器处于一档时的输出扭矩TImaxTemaxigIη670.96N﹒m故可得出初始中心距A130mm。2.3齿轮参数各齿轮副的相对安装位置,对于整个分动器的结构布置有很大的影响,要考虑到以下几个方面的要求整车总布置,根据整车的总布置,对分动器输入轴与输出轴的相对位置和分动器的轮廓形状以及换挡机构提出要求驾驶员的使用习惯提高平均传动效率改善齿轮受载状况,各挡位齿轮在分动器中的位置安排,考虑到齿轮的受载状况。承受载荷大的低挡齿轮,安置在离轴承较近的方,以减小铀的变形,使齿轮的重叠系数不致下降过多。分动器齿轮主要是因接触应力过高而造成表面点蚀损坏,因此将高挡齿轮安排在离两支承较远处。该处因轴的变形而引起齿轮的偏转角较小,故齿轮的偏载也小。2.3.1齿轮模数齿轮模数是一个重要参数,并且影响它的选取因素又很多,如齿轮的强度、质量、噪声、工艺要求、载荷等。决定齿轮模数的因素很多,其中最主要的是载荷的大小。由于高档齿轮和低档齿轮载荷不同,股高速挡和低速档的模数不宜相同。从加工工艺及维修观点考虑,同一齿轮机械中的齿轮模数不宜过多。毕业设计(论文)10建议用下列各式选取齿轮模数,所选取的模数大小应符合JB11160规定的标准值。第一轴常啮合斜齿轮的法向模数mn3max47.0enTm?2.4其中,maxeT184Nm,可得出nm2.67。同步器和啮合套的接合大都采用渐开线齿形。由于制造工艺上的原因,同一分动器中的结合套模数都去相同,轿车和货车取2~3.5。本设计取3。2.3.2齿形、压力角?、螺旋角?和齿宽b压力角较小时,重合度大,传动平稳,噪声低较大时可提高轮齿的抗弯强度和表面接触强度。对轿车,为加大重合度已降低噪声,取小些对货车,为提高齿轮承载力,取大些。在本设计中变速器齿轮压力角取20°,所以分动器齿轮采用的压力角为20°。螺旋角β一般范围为10°~35°。螺旋角增大使齿轮啮合系数增加、工作平稳、噪声降低、另外齿轮的强度也有所提高。关于螺旋角的方向,输入轴齿轮采用右旋,这样可使第一轴所受的轴向力直接经过轴承盖作用在分动器壳体上,避免了因轴向力一二两轴抱死的现象。中间轴齿轮全部采用左旋,因此中间轴上同时啮合的两对齿轮轴向力方向相反,轴向力可互相抵消一部分。但螺旋角太大,会使轴向力及轴承载荷过大。啮合套或同步器取30o斜齿轮螺旋角25°。应该注意的是选择斜齿轮的螺旋角时应力求使轴上是轴向力相互抵消。为此,第二轴上的全部齿轮一律去右旋,而第一轴的斜齿轮左旋,其轴向力经轴承盖由壳体承受。齿轮宽度的大小直接影响着齿轮的承载能力,加大,齿的承载能力增高。但试验表明,在齿宽增大到一定数值后,由于载荷分配不均匀,反而使齿轮的承载能力降低。齿轮宽度大,承载能力高。但齿轮受载后,由于齿向误差及轴的挠度变形等原因,沿齿宽方向受力不均匀,因而齿宽不宜太大。在保证齿轮的强度条件下,尽量选取较小的齿宽,以有利于减轻变速器的重量和缩短其轴向尺寸。通常根据齿轮模数的大小来选定齿宽直齿bmKc,cK为齿宽系数,取为4.5~8.0斜齿cKmKc,cK为齿宽系数,取为6.0~8.5毕业设计(论文)11本设计b3824b为齿宽mm。采用接合套或同步器换档时,其接合套的工作宽度初选时可取为2~4mm。第一轴常啮合齿轮副齿宽的系数值可取大一些,使接触线长度增加,接触应力降低,以提高传动的平稳性和齿轮寿命。2.4高档传动比及各档齿数的确定在初选了中心距、齿轮的模数和螺旋角后,可根据预先确定的变速器档数、传动比和结构方案来分配各档齿轮的齿数。下面结合本设计来说明分配各档齿数的方法。2.4.1确定低档齿轮的齿数在初选中心距、齿轮模数和螺旋角以后,可根据档数、传动比和传动方案来分配各档齿轮的齿数低档传动比2.05,其中A130mm、m3由nmAZ?cos2??(2.5)有?Z48此处取1Z25,则可得出2Z36上面根据初选的A及m计算出的?Z可能不是整数,将其调整为整数后,从式(25)看出中心距有了变化,这时应从?Z及齿轮变位系数反过来计算中心距A130,再以这个修正后的中心距作为以后计算的依据。2.4.2确定高档齿轮的齿数高档传动比1.05同理,nmAZ?cos2??(2.6)得?Z48取3Z36,4Z25齿轮参数计算结果如表21所示。毕业设计(论文)12低速档齿轮75.z3467????zziz高根据,536361tantan????????zzzzz??可以得出.52.20tantan167???????????826.cos1302cos26776,取???????nmAzz?于是可得,。,14.??z圆整取。,3547z76??z表2.1齿轮参数计算结果螺旋角?25低档齿轮高档齿轮法面膜数nm3333端面模数?tm?cosnm3.33.33.33.3法面压力角na法面齿距nnmp??9.429.429.429.42端面齿距ttmp??10.10.37标准中心距A齿根圆直径ffhdd2??58.291.281.367.1齿顶高??annahmh3333齿根高????chmhannf3.753.753.753.75齿厚4.724.724.724.723分动器齿轮的强度计算与材料的选择133分动器齿轮的强度计算与材料的选择3.1齿轮的失效形式及原因齿轮的失效形式分三种轮齿折断、齿面疲劳剥落和移动换档齿轮端部破坏。轮齿折断分两种轮齿受足够大的冲击载荷作用,造成轮齿弯曲折断轮齿再重复载荷作用下齿根产生疲劳裂纹,裂纹扩展深度逐渐加大,然后出现弯曲折断。前者在变速器中出现的很少,后者出现的多。齿轮工作时,一对相互啮合,齿面相互挤压,这是存在齿面细小裂缝中的润滑油油压升高,并导致裂缝扩展,然后齿面表层出现块状脱落形成齿面点蚀。他使齿形误差加大,产生动载荷,导致轮齿折断。用移动齿轮的方法完成换档的抵挡和倒挡齿轮,由于换档时两个进入啮合的齿轮存在角速度茶,换档瞬间在齿轮端部产生冲击载荷,并造成损坏。3.2齿轮强度的计算与校核与其他机械设备使用的分动器比较,不同用途矿车的变速器齿轮使用条件仍是相似的。此外,矿车分动器齿轮所用的材料、热处理方法、加工方法、精度等级、支撑方式也基本一致。如矿车分动器齿轮用低碳合金钢制造,采用剃齿或齿轮精加工,齿轮表面采用渗碳淬火热处理工艺,齿轮精度不低于7级。因此,比用于计算通用齿轮强度公式更为简化一些的计算公式来计算矿车齿轮,同样、可以获得较为准确的结果。在这里所选择的齿轮材料为40Cr。3.2.1.斜齿轮弯曲应力1wzFKbtyK???(3.1)式中,为Kε重合度影响系数,取1.0注释相同,Kσ1.50。低档齿轮圆周力??dTFjtN齿轮1的当量齿数97.20cos???ZZn,可查表的153.01?y毕业设计(论文).085.111???????swbtyKKF??MPa同理得2w?206.7MPa依据计算二挡齿轮的方法可以得到其他档位的弯曲应力,其计算结果如下?3w?230.57MPa?4w?250.65MPa当计算载荷取作用到第一轴上的最大扭矩时,对常啮合齿轮和高档齿轮,许用应力在180~350MPa范围内,因此,上述计算结果均符合弯曲强度要求.3.2.2.轮齿接触应力j?110.418jzbFEb???????????(3.2)斜齿圆柱齿轮mn31Z29,2Z19,E2.,2dd,Temax0.tF?12dTj5111.11Nmm5cos20cos11.5111coscos????????tFFMPa(3.3)31.1220sin220sin111?????dr?1.1720sin220sin222?????dr?73.1.021..053121?????????????????????????bFEj同理得3.13732?j?MPa3.13283?j?MPa毕业设计(论文)158.13734?j?MPa渗碳齿轮的许用应力在之间,强度符合要求。4轴的计算与校核164轴的计算与校核4.1轴的失效形式及设计准则主要有因疲劳强度不足而产生的疲劳簖裂、因静强度不足而产生的塑性变形或脆性簖裂、磨损、超过允许范围的变形和振动等。轴的设计应满足如下准则根据轴的工作条件、生产批量和经济性原则,选取适合的材料、毛坯形式及热处理方法。根据轴的受力情况、轴上零件的安装位置、配合尺寸及定位方式、轴的加工方法等具体要求,确定轴的合理结构形状及尺寸,即进行轴的结构设计。轴的强度计算或校核。对受力大的细长轴(如蜗杆轴)和对刚度要求高的轴,还要进行刚度计算。在对高速工作下的轴,因有共振危险,故应进行振动稳定性计算。4.2轴的计算4.2.1输入轴的初选与校核轴的材料主要是经过轧制或锻造的碳钢或合金钢。通常用的是碳钢,其中最常用的是45钢。对于受力较大或需要限制轴的尺寸或重量或需要提高轴径的耐磨性以及高低温、腐蚀等条件下工作的轴,可采用合金钢。为了提高轴的强度和耐磨性,可对轴进行各种热处理或化学处理,以及表面强化处理。综上,从动轴同样选用45钢,查手册得??T?25~45MPa。主动轴主要受额定转矩T的作用,由于轴上重力而产生的弯矩很小,可以忽略不计。转动零件的各表面都经过机械加工,零件几何形状都是对称的,高速旋转时对轴产生的不平衡力矩较小,产生的弯矩可忽略不计。故轴的强度按转矩进行计算。轴的最小直径可按公式mind≥362.01055.9nPT??27.1mm(4.1)来确定。式中,P功率(104KW)n转速(6000r/min)??T?许用扭应力(25~45MP取40MP)毕业设计(论文)17故本设计中取mind30符合强度要求。最小段符合要求,其它各段一定符合要求。4.2.2输出轴的初选与校核从动轴的最小直径同前可得mind≥362.01055.9nPT??40.6mm(4.2)来确定。式中,P功率(100KW)n转速(6000r/min)??T?许用扭应力(25~45MP取40MP)同样在这里取mind42mm符合要求。4.3轴承的选择轴承分两类滚动轴承和滑动轴承。磁流变液离合器所需的轴承,主要承受因主机重力而产生的径向负荷,同时考虑轴向定位。但磁流变液离合器主要受径向负荷,因此根据尺寸要求选用圆锥滚子轴承。根据其内径为45,选取圆锥滚子轴承30202。根据轴径d45mm,查机械设计手册选取圆锥滚子轴承,D68mm,B15mm。轴承的当量动负荷为RP??式中,P轴承的当量动负荷NR轴承径向负荷N?动负荷系数,平稳或微冲击λ1.01.2,中等冲击?1.2~1.8。轴承寿命为LnPC60/1063???????(4.3)式中,L轴承寿命hN轴承转速r/minP当量动载荷NC轴承的额定动负荷N由手册查出,根据计算,选择轴承的型号为30202。轴承的寿命由工作需要而定,一般不得小于.3.1轴的结构设计a.输入轴(图4.1)毕业设计(论文)18图4.1输入轴输入轴的最小直径在安装联轴器的花键处,联轴器的计算转矩3caTKTA?,取KA1.3,则mN0.038m7.6173.11ca??????NTKTA查机械设计综合课程设计手册表697,选用YL11型凸缘联轴器,其公称转矩为m1000?N。半联轴器的孔径为45mm,故取mmAB82lmm45AB??,?,50mml48??BCBCmm,?,CD段装有圆锥滚子轴承,查机械设计综合课程设计表667选孔径为50mm的30210型圆锥滚子轴承与之配合其尺寸为dDTBCa50mm90mm21.75mm20mm17mm20mm,故取,,mmlmmCDCD3050???DE段固定齿轮,故取mm3060??DEDElmm,?,根据整体结构取,,mmlmmEFEF6070???FG处是齿轮轴上的纸轮6,分度圆直径,,mmlFGFG30mm56.106???GH段安装滚针轴承,由于只承受弯矩故可取mmlmmGHGH3040??,?,滚针轴承尺寸dDC404527。b.后桥输出轴(图4.2)图4.2后桥输出轴为了防止两轴研合到一起引起两周对接卡死,输入轴与后桥输出轴间留有毕业设计(论文)190.5mm的间隙,IK段是齿轮轴上的齿轮3,分度圆直径,,mm83mm8mm30lmm44.153????IKIK?KL段安装轴承,查表取孔径70mm的30214型圆锥滚子轴承,其尺寸为dDTBCa70mm125mm26.25mm24mm21mm25.8mm故mm24lmm70??KLKL,?,LM段根据端盖结构取mm60l69??LMLMmm,?,MN段安装轴承,查表选取孔径为65mm的30213型圆锥滚子轴承,其尺寸为dDTBCa65mm120mm24.75mm23mm20mm23.8mm取,,2365??MNMNlmm?NO段安装输出轴联轴器,取mmlmmNONO8260??,?。c.中间轴(图4.3)图4.3中间轴de段是啮合套外齿轮8,分度圆直径mm96mm323de????,de29l?,啮合套齿轮8与两边的齿轮7、2各留有0.5mm的间隙。齿轮7、2的总齿宽为45mm,齿轮2、4间留有间隙5mm,所以mmmmlcdcd60mm5.80l,5.45efef??????,取,bc、fg段安装轴承,取孔径为50mm的30210型圆锥滚子轴承,30,50bc????fgbcfgllmm??,ab、gh段做成螺纹用于轴的两端固定,取mmllmmghab1530ghab????,??。d.中桥输出轴(图4.4)图4.4中桥输出轴ef段安装齿轮5,取mmlmmefef3070??,?,bc、fg段安装轴承,取孔径为60mm的30212型圆锥滚子轴承。其尺寸为dDTBCa60mm110mm23.75mm22mm19mm22.3mm,其中mmllmmbcfgfgbc3260????,??,de、cd段根据结构取毕业设计(论文)20mmlmmde1080de??,?,mmlmmcdcd11670??,?,ab段渐开线齿轮分度圆直径mmlmmab3054183ab????,?,gh段安装联轴器,mmlmmgh8250gh??,?。e.前桥输出轴(图4.5)图4.5前桥输出轴cd段齿轮分度圆直径mmlmmcd3054cd??,?,bc段安装一对圆锥滚子轴承,取孔径为50mm的30210型圆锥滚子轴承,mmlmmbcbc5050??,?,ab段安装联轴器,取mmlmmabab8245??,?。4.4键的计算平键联接受额定转距oT作用时,键的侧面受挤压,主截面受剪切力,可能的失效形式是工作面压溃或键剪断。对于实际采用的材料和按标准选用的平键来说,压溃是主要的失效形式。因而平键联接的强度常按键侧的挤压应力来计算。轴与半联轴器用单键联接,其挤压应力为?=kldT3102?≤???(4.4)式中,?键联接的挤压应力PaK键与联轴器的接触高度,对平键可取键高的一半,2hk?T额定转距Nmd轴的直径mT键的工作长度m,对于圆头普通平键可取为键全长与键宽之差???键联接许用挤压应力MPa在第一段轴上选用圆头普通平键,根据d35mm,查得键的截面尺寸为宽度b10mm,高度h8mm。取键长L26mm。键的工作长度1bL?401016mm。键与键槽的接触高度k0.5h4mm。其挤压应力为?kldT3102?<???110MPa所以所选键符合强度要求。毕业设计(论文)21同理第二周选用圆头普通平键的挤压应力为?kldT3102?<???110MPa所以所选键符合强度要求。5同步器225同步器同步器使变速器换挡轻便、迅速,无冲击,无噪声,且可延长齿轮寿命,提高矿车的加速性能并节油,故轿车变速器除倒档、货车1档,倒档外,其它档位多装用。要求其转矩容量较大,性能稳定、耐用。5.1同步器的结构类型惯性同步器能确保同步啮合换挡,性能稳定、可靠,因此在现代矿车变速器中得到了最广泛的应用。它又分为惯性锁止器和惯性增力式。用得最广的是锁环式、锁销式等惯性锁止式同步器,它们虽结构有别,但工作原理无异,都有摩擦原件、锁止原件和弹性原件。挂挡时,在轴向力作用下摩擦原件相靠,在惯性转矩作用下产生摩擦力矩,使被结合的两部分逐渐同步锁止原件用于阻止同步前强行挂挡弹性原件使啮合套等在空挡时保持中间位置,又不妨碍整个结合和分离过程。本设计采用锁环式同步器又称锁止式、齿环式或滑块式,其工作可靠、耐用,因摩擦半面受限,转矩容量不大,适于轻型以下矿车,广泛用于轿车及轻型客、货车。5.2锁环式同步器的工作原理在分析与计算中考虑到常温条件下润滑油阻力对齿轮转速的影响可以忽略不计,并假设在同步过程中车速保持不变,这一假设在道路阻力系数?≤0.15同步器时间时t≤1s是符合实际的。由于变速器输出端的转速在换挡瞬时保持不变,而输入端靠摩擦作用达到与输出端同步。如图6.1、6.2同步器的计算模型6.1同步器的计算模毕业设计(论文)23同步器的计算模型6.2同步器的计算模型现建立输入端惯性质量的运动方程rfdwJTdt?5.1将上式积分得??rrcfTJwwTt??由上式可得同步时间??111rrcrTeffgkgkJwwJtwTTii???????????5.2将上式中的fT以摩擦面所受的轴向力aF代替,则1sin1130erTagkgknJtFfRii???????????5.3同步器摩擦锥面的滑磨功??0tffrctLTwwd???5.4将其代入上式,并将其中的Tt值用式??64?代入,得erfgkgknJLii????????????????5.5同步器的滑磨功与其摩擦面积f?之比毕业设计(论文)24/ffqL??5.6称为同步器的比滑磨功。对高档同步器q值应不大于0.2J/m2而对低档同步器则应不大于0.3~0.5J/m2。为了阻止同步前挂挡,则要求摩擦力矩fT大于脱锁力矩T,若忽略锁止面的摩擦系数,以锁环式同步器为列,如图(b)所示sinafFfRT??根据Tf≥TT,则可建立同步器的锁止条件tansinfRR???5.3惯性锁止式同步器的主要结构参数5.3.1摩擦锥面的半锥角?和摩擦系数f?愈小则摩擦力矩fT愈大,故为增大同步器容量?值应取小一些,但为了避免摩擦面的自锁应使?大于摩擦角P,后者与摩擦系数有关,即?tanf。推荐,?7?~8?的上限允许到12?。当取?6?时摩擦力矩较大,但当锥面粗糙度、润滑油种类及温度等因素的不同而异。一般,在油中工作的青铜钢同步器摩擦副,可按f0.1计算。通常,在内锥面上制有破坏油膜的细牙螺纹槽,以提高摩擦系数f的值。螺纹槽的齿顶宽要窄一些以利刮油,可取0.1mm左右或更小些,齿顶越尖则接触面上的压强和磨损就越大。螺距可取0.60.75mm,螺纹角一般取50?~60?。再者,齿顶所在的锥表面的加工精度及粗糙度要求高,不允许有切削刀痕,最后进行研磨。轴向泄油槽一般为6个,槽宽约3mm,槽深要刚好达到螺纹槽深。5.3.2摩擦锥面的平均半径R和同步锥环的径向厚度WR和W都受到变速器齿轮中心距及有关零部件的尺寸和布置上的限制。当结构布置允许时,R和W应尽量取大些。5.3.3摩擦锥面的工作面宽b同步锥环的工作面宽b,受到变速器总长的尺寸限制,也要为散热和耐磨损提供足够大的摩擦面积。可根据摩擦表面的许用压力来确定sinafFfRT??,??5.11~?PMPa5.7对于锁销式同步器b≈0.14~0.2毕业设计(论文)25aF100N,f0.1,?8?RRffRaFRpfTbf4.025.05.12sin222??????得R14mmb6mm5.3.4锁止角?由公式510得出,通常在26?~40?范围内。tansinfRR???,0.114tan26sin8R??得出21?Rmm5.3.5同步时间Tt与轴向推力aFTt和aF是一对相互影响的可变参数。应按以最短时间达到同步状态来考虑轴向力的aF大小。而为使换挡轻便值又不能过大,一般在100350N范围内,轿车或轻型客、货车取下限,重型车取上限。5.3.6同步器摩擦副的材料同步锥环多用铜基合金制造,轿车同步锥环较薄,亦用锻、精锻或冷挤压工艺加工货车的同步锥环较厚,亦可采用压铸工艺。选用材料时既要考虑其摩擦系数又要考虑其耐磨性以及强度、加工性能等。铝青铜(含铝8.5~11.0)多用于压铸的同步锥环,亦可铸造,其强度高、耐磨性好、摩擦系数较大而锥面自锁倾向较小。锰青铜(含锰≤3)锻造的同步锥环较多,,其摩擦系数亦在钢铜合金摩擦副的摩擦系数范围内,特别使用于大型其强度高、加工性好。硅锰青铜(含硅0.6~1.5,锰2~4)的性能与锰青铜类似,这种合金结构中的硅化锰使之具有极好的耐磨性。锻造同步锥环也常采用铅黄铜、黄铜的耐磨性常常优于青铜。近年来出现了高强度、高耐磨性的钢钼配合的摩擦副,即在钢或球墨铸铁同步锥环的锥面上喷镀厚约0.6~0.8mm的钼矿车的同步器。与同步锥环组成摩擦副的锥表面多与被同步的传动齿轮及其结合齿做成一体,由低碳合金钢制造,渗碳淬火后表面硬度约为HRC60。6工艺分析266工艺分析6.1壳体加工工艺壳体零件在整个分动器总成中的作用,是保证其零部件占据合理的正确位置,使之有一个协调的基础构件,其质量的优劣直接影响到轴和齿轮等零件互相位置的准确性及分动器总成使用的灵活性和寿命。壳体选用HT200材料铸造制成,主要的加工表面为平面和轴承孔。壳体的机械加工过程按照先面后孔的原则,最后加工螺纹孔。壳体的机械加工工艺过程基本上分三个阶段,即粗加工、半精加工和精加工阶段。表6.1高低速档换档拨叉机械加工工艺过程卡工序号工序名称工序内容工艺装备1铸精密铸造,两件合铸2热处理退火3划线划各端面线和孔的中心线4车以外形及下端面定位,按线找正,专用夹具装夹工件。车0.15065R?mm孔至图样要求,并车孔的两侧面,保证00.16?尺寸C620专用工装5铣以0.15065R?mm孔及上端面定位,装夹工件,铣Φ55m下端面,保证尺寸12.5mm.X52k组合夹具6铣以0.15065R?mm孔及下端面定位,装夹工件,铣Φ55m上端面,保证尺寸55mm.X52k组合夹具7钻以0.???内孔及上端面定位,装夹要件,钻、扩、铰0.???mm孔,孔口倒角245°Z5132A组合夹具8划线划0.15065R?mm中心线及切开线9铣以R550.15mm内孔及上端面定位,装夹工件,切工件成单件,切口2mmX62W组合夹具10铣以0.15065R?mm内孔及上端面定位,装夹工件,切工件成单件,切口2mmX62W组合夹具11钻以0.???mm孔及下端面定位,另一端孔倒角245°Z5132A组合夹具12检验检查零件各部尺寸及精度毕业设计(论文)276.2拨叉加工工艺拨叉是典型的叉标杆类零件。在工作过程中,叉爪部位产生摩擦,叉杆同时受到弯曲应力的作用。因此,拨叉结构形式、材质选择、热处理方式及硬度指标等,均以增强耐磨性和刚度为基点,以适应拨叉的工作条件。拨叉的毛坯材料是45钢。采用模锻方法制造,其拔模斜度为7°,模锻成型后切边,并进行调质,调质硬度为220~260HV,并进行酸洗、喷丸处理。拨叉的主要加工表面有平面、叉轴孔、叉爪、销孔、叉爪部高频淬火。由于拨叉刚性差,易差生弯曲变形,精基准选在叉轴孔的一个端面。用叉轴孔的一个端面作为精基准定位加工叉轴孔,实现设计基准和工艺基准重合,保证叉轴孔和端面的垂直度。为了提高精基准的加工精度,叉轴孔端面和叉轴孔在一次装夹中加工完毕。其他的轴向尺寸均以该端面最为基准平面。该平面可以限制一个移动自由度。后续各工序的加工用叉轴孔和端面定位,限制5个自由度。为了避免在加工中产生夹紧变形,根据夹紧力应垂直于主要定位基面,作用在刚度较大部位的原则,夹紧力作用点应在叉轴孔的另一端面上,不能作用在叉杆上。6.3齿轮加工工艺齿轮精度指标主要表现为运动精度、工作的平稳性、接触精度和齿侧间隙四个方面。汽车行驶时,齿轮始终在重载荷、高速转动中工作。变速齿轮需要具有较高的齿面硬度和心部具有良好的韧性,以提高耐磨性和抗冲击性能。齿轮材料选用低碳合金结构钢,经渗碳淬火处理。毛坯通过模锻方法制造而成,这样可得到较好的纤维组织,提高了毛坯强度和材料利用率。模锻后,经正火、喷丸处理,可使金相组织均匀,从而能消除锻造应力,提高其切削性能。齿轮加工分为齿坯和轮齿加工。齿坯的加工部位有轮缘、轮辐、轮毂和内孔。齿轮轮齿的加工部位有齿形及倒角,同时还要进行热处理,以提高承载能力和使用寿命。热处理后还要进行内孔、内孔端面的磨削加工和齿形的精整加工。齿轮机械加工工艺过程分为齿坯加工、热处理前齿轮轮齿加工和热处理后精加工三个阶段。其加工路线为齿坯加工粗车、半精车、精车→齿形加工(滚齿、插齿、齿端倒角、剃齿)→热处理→内孔加工(磨内齿及端面)→齿形精整加工(磨削齿形)→强力喷丸→磷化处理。6.4轴的加工工艺分动器中的轴类零件有输入轴、后桥输出轴、前桥输出轴、中间轴、中桥输毕业设计(论文)28出轴。因为轴的形状应保证齿轮、啮合套部件及轴承的安装固定,所以加工过程中要严格遵守尺寸和精度要求。各轴毛坯均选用20CrMnTi锻造而成,锻件进行正火处理。机械加工工艺过程基本上分为三个阶段,即粗加工、半精加工和精加工阶段。齿轮轴的齿轮最后加工。表6.2中间轴加工工艺6.5总成的装配主要装配顺序为装配各轴总成→装配各轴、固定→装配拨叉轴、拨块及拨叉→装配箱盖,用螺栓坚固→装配端盖→装另一面端盖→装配操纵机构外设装置→装配加油、放油螺塞、通气器等。装配工艺的技术要求主要包括装配的完整性、完好性、统一性、紧固性、润滑性和良好的密封性。工序号工序名称工序内容工艺装备1下料棒料Φ110mm300mm锯床2锻锻造3热处理正火处理4粗车夹左端,车右端面,见平面即可。粗车右端各部,直径与长度均留加工余量5mm.C6205粗车倒头装夹,车另一端面及余下外径各部,直径与长度均留精加工余量5mm,保证总长280mmC6206热处理调质处理2832HRC7精车夹一端,车端面,保证总长275mm,钻顶尖孔C6208精车倒头装夹,车端面,保证总长尺寸265mm,钻顶尖孔C6209精车倒头,以两中心孔定位装夹工件,精车余下各部尺寸,其直径方向留磨削余量0.8mm,倒角245°C62010磨以两中心孔为定位孔装夹工件。粗、精磨各部及圆角至图样尺寸要求M143211磨倒头,以两中心孔为定位孔装夹工件。粗、精磨其余各部及圆角至图样尺寸要求M143212铣以两轴定位装夹工件。粗、精铣花键至尺寸要求和精度要求X53K13滚齿以两轴定位装夹工件滚齿Y318014钳去毛刺15检验检查零件各部尺寸及精度毕业设计(论文)29分动器总成装配完成之后还要进行精度检验和和性能实验。7总结307总结紧张而又繁忙的毕业设计已近尾声,这也预示着我们大学四年的时光即将结束。大学期间,我们曾先后做过许多课程设计,由易入难,逐步的丰富我们做设计的经验。这次毕业设计,可以说是最能够体现我们大学所学知识,尤其是将所学知识运用到实际中的能力,是对我们把理论与实际相结合程度的重要考察,是对我们四年来所学知识的综合运用,并加以巩固和加深,受益非浅。虽然这次设计难度较大,让人觉得很累,即使在休息时也还在想着设计,但我却从中学到了很多东西,让我觉得这段时光是几年来过得最充实的。使我学会了独立思考问题,自己解决问题的方法,为以后步入社会、适应社会需求提供了一次很好的锻炼机会。分动器是传动系中的重要部件,也是决定整车性能的主要部件之一。分动器的结构对矿车的动力性、燃油经济性、传动平稳性与效率等都有直接的影响。本设计依据矿用半挂车分动器给定的发动机最大输出转矩、转速及最高车速、主减速比等相关参数,设计分时四驱分动器。特点是其结构简单、紧凑、传动效率高、噪声低。着重对分动器齿轮的结构参数、轴的结构尺寸等进行设计计算,同时对各结构件进行分析设计。在整个分动器的设计中,各零件之间的配合是很重要的,所以零件之间,轴与壳体中间的配合设本设计的难点,本设计依然存在不足,在以后的研究工作中若克服了这些问题,分动器将有很大的发展空间。参考文献31参考文献1刘惟信主编.矿车设计.北京清华大学出版社,2001.2王矛望等主编.矿车设计.吉林吉林大学出版社3余志生主编.矿车理论(第3版).北京机械工业出版社,20004余俊等主编.机械设计.2版.北京高等教育出版社,19975吴宗泽主编.机械设计.北京中央广播电视大学出版社,19986郑江等主编.机械设计.北京中国林业出版社北京大学出版社,2006.87裘文言主编.机械制图与CAD基础.上海上海交通大学出版社,20018李澄、吴天生、闻百桥主编.机械制图.北京高等教育出版社,19979陈家瑞主编.矿车构造.北京机械工业出版社10龚微寒主编.矿车现代设计制造.北京人们交通出版社,199511朱龙根主编.简明机械零件设计手册.北京机械工业出版社,吴志军等主编.机械制图.北京高等教育出版社,200613宋进桂.2001款三菱帕杰罗自动变速器和分动器的检修续四J.汽车维修技师.20013.14桂健生.博格华纳1371型分动器的结构及维修一J.汽车维护与修理.鲍际辉,方斌.分动器分流传动装置的设计与构造J.专用汽车.MillikenWilliamF,MillikenDouglasL.RaceCarVehicleDynamics,199517MarkHRichardson.Isitamodeshape.oranoperatingdeflectionshapSoundVibration.199718SteadyStateThermalEquilibriumAnalysistotheTransferCaseofHeavyVehicleBasedonANSYSA.Proceedingsofthe2011InternationalConferenceonAdvancesinConstructionMachineryandVehicleEngineeringC.2011致谢32致谢在设计即将完成之际,我的心情无法平静,从开始进入课题到设计的顺利完成,有老师、同学、朋友给了我最大的帮助,在这里请接受我诚挚的谢意感谢我的导师,她严谨细致、一丝不苟的作风一直是我工作、学习中的榜样他循循善诱的教导让我受益匪浅。感谢四年来交通学院对我的培养以及各位专业老师对我的指导。正是由于他们的栽培,我才能够系统全面地掌握机械设计的基础理论知识,顺利完成各项实践环节,从而形成了一定的专业素养和扎实的专业技能。这些都是我能够完成本次毕业设计的有力保障。最后我还要感谢培养我长大的含辛茹苦的父母,感谢他们的养育之恩,感谢们多年来对我的学业的大力支持最后再次说声感谢。毕业设计(论文)知识产权声明33毕业设计(论文)独创性声明秉承学校严谨的学风与优良的科学道德,本人声明所呈交的毕业设计(论文)是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经发表或撰写过得成果,不包含他人已申请学位或其他用途使用过的成果。与我一同工作过的同志对本研究所做的任何贡献均已在论文中做了明确的说明并表示致谢。毕业设计(论文)与资料若有不实之处,本人承担一切相关责任。毕业设计(论文)作者签名指导教师签名日期
本文(矿用半挂车分动器设计【2013年最新整理毕业论文】)为本站会员(好资料QQ)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(),我们立即给予删除!
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
copyright@
人人文库网网站版权所有
国家工业信息化备案:苏ICP备号-5

我要回帖

更多关于 分动器工作原理 的文章

 

随机推荐