求下列各式中的x(-π≤x<π) (1).cosx的图像=(√3)/2 (2).cosx的图像=1/2 (4).tanx=1 求详解

1.设当x=θ时,函数f(x)=sinx-2cosx取得最大值,求cosθ。&br/&2.求函数f(x)=(tanx)^2+2atanx+5在x∈[π/4,π/2)时的值域(其中a为常数)。&br/&3.在△ABC中,2[cos(A-B)/2]^2cosB-sin(A-B)sinB+cos(A+
1.设当x=θ时,函数f(x)=sinx-2cosx取得最大值,求cosθ。2.求函数f(x)=(tanx)^2+2atanx+5在x∈[π/4,π/2)时的值域(其中a为常数)。3.在△ABC中,2[cos(A-B)/2]^2cosB-sin(A-B)sinB+cos(A+
不区分大小写匿名
等待您来回答
学习帮助领域专家
当前分类官方群专业解答学科习题,随时随地的答疑辅导& 2013 - 2014 作业宝. All Rights Reserved. 沪ICP备号-9当前位置:
>>>已知函数f(x)=2cosxsin(x+π3)-3sin2x+sinxcosx.(1)求f(x)的最小正..
已知函数f(x)=2cosxsin(x+π3)-3sin2x+sinxcosx.(1)求f(x)的最小正周期;(2)求f(x)的最小值及取得最小值时相应的x值;(3)说明f(x)的图象如何由函数y=2sinx的图象变换而来.
题型:解答题难度:中档来源:不详
f(x)=2cosxsin(x+π3)-3sin2x+sinxcosx=cosxsinx+3cos2x-3sin2x+sinxcosx=sin2x+3cos2x=2sin(2x+π3)…3分(1)由上可知,f(x)得最小正周期为T=π;…4分(2)当2x+π3=2kπ-π2,即x=kπ-5π12,k∈Z时,f(x)取最小值为-2;…8分(3)将函数y=2sinx的图象向左平移π3单位,再将得到的函数图象上所有的点的纵坐标不变,横坐标缩短到原来的12倍,可得到函数f(x)的图象.…12分.
马上分享给同学
据魔方格专家权威分析,试题“已知函数f(x)=2cosxsin(x+π3)-3sin2x+sinxcosx.(1)求f(x)的最小正..”主要考查你对&&任意角的三角函数,正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等),函数y=Asin(wx+φ)的图象与性质,两角和与差的三角函数及三角恒等变换&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
任意角的三角函数正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)函数y=Asin(wx+φ)的图象与性质两角和与差的三角函数及三角恒等变换
任意角的三角函数的定义:
设α是任意一个角,α的终边上任意一点P的坐标是(x,y),它与原点的距离是,那么,,以上以角为自变量,比值为函数的六个函数统称为三角函数。三角函数值只与角的大小有关,而与终边上点P的位置无关。
象限角的三角函数符号:
一全正,二正弦,三两切,四余弦。 特殊角的三角函数值:(见下表)
正弦函数和余弦函数的图象:正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的图象分别叫做正弦曲线和余弦曲线,
1.正弦函数 2.余弦函数函数图像的性质 正弦、余弦函数图象的性质: 由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,当时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。正弦、余弦函数图象的性质:
由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,当时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。函数的图象:
1、振幅、周期、频率、相位、初相:函数,表示一个振动量时,A表示这个振动的振幅,往返一次所需的时间T=,称为这个振动的周期,单位时间内往返振动的次数称为振动的频率,称为相位,x=0时的相位叫初相。 2、用“五点法”作函数的简图主要通过变量代换,设X=由X取0,来找出相应的x的值,通过列表,计算得出五点的坐标,描点后得出图象。 3、函数+K的图象与y=sinx的图象的关系: 把y=sinx的图象纵坐标不变,横坐标向左(φ>0)或向右(φ<0),y=sin(x+φ) 把y=sin(x+φ)的图象纵坐标不变,横坐标变为原来的,y=sin(ωx+φ) 把y=sin(ωx+φ)的图象横坐标不变,纵坐标变为原来的A倍,y=Asin(x+φ)把y=Asin(x+φ)的图象横坐标不变,纵坐标向上(k>0)或向下(k<0),y=Asin(x+φ)+K; 若由y=sin(ωx)得到y=sin(ωx+φ)的图象,则向左或向右平移个单位。 函数y=Asin(x+φ)的性质:
1、y=Asin(x+φ)的周期为; 2、y=Asin(x+φ)的的对称轴方程是,对称中心(kπ,0)。两角和与差的公式:
倍角公式:
半角公式:
万能公式:
三角函数的积化和差与和差化积:
三角恒等变换:
寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角恒等变换的特点。三角函数式化简要遵循的"三看"原则:
(1)一看"角".这是最重要的一点,通过角之间的关系,把角进行合理拆分与拼凑,从而正确使用公式.(2)二看"函数名称".看函数名称之间的差异,从而确定使用的公式.(3)三看"结构特征".分析结构特征,可以帮助我们找到变形得方向,常见的有"遇到分式要通分"等.
(1)解决给值求值问题的一般思路:①先化简需求值得式子;②观察已知条件与所求值的式子之间的联系(从三角函数名及角入手);③将已知条件代入所求式子,化简求值.(2)解决给值求角问题的一般步骤:①求出角的某一个三角函数值;②确定角的范围;③根据角的范围确定所求的角.
发现相似题
与“已知函数f(x)=2cosxsin(x+π3)-3sin2x+sinxcosx.(1)求f(x)的最小正..”考查相似的试题有:
557733482722327552840437759451278314当前位置:
>>>已知函数f(x)=4sin2π+2x4osinx+(cosx+sinx)(cosx-sinx).(1)化简f..
已知函数f(x)=4sin2π+2x4&o&sinx+(cosx+sinx)(cosx-sinx).(1)化简f(x);(2)已知常数ω>0,若函数y=f(ωx)在区间[-π2,&&2π3]上是增函数,求ω的取值范围;(3)若方程f(x)(sinx-1)+a=0有解,求实数a的取值范围.
题型:解答题难度:中档来源:不详
(1)f(x)=2[1-cos(π2+x)]&o&sinx+cos2x-sin2x=(2+2sinx)sinx+1-2sin2x=2sinx+1(14分)(2)∵f(ωx)=2sinωx+1由2kπ-π2≤ωx≤2kπ+π2得2kπω-π2ω≤x≤2kπω+π2ω,k∈Z∴f(ωx)的递增区间为[2kπω-π2ω,&&2kπω+π2ω],k∈Z∵f(ωx)在[-π2,&&2π3]上是增函数∴当k=0时,有[-π2,&&2π3]?[-π2ω,&&π2ω]∴ω>0-π2ω≤-π2π2ω≥2π3解得&&0<ω≤34∴ω的取值范围是(0,&&34](8分)(3)解一:方程f(x)(sinx-1)+a=0即为(2sinx+1)(sinx-1)+a=0从而问题转化为方程a=-2sin2x+sinx+1有解,只需a在函数y=-2sin2x+sinx+1的值域范围内∵y=-2sin2x+sinx+1=-2(sinx-14)2+98当sinx=14时,ymax=98;当sinx=-1时,ymin=-2∴实数a的取值范围为[-2,&&98](12分)解二:原方程可化为2sin2x-sinx+a-1=0令sinx=t,则问题转化为方程2t2-t+a-1=0在[-1,1]内有一解或两解,设g(t)=2t2-t+a-1,若方程在[-1,1]内有一个解,则g(-1)g(1)<0&或&g(-1)=0g(1)<0或&g(1)=0g(-1)<0解得-2≤a<0若方程在[-1,1]内有两个解,则△=(-1)2-8(a-1)≥0-1≤14≤1g(-1)≥0g(1)≥0解得0≤a≤98∴实数a的取值范围是[-2,98]
马上分享给同学
据魔方格专家权威分析,试题“已知函数f(x)=4sin2π+2x4osinx+(cosx+sinx)(cosx-sinx).(1)化简f..”主要考查你对&&已知三角函数值求角,正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等),一元一次方程及其应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
已知三角函数值求角正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)一元一次方程及其应用
反三角函数的定义:
(1)反正弦:在闭区间上符合条件sinx=a(-1≤a≤1)的角x,叫做实数a的反正弦,记作arcsina,即x=arcsina,其中x∈,且a=sinx; 注意arcsina表示一个角,这个角的正弦值为a,且这个角在内(-1≤a≤1)。 (2)反余弦:在闭区间上,符合条件cosx=a(-1≤a≤1)的角x,叫做实数a的反余弦,记作arccosa,即x=arccosa,其中x∈[0,π],且a=cosx。 (3)反正切:在开区间内,符合条件tanx=a(a为实数)的角x,叫做实数a的反正切,记做arctana,即x=arctana,其中x∈,且a=tanx。 反三角函数的性质:
(1)sin(arcsina)=a(-1≤a≤1),cos(arccosa)=a(-1≤a≤1), tan(arctana)=a; (2)arcsin(-a)=-arcsina,arccos(-a)=π-arccosa,arctan(-a)=-arctana; (3)arcsina+arccosa=; (4)arcsin(sinx)=x,只有当x在内成立;同理arccos(cosx)=x只有当x在闭区间[0,π]上成立。已知三角函数值求角的步骤:
(1)由已知三角函数值的符号确定角的终边所在的象限(或终边在哪条坐标轴上); (2)若函数值为正数,先求出对应锐角α1,若函数值为负数,先求出与其绝对值对应的锐角α1; (3)根据角所在象限,由诱导公式得出0~2π间的角,如果适合条件的角在第二象限,则它是π-α1;如果适合条件的角在第三象限,则它是π+α1;在第四象限,则它是2π-α1;如果是-2π到0的角,在第四象限时为-α1,在第三象限为-π+α1,在第二象限为-π-α1;(4)如果要求适合条件的所有角,则利用终边相同的角的表达式来写出。 正弦函数和余弦函数的图象:正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的图象分别叫做正弦曲线和余弦曲线,
1.正弦函数 2.余弦函数函数图像的性质 正弦、余弦函数图象的性质: 由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,当时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。正弦、余弦函数图象的性质:
由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,当时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。一元一次方程的定义:
在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的整式方程叫一元一次方程。注:主要用于判断一个等式是不是一元一次方程。
一元一次方程标准形式:
只含有一个未知数(即“元”),并且未知数的最高次数为1(即“次”)的整式方程叫做一元一次方程。一元一次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax+b=0(a,b为常数,x为未知数,且a≠0)。其中a是未知数的系数,b是常数,x是未知数。未知数一般设为x,y,z。一元一次方程的分类:
1、总量等于各分量之和。将未知数放在等号左边,常数放在右边。如:x+2x+3x=62、等式两边都含未知数。如:302x+400=400x,40x+20=60x.
(1)方程为整式方程。(2)方程有且只含有一个未知数。(3)方程中未知数的最高次数是1。
一元一次方程判断方法:
通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。要判断一个方程是否为一元一次方程,先看它是否为整式方程。若是,再对它进行整理。如果能整理为ax+b=0(a≠0)的形式,则这个方程就为一元一次方程。里面要有等号,且分母里不含未知数。
一元一次方程必须同时满足4个条件:
⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1;⑷含未知数的项的系数不为0。
发现相似题
与“已知函数f(x)=4sin2π+2x4osinx+(cosx+sinx)(cosx-sinx).(1)化简f..”考查相似的试题有:
399050398601338422488312469221432949当前位置:
>>>设函数f(x)=mon,其中向量m=(2cosx,1),n=(cosx,3sin2x),x∈R...
设函数f(x)=mon,其中向量m=(2cosx,1),n=(cosx,&&&3sin2x),x∈R.(1)求f(x)的最小正周期与单调递减区间;(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1,△ABC的面积为32,求b+csinB+sinC的值.
题型:解答题难度:中档来源:不详
(1)f(x)=mon=2cos2x+3sin2x=3sin2x+cos2x+1=2sin(2x+π6)+1.∴函数f(x)的最小正周期T=2π2=π.---------------(2分)令π2+2kπ≤2x+π6≤3π2+2kπ,k∈Z,解得π6+kπ≤x≤2π3+kπ.∴函数f(x)的单调递减区间是[π6+kπ,2π3+kπ],k∈Z.--------------(4分)(2)由f(A)=2,得2sin(2A+π6)+1=2,即sin(2A+π6)=12,在△ABC中,∵0<A<π,∴π6<2A+π6<π6+2π.∴2A+π6=5π6,解得A=π3.-(6分)又∵S△ABC=12bcsinA=12×1×c×32=32,解得c=2,∴在△ABC中,由余弦定理得:a2=b2+c2-2bccosA=3,∴a=3.---------8由bsinB=csinC=asinA=332,得b=2sinB,c=2sinC,∴b+csinB+sinC=2.--(10分)
马上分享给同学
据魔方格专家权威分析,试题“设函数f(x)=mon,其中向量m=(2cosx,1),n=(cosx,3sin2x),x∈R...”主要考查你对&&已知三角函数值求角,任意角的三角函数,正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等),正弦定理,余弦定理&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
已知三角函数值求角任意角的三角函数正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)正弦定理余弦定理
反三角函数的定义:
(1)反正弦:在闭区间上符合条件sinx=a(-1≤a≤1)的角x,叫做实数a的反正弦,记作arcsina,即x=arcsina,其中x∈,且a=sinx; 注意arcsina表示一个角,这个角的正弦值为a,且这个角在内(-1≤a≤1)。 (2)反余弦:在闭区间上,符合条件cosx=a(-1≤a≤1)的角x,叫做实数a的反余弦,记作arccosa,即x=arccosa,其中x∈[0,π],且a=cosx。 (3)反正切:在开区间内,符合条件tanx=a(a为实数)的角x,叫做实数a的反正切,记做arctana,即x=arctana,其中x∈,且a=tanx。 反三角函数的性质:
(1)sin(arcsina)=a(-1≤a≤1),cos(arccosa)=a(-1≤a≤1), tan(arctana)=a; (2)arcsin(-a)=-arcsina,arccos(-a)=π-arccosa,arctan(-a)=-arctana; (3)arcsina+arccosa=; (4)arcsin(sinx)=x,只有当x在内成立;同理arccos(cosx)=x只有当x在闭区间[0,π]上成立。已知三角函数值求角的步骤:
(1)由已知三角函数值的符号确定角的终边所在的象限(或终边在哪条坐标轴上); (2)若函数值为正数,先求出对应锐角α1,若函数值为负数,先求出与其绝对值对应的锐角α1; (3)根据角所在象限,由诱导公式得出0~2π间的角,如果适合条件的角在第二象限,则它是π-α1;如果适合条件的角在第三象限,则它是π+α1;在第四象限,则它是2π-α1;如果是-2π到0的角,在第四象限时为-α1,在第三象限为-π+α1,在第二象限为-π-α1;(4)如果要求适合条件的所有角,则利用终边相同的角的表达式来写出。 任意角的三角函数的定义:
设α是任意一个角,α的终边上任意一点P的坐标是(x,y),它与原点的距离是,那么,,以上以角为自变量,比值为函数的六个函数统称为三角函数。三角函数值只与角的大小有关,而与终边上点P的位置无关。
象限角的三角函数符号:
一全正,二正弦,三两切,四余弦。 特殊角的三角函数值:(见下表)
正弦函数和余弦函数的图象:正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的图象分别叫做正弦曲线和余弦曲线,
1.正弦函数 2.余弦函数函数图像的性质 正弦、余弦函数图象的性质: 由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,当时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。正弦、余弦函数图象的性质:
由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,当时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。正弦定理:
在一个三角形中,各边和它所对角的正弦的比相等,即=2R。 有以下一些变式: (1); (2); (3)。 正弦定理在解三角形中的应用:
(1)已知两角和一边解三角形,只有一解。 (2)已知两边和其中一边的对角,解三角形,要注意对解的个数的讨论。可按如下步骤和方法进行:先看已知角的性质和已知两边的大小关系。 如已知a,b,A,(一)若A为钝角或直角,当b≥a时,则无解;当a≥b时,有只有一个解; (二)若A为锐角,结合下图理解。①若a≥b或a=bsinA,则只有一个解。②若bsinA<a<b,则有两解。③若a<bsinA,则无解。 也可根据a,b的关系及与1的大小关系来确定。          &余弦定理:
三角形任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍,即。
在△ABC中,若a2+b2=c2,则C为直角;若a2+b2>c2,则C为锐角;若a2+b2<c2,则C为钝角。 余弦定理在解三角形中的应用:
(1)已知两边和夹角,(2)已知三边。 其它公式:
射影公式:
发现相似题
与“设函数f(x)=mon,其中向量m=(2cosx,1),n=(cosx,3sin2x),x∈R...”考查相似的试题有:
411230440557397729572504453242394722

我要回帖

 

随机推荐