protel dxp元件库圆形敷铜你是怎么一步步弄出来的,可以告诉我吗

确定要将该版块隐藏吗?你可以在“栏目设置”中将其恢复。
添加关注成功!
你可以去查看你关注的人与关注你的人
确定要移除此人吗?移除后,此人将不在你的列表中显示,也不能接收你的动态。
是否要取消关注?
请输入登录信息&&
PCB设计 电路板 IC的博客:
访问人数:134614
博客等级:
搜房网币:
Nopladseteott(过客)
Zoomfopaptave(过客)
Zoomfopaptave(过客)
&&请您后再发表留言
我的分类文章
我的最新文章
我的热门文章
长期供应普通可..
关注博客发文动态
Protel 99 SE高频PCB设计的研究 与IC解密
&&&&& 随着电子技术的进步,PCB(印制电路板)的复杂程度、适用范围有了飞速的发展。从事高频PCB的设计者必须具有相应的基础理论知识,同时还应具有丰富的高频PCB的制作经验。也就是说,无论是原理图的绘制,还是PCB的设计,都应当从其所在的高频工作环境去考虑,才能够设计出较为理想的PCB。本文主要从高频PCB的手动布局、布线两个方面,基于Protel99SE对在高频PCB设计中的一些问题进行研究。
1布局的设计
Protel99SE虽然具有自动布局的功能,但并不能完全满足高频电路的工作需要,往往要凭借设计者的经验,根据具体情况,先采用手工布局的方法优化调整部分元器件的位置,再结合自动布局完成PCB的整体设计。布局的合理与否直接影响到产品的寿命、稳定性、EMC(电磁兼容)等,必须从电路板的整体布局、布线的可通性和PCB的可制造性、机械结构、散热、EMI(电磁干扰)、可靠性、信号的完整性等方面综合考虑。
一般先放置与机械尺寸有关的固定位置的元器件,再放置特殊的和较大的元器件,最后放置小元器件。同时,要兼顾布线方面的要求,高频元器件的放置要尽量紧凑,信号线的布线才能尽可能短,从而降低信号线的交叉干扰等。
1.1与机械尺寸有关的定位插件的放置
电源插座、开关、PCB之间的接口、指示灯等都是与机械尺寸有关的定位插件。通常,电源与PCB之间的接口放到PCB的边缘处,并与PCB边缘要有3mm~5mm的间距;指示发光二极管应根据需要准确地放置;开关和一些微调元器件,如可调电感、可调电阻等应放置在靠近PCB边缘的位置,以便于调整和连接;需要经常更换的元器件必须放置在器件比较少的位置,以易于更换。
1.2特殊元器件的放置
大功率管、变压器、整流管等发热器件,在高频状态下工作时产生的热量较多,所以在布局时应充分考虑通风和散热,将这类元器件放置在PCB上空气容易流通的地方。大功率整流管和调整管等应装有散热器,并要远离变压器。电解电容器之类怕热的元件也应远离发热器件,否则电解液会被烤干,造成其电阻增大,性能变差,影响电路的稳定性。
易发生故障的元器件,如调整管、电解电容器、继电器等,在放置时还要考虑到维修方便。对经常需要测量的测试点,在布置元器件时应注意保证测试棒能够方便地接触。
由于电源设备内部会产生50Hz泄漏磁场,当它与低频放大器的某些部分交连时,会对低频放大器产生干扰。因此,必须将它们隔离开或者进行屏蔽处理。放大器各级最好能按原理图排成直线形式,如此排法的优点是各级的接地电流就在本级闭合流动,不影响其他电路的工作。输入级与输出级应当尽可能地远离,减小它们之间的寄生耦合干扰。
考虑各个单元功能电路之间的信号传递关系,还应将低频电路和高频电路分开,模拟电路和数字电路分开。集成电路应放置在PCB的中央,这样方便各引脚与其他器件的布线连接。
电感器、变压器等器件具有磁耦合,彼此之间应采用正交放置,以减小磁耦合。另外,它们都有较强的磁场,在其周围应有适当大的空间或进行磁屏蔽,以减小对其他电路的影响。
在PCB的关键部位要配置适当的高频退耦电容,如在PCB电源的输入端应接一个10μF~100μF的电解电容,在集成电路的电源引脚附近都应接一个0.01pF左右的瓷片电容。有些电路还要配置适当的高频或低频扼流圈,以减小高低频电路之间的影响。这一点在原理图设计和绘制时就应给予考虑,否则也将会影响电路的工作性能。
元器件排列时的间距要适当,其间距应考虑到它们之间有无可能被击穿或打火。
含推挽电路、桥式电路的放大器,布置时应注意元器件电参数的对称性和结构的对称性,使对称元器件的分布参数尽可能一致。
在对主要元器件完成手动布局后,应采用元器件锁定的方法,使这些元器件不会在自动布局时移动。即执行Editchange命令或在元器件的Properties选中Locked就可以将其锁定不再移动。
1.3普通元器件的放置
对于普通的元器件,如电阻、电容等,应从元器件的排列整齐、占用空间大小、布线的可通性和焊接的方便性等几个方面考虑,可采用自动布局的方式。
2布线的设计
布线是在合理布局的基础上实现高频PCB设计的总体要求。布线包括自动布线和手动布线两种方式。通常,无论关键信号线的数量有多少,首先对这些信号线进行手动布线,布线完成后对这些信号线布线进行仔细检查,检查通过后将其固定,再对其他布线进行自动布线。即采用手动和自动布线相结合来完成PCB的布线。
在高频PCB的布线过程中应特别注意以下几个方面问题。
2.1布线的走向
电路的布线最好按照信号的流向采用全直线,需要转折时可用45?折线或圆弧曲线来完成,这样可以减少高频信号对外的发射和相互间的耦合。高频信号线的布线应尽可能短。要根据电路的工作频率,合理地选择信号线布线的长度,这样可以减少分布参数,降低信号的损耗。制作双面板时,在相邻的两个层面上布线最好相互垂直、斜交或弯曲相交。避免相互平行,这样可以减少相互干扰和寄生耦合。
高频信号线与低频信号线要尽可能分开,必要时采取屏蔽措施,防止相互间干扰。对于接收比较弱的信号输入端,容易受到外界信号的干扰,可以利用地线做屏蔽将其包围起来或做好高频接插件的屏蔽。同一层面上应该避免平行走线,否则会引入分布参数,对电路产生影响。若无法避免时可在两平行线之间引入一条接地的铜箔,构成隔离线。
在数字电路中,对于差分信号线,应成对地走线,尽量使它们平行、靠近一些,并且长短相差不大。
2.2布线的形式
在PCB的布线过程中,走线的最小宽度由导线与绝缘层基板之间的粘附强度以及流过导线的电流强度所决定。当铜箔的厚度为0.05mm、宽度为1mm~1.5mm时,可以通过2A电流。温度不会高于3℃,除一些比较特殊的走线外,同一层面上的其他布线宽度应尽可能一致。在高频电路中布线的间距将影响分布电容和电感的大小,从而影响信号的损耗、电路的稳定性以及引起信号的干扰等。在高速开关电路中,导线的间距将影响信号的传输时间及波形的质量。因此,布线的最小间距应大于或等于0.5mm,只要允许,PCB布线最好采用比较宽的线。
印制导线与PCB的边缘应留有一定的距离(不小于板厚),这样不仅便于安装和进行机械加工,而且还提高了绝缘性能。
布线中遇到只有绕大圈才能连接的线路时,要利用飞线,即直接用短线连接来减少长距离走线带来的干扰。
含有磁敏元件的电路其对周围磁场比较敏感,而高频电路工作时布线的拐弯处容易辐射电磁波,如果PCB中放置了磁敏元件,则应保证布线拐角与其有一定的距离。
同一层面上的布线不允许有交叉。对于可能交叉的线条,可用“钻”与“绕”的办法解决,即让某引线从其他的电阻、电容、三极管等器件引脚下的空隙处“钻”过去,或从可能交叉的某条引线的一端“绕”过去。在特殊情况下,如果电路很复杂,为了简化设计,也允许用导线跨接解决交叉问题。
当高频电路工作频率较高时,还需要考虑布线的阻抗匹配及天线效应问题。
2.3电源线与地线的布线要求
根据不同工作电流的大小,尽量加大电源线的宽度。高频PCB应尽量采用大面积地线并布局在PCB的边缘,可以减少外界信号对电路的干扰;同时,可以使PCB的接地线与壳体很好地接触,使PCB的接地电压更加接近于大地电压。应根据具体情况选择接地方式,与低频电路有所不同,高频电路的接地线应该采用就近接地或多点接地的方式,接地线短而粗,以尽量减少地阻抗,其允许电流要求能够达到3倍于工作电流的标准。扬声器的接地线应接在PCB功放输出级的接地点,切勿任意接地。
在布线过程中还应该及时地将一些合理的布线锁定,以免多次重复布线。即执行EditselectNet命令在预布线的属性中选中Locked就可以将其锁定不再移动。
3焊盘及敷铜的设计
3.1焊盘与孔径
在保证布线最小间距不违反设计的电气间距的情况下,焊盘的设计应较大,以保证足够的环宽。一般焊盘的内孔要比元器件的引线直径稍微大一点,设计过大,容易在焊接中形成虚焊。焊盘外径D一般不小于(d+1.2)mm,其中d为焊盘内孔径,对于一些密度比较大的PCB,焊盘的最小值可以取(d+1.0)mm。焊盘的形状通常设置为圆形,但是对于DIP封装的集成电路的焊盘最好采用跑道形,这样可以在有限的空间内增大焊盘的面积,有利于集成电路的焊接。布线与焊盘的连接应平滑过渡,即当布线进入圆焊盘的宽度较圆焊盘的直径小时,应采用补泪滴设计。
需要注意的是,焊盘内孔径d的大小是不同的,应当根据实际元器件引线直径的大小加以考虑,如元件孔、安装孔和槽孔等。而焊盘的孔距也要根据实际元器件的安装方式进行考虑,如电阻、二极管、管状电容器等元件有“立式”、“卧式”两种安装方式,这两种方式的孔距是不同的。此外,焊盘孔距的设计还要考虑元器件之间的最小间隙要求,特别是特殊元器件之间的间隙需要由焊盘间的孔距来保证。
在高频PCB中,还要尽量减少过孔的数量,这样既可减少分布电容,又能增加PCB的机械强度。总之,在高频PCB的设计中,焊盘及其形状、孔径与孔距的设计既要考虑其特殊性,又要满足生产工艺的要求。采用规范化的设计,既可降低产品成本,又可在保证产品质量的同时提高生产的效率。
敷铜的主要目的是提高电路的抗干扰能力,同时对于PCB散热和PCB的强度有很大好处,敷铜接地又能起到屏蔽的作用。但是不能使用大面积条状铜箔,因为在PCB的使用中时间太长时会产生较大热量,此时条状铜箔容易发生膨胀和脱落现象,因此,在敷铜时最好采用栅格状铜箔,并将此栅格与电路的接地网络连通,这样栅格将会有较好的屏蔽效果,栅格网的尺寸由所要重点屏蔽的干扰频率而定。
在完成布线、焊盘和过孔的设计后,应执行DRC(设计规则检查)。在检查结果中详细列出了所设计的图与所定义的规则之间的差异,可查出不符合要求的网络。但是,首先应在布线前对DRC进行参数设定才可运行DRC,即执行ToolsDesignRuleCheck命令。
高频电路PCB的设计是一个复杂的过程,涉及的因素很多,都可能直接关系到高频电路的工作性能。因此,设计者需要在实际的工作中不断研究和探索,不断积累经验,并结合新的EDA(电子设计自动化)技术才能设计出性能优良的高频电路PCB
&& 电&& &&& &&&&&
详细资料请访问公司网站:&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&张小姐:qq邮箱(E-mail):公司电话(TEL):1&&& 0&&&&& 0杨工&& 张小姐 深圳盛世时代电子科技有限公司公司地址(Add):深圳市福田区福华路京海花园11E
阅读 (509) | 评论 (0) |
前一篇:后一篇:
&&请您后再发表评论
&分享到微博&
搜房网用户可以先再评论
内容:请登录
转载成功!
文章分类:
我的所有文章
创建新的分类:
博文已成功转载!
对不起,您的账号尚未进行真实身份信息注册,评论不能同步到微博!
Copyright &
Shang Hai Jing Rong Xin Xi Ke Ji You Xian Gong Si 上海旌荣信息科技有限公司 版权所有捷配欢迎您!
微信扫一扫关注我们
当前位置:&>>&&>>&&>>&解密PROTEL DXP软件的PCB设计技巧
   DXP是第一个将所有设计工具集于一身的板级设计系统,设计者从最初的项目模块规划到最终形成生产数据都可以按照自己的设计方式实现。Protel DXP运行在优化的设计浏览器平台上,并且具备当今所有先进的设计特点,能够处理各种复杂的PCB设计过程。Protel DXP作为一款新推出的电路设计软件,在前版本的基础上增加了许多新的功能。新的可定制设计环境功能包括双显示器支持,可固定、浮动以及弹出面板,强大的过滤和对象定位功能及增强的用户界面等。通过设计输入仿真、PCB绘制编辑、拓扑自动布线、信号完整性分析和设计输出等技术融合,Protel DXP提供了全面的设计解决方案。
  PCB电路板设计的一般原则包括:电路板的选用、电路板尺寸、元件布局、布线、焊盘、填充、跨接线等。
  电路板一般用敷铜层压板制成,板层选用时要从电气性能、可靠性、加工工艺要求和经济指标等方面考虑。常用的敷铜层压板是敷铜酚醛纸质层压板、敷铜环氧纸质层压板、敷铜环氧玻璃布层压板、敷铜环氧酚醛玻璃布层压板、敷铜聚四氟乙烯玻璃布层压板和多层印刷电路板用环氧玻璃布等。不同材料的层压板有不同的特点。 环氧树脂与铜箔有极好的粘合力,因此铜箔的附着强度和工作温度较高,可以在 260℃的熔锡中不起泡。环氧树脂浸过的玻璃布层压板受潮气的影响较小。 超高频电路板最好是敷铜聚四氟乙烯玻璃布层压板。
  在要求阻燃的电子设备上,还需要阻燃的电路板,这些电路板都是浸入了阻燃树脂的层压板。 电路板的厚度应该根据电路板的功能、所装元件的重量、电路板插座的规格、电路板的外形尺寸和承受的机械负荷等来决定。
  主要是应该保证足够的刚度和强度。
  常见的电路板的厚度有 0.5mm、1.0mm、1.5mm、2.0mm。
  从成本、铜膜线长度、抗噪声能力考虑,电路板尺寸越小越好,但是板尺寸太小,则散热不良,且相邻的导线容易引起干扰。 电路板的制作费用是和电路板的面积相关的,面积越大,造价越高。 在设计具有机壳的电路板时,电路板的尺寸还受机箱外壳大小的限制,一定要在确定电路板尺寸前确定机壳大小,否则就无法确定电路板的尺寸。 一般情况下,在禁止布线层中指定的布线范围就是电路板尺寸的大小。电路板的最佳形状是矩形,长宽比为 3:2 或 4:3,当电路板的尺寸大于 200mm×150mm 时,应该考虑电路板的机械强度。 总之,应该综合考虑利弊来确定电路板的尺寸。
  虽然 Protel DXP 能够自动布局,但是实际上电路板的布局几乎都是手工完成的。
  要进行布局时,一般遵循如下规则:
  1. 特殊元件的布局
  特殊元件的布局从以下几个方面考虑:
  1)高频元件:高频元件之间的连线越短越好,设法减小连线的分布参数和相互之间的电磁干扰,易受干扰的元件不能离得太近。隶属于输入和隶属于输出的元件之间的距离应该尽可能大一些。
  2)具有高电位差的元件:应该加大具有高电位差元件和连线之间的距离,以免出现意外短路时损坏元件。为了避免爬电现象的发生,一般要求
电位差之间的铜膜线距离应该大于 2mm,若对于更高的电位差,距离还应该加大。带有高电压的器件,应该尽量布置在调试时手不易触及的地方。
  3)重量太大的元件:此类元件应该有支架固定,而对于又大又重、发热量多的元件,不宜安装在电路板上。
  4)发热与热敏元件:注意发热元件应该远离热敏元件。
  5)可以调节的元件:对于电位器、可调电感、可变、微动开关等可调元件的布局应该考虑整机的结构要求,若是机内调节,应该放在电路板上容易调节的地方,若是机外调节,其位置要与调节旋钮在机箱面板上的位置相对应。
  6)电路板安装孔和支架孔:应该预留出电路板的安装孔和支架的安装孔,因为这些孔和孔附近是不能布线的。
  2. 按照电路功能布局
  如果没有特殊要求,尽可能按照原理图的元件安排对元件进行布局,信号从左边进入、从右边输出,从上边输入、从下边输出。 按照电路流程,安排各个功能电路单元的位置,使信号流通更加顺畅和保持方向一致。 以每个功能电路为核心,围绕这个核心电路进行布局,元件安排应该均匀、整齐、紧凑,原则是减少和缩短各个元件之间的引线和连接。 数字电路部分应该与模拟电路部分分开布局。
  3. 元件离电路板边缘的距离
  所有元件均应该放置在离板边缘 3mm 以内的位置,或者至少距电路板边缘的距离等于板厚,这是由于在大批量生产中进行流水线插件和进行波峰焊时,要提供给导轨槽使用,同时也是防止由于外形加工引起电路板边缘破损,引起铜膜线断裂导致废品。如果电路板上元件过多,不得已要超出 3mm 时,可以在电路板边缘上加上 3mm 辅边,在辅边上开 V 形槽,在生产时用手掰开。
  4. 元件放置的顺序
  首先放置与结构紧密配合的固定位置的元件,如电源插座、指示灯、开关和连接插件等。 再放置特殊元件,例如发热元件、变压器、集成电路等。 最后放置小元件,例如、电容、二极管等。
  布线的规则如下:
  1)线长:铜膜线应尽可能短,在高频电路中更应该如此。铜膜线的不拐弯处应为圆角或斜角,而直角或尖角在高频电路和布线密度高的情况下会影响电气性能。当双面板布线时,两面的导线应该相互垂直、斜交或弯曲走线,避免相互平行,以减少寄生电容。
  2)线宽:铜膜线的宽度应以能满足电气特性要求而又便于生产为准则,它的最小值取决于流过它的电流,但是一般不宜小于 0.2mm.只要板面积足够大,铜膜线宽度和间距最好选择 0.3mm.一般情况下,1~1.5mm 的线宽,允许流过 2A 的电流。例如地线和最好选用大于 1mm 的线宽。在集成电路座焊盘之间走两根线时,焊盘直径为 50mil,线宽和线间距都是 10mil,当焊盘之间走一根线时,焊盘直径为 64mil,线宽和线间距都为 12mil.注意公制和英制之间的转换,100mil=2.54mm。
  3)线间距:相邻铜膜线之间的间距应该满足电气安全要求,同时为了便于生产,间距应该越宽越好。最小间距至少能够承受所加电压的峰值。在布线密度低的情况下,间距应该尽可能的大。
  4)屏蔽与接地:铜膜线的公共地线应该尽可能放在电路板的边缘部分。在电路板上应该尽可能多地保留铜箔做地线,这样可以使屏蔽能力增强。另外地线的形状最好作成环路或网格状。多层电路板由于采用内层做电源和地线专用层,因而可以起到更好的屏蔽作用效果。
  焊盘尺寸 焊盘的内孔尺寸必须从元件引线直径和公差尺寸以及镀锡层厚度、孔径公差、孔金属化电镀层厚度等方面考虑,通常情况下以金属引脚直径加上 0.2mm 作为焊盘的内孔直径。例如,电阻的金属引脚直径为 0.5mm,则焊盘孔直径为 0.7mm,而焊盘外径应该为焊盘孔径加1.2mm,最小应该为焊盘孔径加 1.0mm. 当焊盘直径为 1.5mm 时,为了增加焊盘的抗剥离强度,可采用方形焊盘。 对于孔直径小于 0.4mm 的焊盘,焊盘外径/焊盘孔直径=0.5~3. 对于孔直径大于 2mm 的焊盘,焊盘外径/焊盘孔直径=1.5~2。
  常用的焊盘尺寸如下
  常用的焊盘尺寸
  焊盘孔直径/mm
  0.4 0.5 0.6 0.8 1.0 1.2 1.6 2.0
  焊盘外径/mm
  1.5 1.5 2.0 2.0 2.5 3.0 3.5 4
  注意事项:
  设计焊盘时的注意事项如下:
  1)焊盘孔边缘到电路板边缘的距离要大于 1mm,这样可以避免加工时导致焊盘缺损。
  2)焊盘补泪滴,当与焊盘连接的铜膜线较细时,要将焊盘与铜膜线之间的连接设计成泪滴状,这样可以使焊盘不容易被剥离,而铜膜线与焊盘之间的连线不易断开。
  3)相邻的焊盘要避免有锐角。
  大面积填充
  电路板上的大面积填充的目的有两个,一个是散热,另一个是用屏蔽减少干扰,为避免焊接时产生的热使电路板产生的气体无处排放而使铜膜脱落,应该在大面积填充上开窗,后者使填充为网格状。 使用敷铜也可以达到抗干扰的目的,而且敷铜可以自动绕过焊盘并可连接地线。
  跨接线
  在单面电路板的设计中,当有些铜膜无法连接时,通常的做法是使用跨接线,跨接线的长度应该选择如下几种:6mm、8mm 和 。
  1地线的共阻抗干扰 电路图上的地线表示电路中的零电位,并用作电路中其它各点的公共参考点,在实际电路中由于地线(铜膜线)阻抗的存在,必然会带来共阻抗干扰,因此在布线时,不能将具有地线符号的点随便连接在一起,这可能引起有害的耦合而影响电路的正常工作。
  2.如何连接地线 通常在一个电子系统中,地线分为系统地、机壳地(屏蔽地)、数字地(逻辑地)和模拟地等几种,在连接地线时应该注意以下几点:
  1)正确选择单点接地与多点接地。在低频电路中,信号频率小于 ,布线和元件之间的电感可以忽略,而地线电路电阻上产生的压降对电路影响较大,所以应该采用单点接地法。 当信号的频率大于
时,地线电感的影响较大,所以宜采用就近接地的多点接地法。 当信号频率在 1~10MHz 之间时,如果采用单点接地法,地线长度不应该超过波长的 1/20,否则应该采用多点接地。
  2)数字地和模拟地分开。电路板上既有数字电路,又有模拟电路,应该使它们尽量分开,而且地线不能混接,应分别与电源的地线端连接(最好电源端也分别连接)。要尽量加大线性电路的面积。一般数字电路的抗干扰能力强,TTL 电路的噪声容限为 0.4~0.6V,CMOS 数字电路的噪声容限为电源电压的 0.3~0.45 倍,而模拟电路部分只要有微伏级的噪声,就足以使其工作不正常。所以两类电路应该分开布局和布线。
  3)尽量加粗地线。若地线很细,接地电位会随电流的变化而变化,导致电子系统的信号受到干扰,特别是模拟电路部分,因此地线应该尽量宽,一般以大于 3mm 为宜。
  4)将接地线构成闭环。当电路板上只有数字电路时,应该使地线形成环路,这样可以明显提高抗干扰能力,这是因为当电路板上有很多集成电路时,若地线很细,会引起较大的接地电位差,而环形地线可以减少接地电阻,从而减小接地电位差。
  5)同一级电路的接地点应该尽可能靠近,并且本级电路的电源滤波电容也应该接在本级的接地点上。
  6)总地线的接法。总地线必须严格按照高频、中频、低频的顺序一级级地从弱电到强电连接。高频部分最好采用大面积包围式地线,以保证有好的屏蔽效果。
  抗干扰
  具有微处理器的电子系统,抗干扰和电磁兼容性是设计过程中必须考虑的问题,特别是对于时钟频率高、总线周期快的系统;含有大功率、大电流驱动电路的系统;含微弱模拟信号以及高精度 A/D 变换电路的系统。为增加系统抗电磁干扰能力应考虑采取以下措施:
  1)选用时钟频率低的微处理器。只要控制器性能能够满足要求,时钟频率越低越好,低的时钟可以有效降低噪声和提高系统的抗干扰能力。由于方波中包含各种频率成分,其高频成分很容易成为噪声源,一般情况下,时钟频率 3 倍的高频噪声是最具危险性的。
  2)减小信号传输中的畸变。当高速信号(信号频率高=上升沿和下降沿快的信号)在铜膜线上传输时,由于铜膜线电感和电容的影响,会使信号发生畸变,当畸变过大时,就会使系统工作不可靠。一般要求,信号在电路板上传输的铜膜线越短越好,过孔数目越少越好。典型值:长度不超过 25cm,过孔数不超过 2 个。
  3)减小信号间的交叉干扰。当一条信号线具有脉冲信号时,会对另一条具有高输入阻抗的弱信号线产生干扰,这时需要对弱信号线进行隔离,方法是加一个接地的轮廓线将弱信号包围起来,或者是增加线间距离,对于不同层面之间的干扰可以采用增加电源和地线层面的方法解决。
  4)减小来自电源的噪声。电源在向系统提供能源的同时,也将其噪声加到所供电的系统中,系统中的复位、中断以及其它一些控制信号最易受外界噪声的干扰,所以,应该适当增加电容来滤掉这些来自电源的噪声。
  5)注意电路板与元器件的高频特性。在高频情况下,电路板上的铜膜线、焊盘、过孔、电阻、电容、接插件的分布电感和电容不容忽略。由于这些分布电感和电容的影响,当铜膜线的长度为信号或噪声波长的 1/20 时,就会产生效应,对内部产生电磁干扰,对外发射电磁波。 一般情况下,过孔和焊盘会产生 0.6pF 的电容,一个集成电路的封装会产生 2~6pF 的电容,一个电路板的接插件会产生 520mH 的电感,而一个 DIP-24 插座有 18nH 的电感,这些电容和电感对低时钟频率的电路没有任何影响,而对于高时钟频率的电路必须给予注意。
  6)元件布置要合理分区。元件在电路板上排列的位置要充分考虑抗电磁干扰问题。原则之一就是各个元件之间的铜膜线要尽量的短,在布局上,要把模拟电路、数字电路和产生大噪声的电路(继电器、大电流开关等)合理分开,使它们相互之间的信号耦合最小。
  7)处理好地线。按照前面提到的单点接地或多点接地方式处理地线。将模拟地、数字地、大功率器件地分开连接,再汇聚到电源的接地点。 电路板以外的引线要用屏蔽线,对于高频和数字信号,屏蔽两端都要接地,低频模拟信号用的屏蔽线,一般采用单端接地。对噪声和干扰非常敏感的电路或高频噪声特别严重的电路应该用金属屏蔽罩屏蔽。
  8)去耦电容。去耦电容以瓷片电容或多层陶瓷电容的高频特性较好。设计电路板时,每个集成电路的电源和地线之间都要加一个去耦电容。去耦电容有两个作用,一方面是本集成电路的储能电容,提供和吸收该集成电路开门和关门瞬间的充放电电能,另一方面,旁路掉该器件产生的高频噪声。数字电路中典型的去耦电容为 0.1μF,这样的电容有 5nH 的分布电感,可以对 10MHz 以下的噪声有较好的去耦作用。一般情况下,选择 0.01~0.1μF 的电容都可以。
  一般要求没 10 片左右的集成电路增加一个 10μF 的充放电电容。 另外,在电源端、电路板的四角等位置应该跨接一个 10~100μF 的电容。 高频布线为了使高频电路板的设计更合理,抗干扰性能更好,在进行 PCB 设计时应从以下几个方面考虑:
  1)合理选择层数。利用中间内层平面作为电源和地线层,可以起到屏蔽的作用,有效降低寄生电感、缩短信号线长度、降低信号间的交叉干扰,一般情况下,四层板比两层板的噪声低 20dB.
  2)走线方式。走线必须按照 45°角拐弯,这样可以减小高频信号的发射和相互之间的耦合。
  3)走线长度。走线长度越短越好,两根线并行距离越短越好。
  4)过孔数量。过孔数量越少越好。
  5)层间布线方向。层间布线方向应该取垂直方向,就是顶层为水平方向,底层为垂直方向,这样可以减小信号间的干扰。
  6)敷铜。增加接地的敷铜可以减小信号间的干扰。
  7)包地。对重要的信号线进行包地处理,可以显着提高该信号的抗干扰能力,当然还可以对干扰源进行包地处理,使其不能干扰其它信号。
  8)信号线。信号走线不能环路,需要按照菊花链方式布线。
  9)去耦电容。在集成电路的电源端跨接去耦电容。
  10)高频扼流。数字地、模拟地等连接公共地线时要接高频扼流器件,一般是中心孔穿有导线的高频铁氧体磁珠。
技术资料出处:电子技术设计
该文章仅供学习参考使用,版权归作者所有。
因本网站内容较多,未能及时联系上的作者,请按本网站显示的方式与我们联系。
【】【】【】【】
上一篇:下一篇:
本文已有(0)篇评论
发表技术资料评论,请使用文明用语
字符数不能超过255
暂且没有评论!
12345678910
12345678910
12345678910
随着嵌入式系统的广泛应用,各种小型终端需要开发出与外界联系的USB接口。目前,常用的技术有两种。基于单片机的USB接口,特点是需要外置芯片,电路复杂,留下的CPU资源不多;基于ARM的USB接口,特点是资源丰富,但ARM系列产品较多,如果选型不当,还需要搭接较多的外围电路...[][][][][][][][][][]
IC热门型号
IC现货型号
推荐电子百科

我要回帖

更多关于 protel 添加元件库 的文章

 

随机推荐