某型号酒精测试仪仪里的功放,还有稳压电路都可以用那些,至少两种

基本方法逐个进行介绍。认识了局部电路拼出整个电路图 时功放的维修就相对容易多了。C是电压分布图。电压测量是功放检修中基本方 法, 电压分布是以输入端到输出端为0V中轴线, 越向上红色越深表示正电压越高, 越向下蓝色越深表示负电压越低。图B这种全对称电路电压也正负对称,是检 修测量的主要依据。 一、差动输入级 图1是最基本的差动(差分)输入级电路,它由两个完全对称的单管放大器组合而成, 两个管的基极分别是正负输入端。 一个输入端作为信号输入用, 另一个输入端为反向输入末端负反馈用。 因其能有效地抑制输出端的零点漂 移而成为OCL电路的输入门户。输入级有单差动和双差动之别,单差动电路 简洁, 双差动对称性好。 从前级送来的信号通过一个电容和电阻所连接的三 极管就是差动输入级,相邻的同型号管子就是差动的另一半。输入端接的是 一个管的基极则是单差动,如接着两个管的基极,就是双差动。为克服电源 波动对电路的影响,图2在差动放大器的发射极增加了恒流源。有的在集电 极增加了镜流源如图3, 保证了差动两管静态电流的一致性。图4是既有恒流 源又有镜流源的高挡机采用的差动输入电路。图5、6、7 是常见的三种恒流源电路,尤其是图6这种利用二极管箝位方式用的 最多,两个二极管将三极管基极稳定在1.4V左右,在电源电压波动时,差动级的 静态电流保持不变,提高了放大器的稳定性。图8、9镜流源中两个三极管基极相 连,发射极电阻相同,流过两管的电流一样,像照镜子一样确保差动两个管的静 态电流一致性。 这两部分电路的识别方法是差动管两发射极电阻归到一点后所连 接的三极管就是恒流源, 它最明显的特点就是基极上接有二极管或稳压管。镜流 源两管集电极与两个差动管集电极分别相连, 因它的两个三极管的连接方式较特 别,两个基极和一个集电极连在一起所以识别起来也容易。 差动级工作在甲类状态,每个三极管都必须良好的导通,检测要点是差动两管 的be结电压,用数字表精确测量应在0.63V左右,两个管各极电压一样。因它 的反向输入端接着由末端引过来的反馈网络,后边电路将影响差动管的静态偏 置, 静态时差动放大级各三极管基极对电源地都是0V,如发现电压异常多数是后 边电路故障引起反馈输入端电压偏移。该部分电路故障率很低,应先检查后边电 路故障。 在不加电的状态下可测量差动级各管的PN结是否良好,三极管各脚都接 有电阻,测量时用指针表R×1档,对于NPN管,黑表笔接基极、红表笔分别接集 电极和发射极都导通,交换黑、红表笔再次测都不导通,PNP管与之相反。 二、电压放大级 图10是最简单的电压放大电路, 在低档次的功放中广泛应用。由差动级送来的信 号经单管放大后从集电极输出, 经电阻和二极管分压送往下级。图11是复合管放 大方式,图12是差动放大方式。后两种电路都加进恒流源作为集电极负载,提高 后级电路的稳定性。这三种电压放大电路都是配合单差动输入电路的。如八达 DC-211AK功放就采用图11电路, 联声MA-767功放则与图12类似。图13是双差动输 入方式电压放大级的基本电路, 极性不同的两个三极管分别对来自不同极性的差 动级集电极信号进行再度放大。如高士AV-115 功放的电压放大电路就是如此。 在一些高档机和专业功放中常采用共射共基放大电路,如图14和图15,该放大器 能改善放大器的线性和展宽频带。如湖山PSM96功放其电压放大如图14所示。 DSPPA MP-600P 、ZHONGHE ET-5350 就采用图15电压放大电路。该部分电路也工 作在甲类状态,be结电压在0.63V左右。电压放大级与电流放大级是直接耦合的,电压放大管集电极接着电流放大管基 极,电流放大管的偏置就由前边电路提供。图16是最基本的偏置电路,这部分电 路本身是电压放大管的集电极负载, 通过电阻分压和二极管箝位为后级提供合适 的偏置电压。图17、18、19、20、21、22是由三极管构成的恒压偏置电路,确保 了后级偏置稳定。 六种电路虽然有区别但基本原理一样。恒压管处于良好的导通 状态,其be结电压在0.67V左右。较多功放电路采用图19所示恒压偏置电路,调 整图中可调电阻可改变后级的偏置电压和静态电流。 还有通过调整此可调电阻实 现整机由甲乙类向纯甲类的转换。 这部分电路有着明显的表识, 利用三极管的正温度特性恒压管大多数都贴在功率 管散热片上。 由它可引出电压放大管。 采用图15共射共基放大电路虽然复杂一些, 但每侧两个发光二极管明显位置可找到相关元件。该部分电路故障率也很低,恒 压偏置的可调电阻接触不良会导致功率管偏置太低的现象, 这是因为可调电阻开 路将使恒压管失去下偏置电阻,基极电压接近集电极电压而饱和导通。 电流放大管和功率管便失去偏置。 这也是可调电阻为什么要设在下偏置电阻位置 的原因,设想如果将可调电阻放在上偏置电阻位置开路时将造成恒压管的截至, 后边功率管会因偏置过高而饱和导通,那将是一个什么样的结局。电压放大级本 身故障率并不高, 但是当后边电流放大级管子击穿常会烧坏恒压偏置管。该部分 检测的要点是连接后级基极的两个输出点A和B(双差动电路是两个电压放大 管的集电极,恒压偏置管的集电极和发射极)的电压约是2.2V左右 (0.5+0.5+0.6+0.6后四个管子偏置总和)。 过高将会使功率管静态电流过大发热。 A B两点对地电压应是对称的±1.1V左右,不对称势必会造成中点偏移。三电流放大和功率输出级 图23、 图24是电流放大管射级电阻悬浮方式电路,在强弱信号变化时发射极电位 会随之浮动, 有利于克服交越失真和削顶失真。图25两个发射极电阻与输出中点 连接,有利于中点平衡。三种电路几乎为绝大多数功放采用。发烧级功放电流放 大级和功率输出级均处于甲类状态, 一般家用OK机和演出专业功放电流放大管be 结电压都调整在0.6V左右, 功率管则处于乙类状态be结仅有0.5V。图26是末级采 用场效应管的功放电路, 场效应管属电压驱动器件,可减轻推动管在大功率输出 时的负荷。 场效应管输出电流大负载能力强也是一些专业功放选用的原因。场效 应管偏置比三极管高,大约在1.8V左右。图27是采用同极性NPN功率管的准互补 OCL电路,将标准OCL电路PNP推动管的发射极电阻移到集电极与负电源之间,原 发射极电阻处加一个100欧姆左右的反馈补偿电阻, 将原图PNP功率管换成NPN管, 基极改接在下推动管的集电极,集电极和发射极电阻接人电路的位置互换。 图40是基本OCL电路,图41是采用准互补OCL电路的DIEHAO AV-3001功放的电路 图,通过对比可看出它们的区别。图28是功率管集电极输出电路,集电极输出具 有电压放大作用。在采用OCL电路的新型扩音机中广泛应用,如图42 ET-5350扩 音机就是集电极输出经输出变压器后定压110V、70V、16V输出。电流放大管多使 用C2073、A940、TIP41、TIP42、D669、B649这类中功率管,在电路板上其封装 和位置是显而易见的。 这两级电路是功放中损坏率最高的部位,当发生故障时首先烧坏功率管,随之殃 及推动管, 恒压偏置管和推动管射极电阻跟着遭殃,在维修时要把这几处元件都 要检查到。在前边电路检查和修复后不要急于装功率管,先通电检测功率管be 结空脚时的电压是否是0.5V, 输出端是否是0V。此两处电压不对时应回头继续检 查前边电路。这是维修中最关键一步也是最难的一步,可采用与另一声道(无故 障)对比和本电路上下对照(双差动全对称电路)的方法耐心检查,也许查出的 就是损坏电路的元凶。 更换功率管要谨防赝品, 如常见功放对管中C3280、 A1301、 C5200、A1943、C3858、A1494等赝品很多,依其封装真假难辨。这里介绍一个鉴 别真假功率管的方法,准备两个可调直流电源,两块万用表,一片可固定功率管 的散热片。将被测功率管固定在散热片上,一个电源接在基极和发射极之间,万 用表设在100mA挡作基极电流检测。另一电源接在集电极和发射极之间,万用表 设在10A挡作集电极电流检测。集电极电源固定在5V位置,基极电源先调成0V。 然后缓慢调整基极电源并记录下基极电流在10mA、20mA、30mA、40mA、50mA几个 位置时集电极电流的大小。 如对应的集电极电流与基极电流呈线性变化, 2A、 1A、 3A、4A、5A(直流放大倍数=100倍),则该管是正品,如果是1A、2A、2.5A、 2.8A、3A(3A以上集电极电流几乎不变)非线性跌落严重则是赝品。5A电流在8 欧姆负载上的功率是200W,线性范围只有2A的赝品却只是32W。假管用不住就是 因大电流时其管压降增大功耗增大过热而烧毁。四过流保护和扬声器保护电路 图29、30、31 是普遍采用的过流保护电路,功率管发射极电阻作为取样电阻, 当信号过强输出过大时功率管发射极电阻压降增大, 经电阻分压后使保护管开始 导通, 因其集电极的二极管与电流放大管基极相连,降低了电流放大管基极信号 强度,起到限流保护的作用。因该电路与功率管相连。当功率管热击穿后也同时 将其摧毁。 由于OCL 电路开启瞬间有一个平衡过程,此过程中输出中点有一个从 直流电位向零电位过度的时间, 此电压有时可能接近电源电压,大有烧毁扬声器 音圈之势。 在使用中出现故障也会造成输出中点偏移, 直流高压也会损坏扬声器。 扬声器保护电路是伴随着OCL 功放的应用而诞生的。图32、33 是较流行的扬声 器保护电路, 具有延迟闭合继电器接通扬声器和中点偏移断开扬声器的功能。在 一些大功率专业功放中使用了所谓大水塘的数万微法的滤波电容, 当交流关机后 电容还有一个放电过程,此过程也伴有中点偏移现象,也对扬声器产生威胁。图 33 电路中就增加了交流断电保护功能,当变压器断电后经二极管整流产生的负 电压立刻消失,交流保护三极管由截至转为导通,将继电器驱动管基极接地,继 电器随之释放断开扬声器。 新德克XA8500 就采取如此电路。图34 是用集成电路 UPC1237 制作的扬声器保护电路,不少品牌机都采用此电路,它除具有图33 电 路所有功能外还有故障解除自动恢复 功能。第1 脚是过流检测、第2 脚是中点偏移检测、第3 脚是复位方式选择(接 地为自动恢复,接电容是断电恢复)、第4 脚是交流断电检测、第5 脚接地、第 6 脚是继电器驱动、第7 脚是RC 延迟、第8 脚是电源(不得超过8V)。扬声器保 护电路中继电器是故障率最高的,常有触点接触不良甚至继电器烧变形的。 五拼图 当对一块功放主板的各部分认清后,就可以拼出一幅大概的电路图了,按照图35 由图1、图10、图16、图28 组成图40 电路图。图41 是DIEHAO AV-3001 功放电 路图,可由图1、11、16、28 拼出。八达211B 功放就与图37 单差动有镜流源的 OCL 拼图类似。 图39 标准双差动输入OCL 拼图可拼出与湖山BK2X100-01 一样的 电路图。 当你维修一台没有任何资料的功放经过如此分解拼图而心中有图时,你 的感觉会不一样的。
功放电路图―汇集和整理大量word文档,专业文献,应用文书,考试资料,教学教材,办公文档,教程攻略,文档搜索下载下载,拥有海量中文文档库,关注高价值的实用信息,我们一直在努力,争取提供更多下载资源。专业功放和定压功放的特点与维修_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
专业功放和定压功放的特点与维修
阅读已结束,如果下载本文需要使用
想免费下载本文?
把文档贴到Blog、BBS或个人站等:
普通尺寸(450*500pix)
较大尺寸(630*500pix)
你可能喜欢OCL功放的维修和分析
由于OCL功放电路优越的性能和较高的稳定性和可靠性,长期以来被各生产厂家广泛采用。但在使用中由于种种原因经常出现烧毁攻放管、复合管及电阻等元件的现象。因OCL电路是直接耦合,电路前后相互牵扯,在维修判断故障时存在一些难度。经常造成反复烧管的现象,给维修带来不必要的损失,使不少维修工望而却步。下面是我多年来维修攻放的经验总结,写出来供大家参考,希望能对你有所帮助并为你减少不必要的损失。常见的OCL功放电路如下图所示:&
图中Q6、Q7、Q8、Q9、Q10及R12、R13、R14经常同时烧毁。在维修时不要盲目的更换上述元件后就通电,因为此时故障可能没有彻底排除,可能会再次烧毁。应仔细检查前面的管子及电阻等元件是否损坏,W1是否开路或阻值变大等。然后再采取下面的方法更安全稳妥:将新的测量过的Q6、Q7、Q9、R12、R13、R14焊好,而Q8和Q10功放管,集电极先不要焊接(这一点非常重要),只焊接基极和发射极,以保证直流负反馈构成回路(否则差分对管不正常工作),以防止由于输出不平衡时烧毁功放管。这时一定不要接扬声器。通电检测输出端的静态对地电压,正常值为0V≤±20mV,越小越好。如偏差较大应立即关机,重新仔细检查。若测得输出电压正常时,再测量Q7和Q9基极间的电压,预调W1使其在1.5—2V之间。确认以上电压全都符合要求,再将Q7、Q9的集电极焊好,电调整W1测量功放电路部分的总电流应为25~30mA(或功率管集电极电流~20mA)。即可接上扬声器试机(注意在接扬声器前要仔细检查其好坏,以免再次烧毁)。
另外,如果输出端的静态电压偏差大于50mV时,要重点检查Q1、Q2是否配对(两管放大系数应基本相等,误差要小于5%),R4、R5是否变值,重新配对和更换电阻后可排除故障。
有些功放经常莫名其妙的烧毁,几次修复都用不了多长时间。其原因大多是印刷电路布线不合理,电源线没有按照由后向前的原则布线,使电路在大音量输出时产生寄生振荡,严重时就会烧毁攻放。应按照电流由后向前的原则,重新切割布线后面的线要尽量粗短。之后才可照上述方法进行换管和修复。
》》》》》》》》》》
分立元件OCL功率放大电路原理分析
 & OCL,是英文Output
CaPCItodess的缩写,意思是没有输出电容器。OCL功率放大电路一般采用正、负对称的两组电源供电,电路内部直到负载扬声器全部采用直接耦合,中间无输入、输出变压器(人们将不用输入和输出变压器的功率放大电路称为单端推挽电路),也不需要输出电容器,其好处是通频带宽,信号失真最低。
  (1)OCL功率放大器的结构
  功率放大器框图如右图所示。OCL功率放大电路分为输入级、激励级、功率输出级三级,此外还有为稳定电路工作而设置的负反馈网络和各种补偿电路,有些还设置有保护电路。
  下图是一种实际的功放电路,现在一些低档功放机器采用了这一电路。下面结合该电路来认识一下功率放大器的各组成部分。
  1)输入级输入级主要起缓冲作用。输入级多采用差分对管放大电路(也有采用运算放大电路的),通常引入一定量的负反馈,增加整个功放电路的稳定性和降低噪声。差分放大器由,两个特性相同的放大电路组成,其左、右两管的参数几乎完全相同。这种电路具有很高的稳定性,能抑制“零点漂移”,保证输出级中点电压的稳定。有些机器,差动管发射极采用恒流源电路,常见的有二极管和三极管组成的恒流源和两个三极管组成的镜像恒流源。输入级采用小功率管,工作在甲类状态,静态电流较小。
  2)激励级激励级的作用是给功率输出级提供足够的激励电流及稳定的静态偏压,整个功率放大器的增益主要由这一级提供。多数功放机的激励级采用单管的放大电路,也有少数机器采用差分对管放大电路。这一级常采用恒流源负载,不仅能得到较高的电源抑制特性,而且具有工作状态稳定、线性好、失真度低等优点。激励级也是用小功率管,工作在甲类状态。
  另外,激励级还要为后一级(功率输出级)提供稳定的偏置电压。功率输出级的偏置电压电路有多种类型。最简单的偏置电路是由激励管的集电极负载电阻构成的,其热稳定性和稳压性都比较差;有些功放采用恒压偏置电路,即由多个二极管串联而成的稳压钳位电路,使功率输出级的偏置电压保持稳定;而更多的则是采用带温度补偿的恒压偏置电路,这种偏置电路由一个三极管和几个电阻组成。
  下图中,功率输出级的偏置电路是与激励管Q3的集电极负载串联在一起的。R5可看作Q3的集电极负载电阻,R4和Dl串联在集电极负载电路中,可看作集电极负载的一部分。Q3集电极电流流过R4、Dl和R5.在R4和Dl两端产生一定的电压降(电压高低决定了输出级的工作状态,一般为2.1V左右,此时输出级工作在甲乙类状态;如达到2.8V左右,输出级则工作在甲类状态),此电压加在Q4、Q5的基极上,为两管提供偏置电压。这时与Q4、Q5复合连接的Q6、Q7也获得了偏置电压而进入线性放大状态。
  3)功率输出级功率输出级简称输出级,主要起电流放大作用,以向扬声器提供足够的激励电流,保证扬声器正确放音,因此,也称为电流放大级。输出级还可细分为推动级和末级两级。
  输出级采用互补或准互补输出形式的单端推挽放大电路,其输出级由两组(称为上臂、下臂)不同极性的复合管构成。利用它们的偏置极性相反的特性,可以自动地分别放大正、负半周信号,即具有互补特性;又因为在工作时总是一臂导通放大信号,另一臂截止,工作在推挽状态,因此又被称为互补对称推挽放大电路。
  一般功率放大器的前级(这里指输入级和激励级)均为电压放大级,输出的电流都不大。为了用较小的电流驱动功率输出管,以得到足够的输出功率,一般的功率输出级均采用半导体三极管复合连接的方式,即采用复合管。复合管是由两个或两个以上的三极管按一定的方式连接起来组成的一种功率管。输出级复合管中的大功率三极管称为功率管(也叫功放管或输出管),与之复合的另一个小功率(也有用中功率管的)三极管称为推动管(或驱动管),推动管、功放管分别构成了推动级、末级电路。一般的功放每个声道有两个功放管,而一些大功率的功放为了增大输出功率,也采用了功放管并联的方法,这样每个声道就有四个或更多的功放管。一些低档机中的两个功放管采用的是同极性的晶体管三极管,即两个管均为NPN型(或PNP型)管,需分别与两个不同极性(一个为NPN管,另一个为PNP管)的小功率三极管组成复合管配对使用,这样的互补输出电路常称为“准互补”推挽放大电路。
  中、高档功放则采用专用音响对管(一个NPN管,一个PNP管,且特性很接近)作互补电路的输出管,以达到较高的技术水准。
  功率输出级中,驱动管和功放管的工作状态有甲类、乙类、甲乙类之分。平常所说的甲类功放、乙类功放、甲乙类功放就是按功率输出级的工作状态来对功放机进行分类的。输出级的各管工作状态是由偏置电路所提供的工作电压所决定的,掌握其工作状态对维修功放有着极重要的意义。下面简要介绍一下这三类功放的特点。
  甲类功放中,输出管的总静态电流较大(常为1A~2A),其工作点能保证在一定的输入信号幅度内,输出管在信号的正、负半用均处于导通状态,在无信号输入时,依然存在着相当大的静态电流,不会产生交越失真和开关失真,因此放音效果较好。但甲类放大器存在效率低、功放管发热非常厉害(除采用很大的散热器外,有的还需用风扇进行强制风冷)等缺点。甲类功放中,驱动管工作在甲类状态,静态电流较大(几十毫安),发热也较大,因此常采用中功率管作驱动管,并将其固定在散热器上。
  乙类功放指在静态下(无信号输入状态),功放管的基极无偏流,只有在较强的输入信号(电压的绝对值大于0.6V)作用下,功放管才导通工作。乙类功率放大电路采用推挽输出方式,利用两个特性相同的功放管,上臂功放管工作在正半周,F臂功放管工作在负半周,即一推一挽地轮流工作。而在输入信号电压+0.6V~-0.6V之间,无论是上臂功放管还是下臂功放管,均不能导通,所以,在信号的上半周与下半周的交接处将会出现失真,称为交越失真,,推挽工作的晶体管交替导通截止时,由于载流子积聚效应,它的工作不能完全再现输入信号的变化,而是在输出信号中出现附加的脉冲,称为开关失真。即乙类功放存在交越失真和开关关真的缺点,但效率高、能耗低是其显着的优点。
  甲乙类功放,实际上是甲类和乙类的结台,使输出级各管进入甲乙类工作状态,有一定的静态偏流。没有输入信号时,静态电流较小,功放管处于近似截止状态;工作时只要辖入很微小幅度的信号电压,功放管就能立即进入正常放大状态。在这类功放中,输出管静态电流多数设计在几十毫安,也有设计得较大一些的,如在200mA左右(常将这种称为高偏甲乙类)。甲乙类功放电路解决了失真与效率的矛盾,因此,是功放机中数量最大的一类。
 4)负反馈网络为了提高电路的稳定性和降低失真,OCL电路均要加入交直流负反馈,通常会同时采用局部负反馈(即本级的负反馈)和环路负反馈两种办法。各级放大器发射极所接的电阻,主要起稳定该级工作状态的作用,属于局部负反馈。环路负反馈则属于级间负反馈,可以提高整个放大器的稳定性。
  环路负反馈有两种形式:一种是负反馈信号从末级(一般是输出端)取出,经反馈网络馈人差分输入放大器的一臂,称为“大环路负反馈”,这种负反馈被大多数功放所采用;另一种是反馈信号从推动级(不是取自末级)取出,经反馈网络馈人差分输入放大器的一臂,称为“无大环路负反馈”,这种环路负反馈可以提高放大器的速率,消除扬声器的反电动势经环路反馈到输入级造成的失真。
  5)各种补偿电路OCL的补偿电路主要有以下几种:
  一是为消除自激所加的各种补偿电容。
  以下图所示电路为例,接在反馈电阻Rll两端的C5为相位补偿电容,用来超前补偿,以抑制电路自激振荡;C3、C8、C9分别接在输入差分管Ql、推动管Q7、Q8的c、b极间,是消振电容(也称中和电容),用来抑制电路振荡、进行相位补偿,以消除电路高频自激。另外,有些功率放大器还在输入端接有一个低通滤波器(图3中由R2、C2组成),限制输入信号的通频带,让有用的音频信号通过,旁路高频信号,抑制输入信号中的高频杂波。
  二是接在OCL电路输出端的扬声器阻抗补偿电路,也称为茹贝尔电路(图3中由R20和Cl0组成),用以抵消扬声器的感抗成分,使放大器的负载接近纯电阻,保证放大器稳定地工作。
  三是温度补偿电路。输出功率较大的OCL电路工作时产生的热量对电路的影响较大,所以需要对电路进行温度检测和补偿,以纠正温度变化引起的静态工作点偏移。具体措施是输出级的基极采用带温度补偿功能的恒压偏置电路,这种偏置电路由一只三极管和几只电阻组成(如图3中,由Q6、R14、W2、R15组成),利用三极管的温敏特性,将Q6与功放管一起安装在散热器上,若功放管Q9、Ql0集电极电流上升,功放管发热量必然增大,Q6表面温度随之升高,并通过一系列的反馈过程(从略),最终使功放管的电流下降至正常范围。这样既保护了功放管,又可使输出级的稳定性进一步提高。
  6)OCL功率放大器的供电OCL功率放大器均采用正、负对称电源供电,使输出端直流电压为ov。供电电压通常为+28V、+35V、±45V等,且有两种供电方式:一种是前、后级电路(这里的前级指输入级、激励级,后级指输出级)供电电压相同,即由同一组电源供电,大多数机器采用r这种供电方式;另一种是前、后级分开供电,即前级、后级各由电压不同的两组电源供电,电压一高一低。前、后级分开供电既可降低前、后级电路的相互影响,又可提高电源的利用率。
  (2)实际OCL功率放大电路分析
  1)准互补输出形式的单端推挽OCL功率放大电路
图2是典型的准互补输出形式的单端推挽功率放大电路。该电路采用正、负对称电源和差分输入放大等措施,使输出端的直流电压为Ov,以便放大器与扬声器直接耦合。电路分为三级,Ql、Q2组成差分输入放大级,R3是发射极公共电阻;激励级是由一只PNP型管(Q3)组成的共发射极放大电路;Q4-Q7组成复合“准互补”推挽功率输出级,其中Q4、Q5为推动管,Q6、Q7为功放管,两个功放管为同极性的NPN型管。
  Q3的集电极输出端接有NPN型的Q4和PNP型的Q5(中间经过R4和Dl),利用不同类型晶体管的互补作用,实现推挽放大所需的“倒相”要求。Q4与大功率管Q6接成NPN型复合管,Q5与大功率管Q7接成PNP型复合管。由它们共同完成接近乙类的准互补对称单端推挽功率放大任务。Q3集电极负载电阻R5、R4和二极管Dl组成推挽放大偏置电路。Rl是Q1的偏置电阻。
  Rll既是Q2的偏置电阻,又是交直流负反馈电阻。
  信号流程:从前级来的音频信号从Vi端输入后,经耦合电容Cl加到差分放大管Ql的基极;差分输入级的另一臂(即Q2的基极)引入输出级的负反馈信号。经Ql、Q2差分放大后的信号由Ql集电极直接耦合到激励三极管Q3基极,进行激励放大后也直接耦合到电流放大级。从Q3集电极取出的信号分为两路:一路直接送互补对称放大电路的上臂(由Q4、Q6组成的)NPN型复合管的基极(Q4基极),当信号为正半周时,NPN型复合管导通,输出电流经正电源、Q6、扬声器到地,当信号为负半周时,NPN复合管截止;另一路经R4、Dl(二极管Dl在导通状态,其内阻很小,对交流信号的传递几乎无影响)送互补对称放大电路的下臂PNP型复合管(由Q5、Q7组成的)的基极(Q5基极),当信号为负正半周时.PNP型复合管导通,电流经地、扬声器、Q7到负电源,当信号为正半周时.PNP复合管截止这样,两只功放管一推一挽地工作,在输出端合成完整的音频信号,驱动扬声器发声。
  为提高整个放大器的稳定性、减小谐波失真、降低放大器的动态输出阻抗,还从末级的输出中点取出负反馈电压,经由R11、R12、C4构成的反馈网络馈入差分输入级的一臂(Q2基极),其直流负反馈是由输出中点电压经Rll直接加至Q2基极的;而交流负反馈电压则经Rll、R12分压(C4对交流而言视为短路)后加到Q2基极,这个交流负反馈电压的大小,决定着放大电路的增益(放大倍数)。
  C2、C3为防振电容,用来抑制放大器可能出现的高频自激。C2、C3分别是Q3、Q5的中和电容(负反馈电容,也叫滞后补偿电容),可降低Q3、Q5的高频增益,破坏自激的幅值条件。
  2)带温度补偿的OCL功率放大电路下图是飞达牌F-9603功放的右声道功率放大电路,音乐输出功率为300W(8Ω)。
  该功率放大电路由10个晶体管组成:
  Ql、Q2组成差动放大输入级.Q5是激励级,Q6组成偏置电路.Q7、Q9、Q8、Ql0组成复合互补输出级。
  在差分输入放大电路的输入端,Rl、R2、C2组成了低通滤波电路,用于滤除音频范围以外的高频信号,提高电路的稳定性,抑制电路的高频噪声和自激。在Ql、Q2的发射极引入了电流负反馈电阻(合用一个电位器Wl).以扩大输入级的有效输入电压范围;差分输入放大器的发射极公共电阻改成了由Q3、R6、Dl、D2组成的恒流源电路,以使电路更加稳定。Q3是恒漉三极管,Dl、D2为恒流管的基极提供偏置基准电压。R5是保险电阻,万一恒流源晶体管击穿短路,可使差动放大级维持工作;R3、R4是Ql、Q2的集电极负载电阻,R3兼作激励管Q5的基极偏置电阻。
&  激励级Q5采用恒流源负载的放大器,以保证放大电路的增益和线性。Q4、R9、Rl0、D3、D4组成Q5集电极的恒流源负载.为激励级的稳定工作提供条件,同时对稳定输出级的静态工作点也起了很大的作用。
  因为该电路的输出功率较大,所以需要进行温度检测和补偿,以纠正因温度变化引起的静态工作点偏移。Q6与R14、W2、R15组成具有温度补偿功能的恒压偏置电路。利用激励管Q5的集电极电流在上述元件上形成的电压降,为Q7、Q8,也为Q9、Ql0提供适当的基极偏置,大大降低放大器的交越失真。在一般情况下,输出级所需的偏置电压(从Q6集电极与发射极两端测得)为2.1V左右。本电路利用Q6正向导通时的稳压作用,使输出级得到较稳定的偏置电压;同时,还利用三极管的温敏特性,将Q6与功放管一起安装在散热器上,对功放管的温度变化进行监测和补偿,使偏置电压得到适当的温度补偿,保证电路稳定地工作。调节W2,就可调节功放管的偏置电压,使它工作在甲类、甲乙类、乙类工作状态,本电路工作在甲乙类工作状态。
  信号流程:从前级来的右声道的信号,经Cl、R2送Ql、Q2组成的差分输入放大器放大后从Ql的集成极取出,送激励级三极管Q5进行激励放大。从Q5集电极取出的信号,分为两路;一路直接送互补对称放大电路的上臂(由Q7、Q9组成的)NPN型复合管的基极(Q7基极),当信号为正半周时,NPN型复合管导通,输出电流经正电源、Q9、扬声器到地,当信号为负半周时,NPN复合管截止;另一路经Q6送互补对称放大电路的下臂(由Q8、Ql0组成的)PNP型复合管的基极(Q8基极),当信号为负半周时,PNP型复合管导通,电流经地、扬声器、Qlo到负电源,当信号为正半周时,PNP复合管截止。这样,两只功率管一推一挽地工作,在输出端合成完整的音频信号,驱动扬声器发声。
  本电路的级间直流负反馈从输出端通过Rll(C6对直流等于开路)加到Q2基极上,反馈量很大,再加上差动放大器本身的高稳定性,保证了整个放大器的稳定工作。
  而音频交流信号的级间负反馈则经R11、R12分压后(C6的容量较大,对于反馈过来的音频信号相当于通路)加到Q2基极上,使功率放大电路获得稳定的增益,性能也得到改善。调整Rll可改变反馈量,达到调整增益的目的。
  C2、C3、C8、C9为防振电容,用来防止自激振荡。其中,C2为限制输入信号的通频带,让有用的音频信号通过,旁路无用的音频范围以外的高频信号,抑制高频杂波;C3、C8、C9分别是Q1、Q7、Q8的中和电容。
  放大器输出端增加了一个与扬声器串联的小电感L1,其作用一是抵偿扬声器导线的分布电容,提高放大器的高频稳定性,二是防止信号变化时出现较高的瞬时电压,抑制尖峰杂波,改善输出信号的幅频特性。
  电阻R20、电容Cl0组成容性负载,成为扬声器阻抗补偿电路,用以抵偿扬声器的感抗成分,使放大器的负载较接近于纯电阻,放大器工作稳定,不易自激,输出级晶体管不易出现过电压,运行比较安定。
3)全对称式OCL功率放大电路
  下图是中宝(ZBO)KB-18A功放的右声道功率放大电路。
  该功放采用全对称式OCL电路,使功率放大器的性能得到了进一步的提高。它除了采用复合管、恒压/温度补偿等措施外,还把OCL电路里的差分输入、激励、功率放大三级电路都设计成互补对称形式,充分发挥了NPN型和PNP型三极管能够互补工作的优点,让信号从输入到输出均处于推挽放大之中,使电路获得了很好的稳定性和保真度。
  电路中,Q3、Q4构成NPN差分放大器,Ql、Q2构成PNP差分放大器,它们共同组成互补对称的差分输入放大级。R32~R40组成输入级的偏置电路,其中R35~R38为各管发射极的电流负反馈电阻;Q5、Q6分别为其恒流源,用来稳定工作点,保证电路-工作的稳定。R33、R34,R39、R40为差分管的集电极负载电阻。
  Q7、Q6构成单端推挽电压放大级,并作为功率放大级的激励级,提供足够的电压增益。
  Ql0、Qll为功率放大的推动管,Ql0与Q13组成NPN复合管.Qll与Q12组成PNP复合管,以获得高放大倍数,这两组复合管构成功率输出级。
  Q9、R48、W2、R49组成输出级的基极恒压偏置电路,为输出级提供适当的偏置电压。调节W2,可以调整功放管的静态工作点,即可以使功率管工作在甲类、甲乙类、乙类工作状态,本电路工作在甲乙类啊作状态。另外,还利用三极管的温度特性,把Q9安装在功放管旁,使偏置电压得到适当的温度补偿,保证电路稳定地工作。
  R41、R42和C36、C37构成负反馈电路,决定整机的闭环增益。C37为交流负反馈提供通路;C36接在反馈电阻R41两端,是相位补偿电容,用来超前补偿,以抑制I乜路自激振荡。
  C32用于限制输入信号的通频带,旁路无用的音频范围以外的高频信号,抑制高频杂波。C35、C33分别跨接在Q7、Q8的c、b极间,是消振电容(也称中和电容),用来抑制电路振荡、进行相位补偿,以消除高频自激振荡。R57、C38组成扬声器阻抗补偿电路,用以抵偿扬声器的感抗成分,使放大器的负载接近纯电阻,保证放大器稳定地工作。
  信号流程:当输入的音频信号处于“正半周”时,Q3导通、Ql截止,“正半周”信号经Q3、Q4差分放大后,从Q3集电极直接耦合给Q7的基饭,经Q7放大到足够的幅度,激励Qlo和Q13输出正半周的功率信号。同理,当输入的爵频信号处于“负半周”时,Ql导通、Q3截止,“负半周”信号经Ql、Q2.Q8放大,激励Qll和Q12输出负半周的功率信号。级问直流负反馈从输出端通过R41反馈到Q4,Q2的基极;交流负反馈则从输出端通过R41和R42分压后,再反馈给Q2、Q4基极。
&&&&&&&&&&&&&&&&&
在检修实例中发现,一般只坏一个声道,这样就给经验不是很丰富的修理者提供了一个可参考的电阻或电压值,以便用比较法进行检修。检修时,在没有把握故障是否完全排除时切不可冒然换上新的功率管,否则,会有再次损坏的可能。应用万用表在线测量找到损坏一边的功放管,将其拆下。然后检查功放管发射极电阻、推动管及发射极电阻是否正常,用电阻比较法,将推动及前置电路故障一一排除,更换为新的元件(功放管不装)。
装好后不要通电,用电阻挡测量正负电源的对地电阻、输出端对地电阻(推动管两发射极中端)是否正常。若无异常,先不接负载,通电测量正负电源是否对称,测中点电压是否为零(允许误差±0.2V范围内)。如不正常则用电压对比法比较快速排除故障。正常后,继电器应该在3s~10s吸合。如不吸合则应该检查保护电路。吸合后用万用表交流10V挡接到输出端子,加入人体感应信号慢慢增加音量,表针应随音量大小摆动。也可以直接接上音箱、CD机听,判断有无失真,信号还原是否正常(由于无功率管扩流所以输出功率较小)。无异常后,将功放管装上,如果是多管并联的先装一对开机试机,用万用表直流电压挡测两功率管基极静态时应该有1.5V左右的偏置电压。由于电路的类型不同也可能偏压稍大,也可以以另一声道对照参考。如有异常则调整偏置电阻,幅度要小,边调边测直至所需值。
最后要清楚是否为本机自激所造成的损坏,由于是使用过的成品机,所以在电路上不需要做很大的改动,接上音箱,听高音喇叭是否有咝咝或噼啪声等不规律的小杂音,如有则是高频自激,可在输入端对地接一只100pF左右的小电容,然后在主电源滤波、退耦电容上并联0.1uF小电容,这样处理后基本上可以解决此故障。再听低音喇叭有无交流鸣声,如有则加大主滤波电容及级间退耦电容的容量后,故障即可排除。试机工作30分钟无异常,检修结束。
&&&&&&&&&&&&&&&&&
浅谈功放维修点滴
  首先,检修功放前,应先弄清功放是在什么情形之下损坏、有何现象出现等,以便初步判断功放损坏的部位及元件,缩小检修范围。笔者曾修过两台高士功放。一台为机主接功放输出时,音箱线裸露部分过长,放音中使其碰极短路而损坏,并有白烟冒出,伴有焦糊昧。当即判断损坏部分在功放末级电路。开机查看,功放管发射极电阻及推动管发射极电阻均已烧焦开路,测功放管及推动管,幸未被击穿,将电阻换新后修复。另一台为机主唱卡拉OK时损坏。一般直流功放均有较完善的喇叭保护电路,在与功率偏小的音箱连接而大音量放音或唱卡拉OK时,损坏喇叭的情况较少,大多数情况是导致功放正负电源端的保险管熔断,开机查看,见负电源保险管已开路,再测其他各元件均正常,换新保险管后修复。
  其次,修理功放(主要是合并功放或AV功放)时,应把前后级分离开,这样才容易判断问题出在哪部分。如果是后级部分出问题,应先用万用表测功放管及推动管,看是否损坏。如已损坏,先不要急于换上新管。有一台功放就是这样。机主先是自己修,换了两对新管均给击穿,最后笔者为其修复(其末级电流偏置管上的两只1N4148击穿开路,换新后即正常)。正确的检修方法是先取下坏管,只把推动管装上即可。下左图下右图是直流功放未级典型电路,在图1中,把Q1、Q2取下,除功放输出功率变小了之外,丝毫不影响电路的性能,所以我们可利用这点,在维修时取掉Q1、Q2,只装Q3、Q4,即推动管,然后检修,待查清问题,通电调试一切正常后,再把功放管装上,这样就可尽量避免损失。笔者以此法修理过多台功放,均获成功。因此,本人觉得这不失为一安全实用的维修方法。下右图电路维修时可改成图l式样,待修复后改回即可。
  另外,检修时最好换用低电压电源,如±12V-±15V等,这样更安全,待正常后再接回原机电源。
&&&&&&&&&&&&
&&&&&&&&&&&&&&&&
已投稿到:

我要回帖

更多关于 某型号酒精测试仪 的文章

 

随机推荐