明线槽光谱和连续光谱分别都是有哪类物质组成的?

原子光谱与分子光谱的各自特点和区别有哪些?
原子光谱与分子光谱的各自特点和区别有哪些?全面一点,但不需要很详细
原子荧光光谱法的优点:(1)有较低的检出限,灵敏度高.特别对Cd、Zn等元素有相当低的检出限,Cd可达0.001ng·cm-3、Zn为0.04ng·cm-3.现已有2O多种元素低于原子吸收光谱法的检出限.由于原子荧光的辐射强度与激发光源成比例,采用新的高强度光源可进一步降低其检出限.(2)干扰较少,谱线比较简单,采用一些装置,可以制成非色散原子荧光分析仪.这种仪器结构简单,价格便宜.(3)分析校准曲线线性范围宽,可达3~5个数量级.(4)由于原子荧光是向空间各个方向发射的,比较容易制作多道仪器,因而能实现多元素同时测定.分子光谱学包括:紫外可见分光光度法(UV/Vis) 红外吸收光谱法(IR) 分子荧光光谱法(MFS) 分子磷光光谱法(MPS)物质分子内部3 种运动形式及其对应能级:1. 电子相对于原子核的运动--电子能级; 单重态:激发态与基态中的电子自旋方向相反. 三重态:激发态与基态中的电子自旋方向相同. 2. 原子核在其平衡位置附近的相对振动 --振动能级; 3. 分子本身绕其重心的转动--转动能级.
我有更好的回答:
剩余:2000字
与《原子光谱与分子光谱的各自特点和区别有哪些?》相关的作业问题
原子光谱是一条线,分子光谱是谱带.
分子中偶极矩的变化量是导致红外吸收的主要原因.换句话说,分子结构如果对称,比如氧气,氮气等在红外光谱上是没有吸收峰的,二氧化碳的对称伸缩在红外光谱上是观察不到的,只能检测到二氧化碳分子中C=O的不对称伸缩.
荧光是发射光谱,发射光谱通常和激发光没有重叠;所以激发光可以很强,用于激发分子荧光,在荧光发射的波长出检测低浓度物种;激发光的强光不会干扰荧光信号(背景)紫外和红外是吸收光谱,如果浓度很低,意味着检测很强背景光下很小的吸收.在输入波长相同波长处很小的光强变化,这是非常困难的.
虽然在能量上说电子不同轨道之间的能量差应该是确定值,原子的谱线应该是非常细的细线,但是由于量子不确定性的存在,归根结底也就是量子真空涨落的存在,另电子在轨道上也会出现不规律的振动,导致轨道之间跃迁的能量差也不断振动,所以就有谱线宽度的存在.
光谱 光谱光波是由原子内部运动的电子产生的.各种物质的原子内部电子的运动情况不同,所以它们发射的光波也不同.研究不同物质的发光和吸收光的情况,有重要的理论和实际意义,已成为一门专门的学科——光谱学.下面简单介绍一些关于光谱的知识.分光镜观察光谱要用分光镜,这里我们先讲一下分光镜的构造原理.图6-18是分光镜的构造原理示
光谱『spectrum』  光谱是复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案.  光波是由原子内部运动的电子产生的.各种物质的原子内部电子的运动情况不同,所以它们发射的光波也不同.研究不同物质的发光和吸收光的情况,有重要的理论和实际意义,已成为一门专门的学科——光谱学
如果要我做这个判断题,我会选择正确.不过这种说法的确是有点奇怪,摘录一个问题的答案:“你的分类有问题.光谱按照参与光谱形成的物质结构可以分为原子光谱和分子光谱.按照产生机理可以分为发射光谱和吸收光谱.可见,原子光谱既有发射谱也有吸收谱,分子光谱也既有发射谱也有吸收谱.你所说的明线光谱,只是发射光谱的一种,是指谱线锐利的
你的分类有问题.光谱按照参与光谱形成的物质结构可以分为原子光谱和分子光谱.按照产生机理可以分为发射光谱和吸收光谱.可见,原子光谱既有发射谱也有吸收谱,分子光谱也既有发射谱也有吸收谱.你所说的明线光谱,只是发射光谱的一种,是指谱线锐利的发射光谱.不能简单的说明线光谱和吸收光谱都是原子光谱.
光谱『spectrum』 光波是由原子内部运动的电子产生的.各种物质的原子内部电子的运动情况不同,所以它们发射的光波也不同.研究不同物质的发光和吸收光的情况,有重要的理论和实际意义,已成为一门专门的学科——光谱学.下面简单介绍一些关于光谱的知识. 分光镜观察光谱要用分光镜,这里我们先讲一下分光镜的构造原理.图6-18是
光谱『spectrum』 光谱是复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案,全称为光学频谱.光谱中最大的一部分可见光谱是电磁波谱中人眼可见的一部分,在这个波长范围内的电磁辐射被称作可见光.光谱并没有包含人类大脑视觉所能区别的所有颜色,譬如褐色和粉红色.发射光谱物体发光
光谱科技名词定义中文名称:光谱 英文名称:optical spectrum 定义1:按波长或频率次序排列的电磁波序列. 应用学科:地理学(一级学科);遥感应用(二级学科) 定义2:光辐射的波长分布区域. 应用学科:通信科技(一级学科);光纤传输与接入(二级学科) 以上内容由全国科学技术名词审定委员会审
光谱 光谱光波是由原子内部运动的电子产生的.各种物质的原子内部电子的运动情况不同,所以它们发射的光波也不同.研究不同物质的发光和吸收光的情况,有重要的理论和实际意义,已成为一门专门的学科——光谱学.下面简单介绍一些关于光谱的知识.分光镜观察光谱要用分光镜,这里我们先讲一下分光镜的构造原理.图6-18是分光镜的构造原理示
按波长区域不同,光谱可分为红外光谱、可见光谱和紫外光谱;按产生的本质不同,可分为原子光谱、分子光谱;按产生的方式不同,可分为发射光谱、吸收光谱和散射光谱;按光谱表观形态不同,可分为线光谱、带光谱和连续光谱.色谱只是从红色到紫色之间一系列过渡色只有液相色谱法,如果是色谱的话根本上与液相毫无关系.
复色光经过色散系统(如棱镜、光栅)分光后,按波长(或频率)的大小依次排列的图案.例如,太阳光经过三棱镜后形成按红、橙、黄、绿、蓝、靛、紫次序连续分布的彩色光谱.红色到紫 色,相应于波长由7,700—3,900埃的区域,是为人眼所能感觉的可见部分.红端之外为波长更长的红外光,紫端之外则为波长更短的紫外光,都不能为肉眼所觉
1. 获准成为正式挂牌的国家级化学实验教学示范中心.   1993年"大学基础化学实验课体系改革的研究及实践"项目获国家级教学成果特等奖,西北大学是获奖单位之一.该成果提出"大改"、"中改"和"小改"三种模式,10多年来,"大改"方案一直引领国内化学实验教学改革的潮流.  1995年西北大学开始推行"大改"方案,所有实
光谱『spectrum』 光波是由原子内部运动的电子产生的.各种物质的原子内部电子的运动情况不同,所以它们发射的光波也不同.研究不同物质的发光和吸收光的情况,有重要的理论和实际意义,已成为一门专门的学科——光谱学.下面简单介绍一些关于光谱的知识. 分光镜观察光谱要用分光镜,这里我们先讲一下分光镜的构造原理.图6-18是
光谱『spectrum』光波是由原子内部运动的电子产生的.各种物质的原子内部电子的运动情况不同,所以它们发射的光波也不同.研究不同物质的发光和吸收光的情况,有重要的理论和实际意义,已成为一门专门的学科——光谱学.下面简单介绍一些关于光谱的知识.分光镜观察光谱要用分光镜,这里我们先讲一下分光镜的构造原理.图6-18是分光
光谱 光谱 光波是由原子内部运动的电子产生的.各种物质的原子内部电子的运动情况不同,所以它们发射的光波也不同.研究不同物质的发光和吸收光的情况,有重要的理论和实际意义,已成为一门专门的学科——光谱学.下面简单介绍一些关于光谱的知识. 分光镜观察光谱要用分光镜,这里我们先讲一下分光镜的构造原理.图6-18是分光镜的构造原明线光谱的介绍_百度知道
明线光谱的介绍
我有更好的答案
//c.baidu.hiphotos.baidu.com/zhidao/pic/item/241f95cad1c8a786e3c4f6dcf507f.baidu稀薄气体发光是由不连续的亮线组成,这种发射光谱又叫做明线光谱。
其他类似问题
明线的相关知识
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。当前位置:
>>>关于光谱,下列说法中正确的是A.炽热的液体发射明线光谱B.太阳光..
关于光谱,下列说法中正确的是 A.炽热的液体发射明线光谱 B.太阳光谱中的暗线说明太阳缺少与这些暗线对应的元素 C.明线光谱和暗线光谱都可以用于对物质成分进行分析 D.发射光谱一定是连续光谱
题型:单选题难度:中档来源:不详
C分析:光谱是复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案,发射光谱物体发光直接产生的光谱叫做发射光谱.发射光谱有两种类型:连续光谱和明线光谱;连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱;观察固态或液态物质的原子光谱,可以把它们放到煤气灯的火焰或电弧中去烧,使它们气化后发光,就可以从分光镜中看到它们的明线光谱.解答:解:A、连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱,如炽热的液体发射连续光谱.故A错误;B、太阳光谱是吸收光谱,其中的暗线,说明太阳中存在与这些暗线相对应的元素,故B错误;C、高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱.由狭窄谱线组成的光谱.单原子气体或金属蒸气所发的光波均有线状光谱,故线状光谱又称原子光谱.均能对物质进行分析,故C正确;D、发射光谱有两种类型:连续光谱和明线光谱;故D错误;故选:C点评:本题是考查光谱与光谱分析,要求学生理解与掌握,属于基础题.
马上分享给同学
据魔方格专家权威分析,试题“关于光谱,下列说法中正确的是A.炽热的液体发射明线光谱B.太阳光..”主要考查你对&&氢原子的能级,玻尔的原子理论&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
氢原子的能级玻尔的原子理论
氢原子的能级:
1、氢原子的能级图 2、光子的发射和吸收 ①原子处于基态时最稳定,处于较高能级时会自发地向低能级跃迁,经过一次或几次跃迁到达基态,跃迁时以光子的形式放出能量。 ②原子在始末两个能级Em和En(m&n)间跃迁时发射光子的频率为ν,其大小可由下式决定:hυ=Em-En。 ③如果原子吸收一定频率的光子,原子得到能量后则从低能级向高能级跃迁。 ④原子处于第n能级时,可能观测到的不同波长种类N为:。 ⑤原子的能量包括电子的动能和电势能(电势能为电子和原子共有)即:原子的能量En=EKn+EPn。轨道越低,电子的动能越大,但势能更小,原子的能量变小。 电子的动能:,r越小,EK越大。 氢原子的能级及相关物理量:
在氢原子中,电子围绕原子核运动,如将电子的运动看做轨道半径为r的圆周运动,则原子核与电子之间的库仑力提供电子做匀速圆周运动所需的向心力,那么由库仑定律和牛顿第二定律,有,则 ①电子运动速率②电子的动能③电子运动周期 ④电子在半径为r的轨道上所具有的电势能 ⑤等效电流由以上各式可见,电子绕核运动的轨道半径越大,电子的运行速率越小,动能越小,电子运动的周期越大.在各轨道上具有的电视能越大。
原子跃迁时光谱线条数的确定方法:
1.直接跃迁与间接跃迁原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁,两种情况辐射(或吸收)光子的频率可能不同。 2.一群原子和一个原子氧原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现了。 3.一群氢原子处于量子数为n的激发态时,可能辐射的光谱线条数如果氢原子处于高能级,对应量子数为n,则就有可能向量子数为(n一1),(n一2),(n一3)…1诸能级跃迁,共可形成(n一1)条谱线,而跃迁至量子数为(n一 1)的氢原子又可向(n一2),(n一3)…1诸能级跃迁,共可形成(n一2)条谱线。同理,还可以形成(n一3),(n 一4)…1条谱线。将以上分析结果归纳求和,则从量子数为n对应的能级向低能级(n—1),(n一2)…1跃迁可形成的谱线总条数为(n一1)+(n一2)+(n一3)+ …+1=n(n一1)/2。数学表示为4.一个氢原子处于量子数为n的激发态时,可能辐射的光谱线条数对于处于量子数为n的一个氢原子,它可能发生直接跃迁,只放出一个光子,也可能先跃迁到某个中间能级上,再跃迁回基态而放出两个光子,也可能逐级跃迁,即先跃迁到n一1能级上,再跃迁到n一2能级上, ……,最后回到基态上,共放出n—1个光子。即一个氢原子在发生能级跃迁时,最少放出一个光子,最多可放出n一1个光子。
利用能量守恒及氢原子能级特征解决跃迁电离等问题的方法:
在原子的跃迁及电离等过程中,总能量仍是守恒的。原子被激发时,原子的始末能级差值等于所吸收的能量,即入射光子的全部能量或者入射粒子的全部或部分能量;原子被电离时,电离能等于原子被电离前所处能级的绝对值,原子所吸收的能量等于原子电离能与电离后电离出的电子的动能之和;辐射时辐射出的光子的能量等于原子的始末能级差。氢原子的能级 F 关系为,第n能级与量子数n2成反比,导致相邻两能级间的能量差不相等,量子数n越大,相邻能级差越小,且第n能级与第n一1能级的差比第n能级与无穷远处的能级差大,即另外,能级差的大小故也可利用光子能量来判定能级差大小。跃迁与电离:
激发的方式:玻尔的原子理论:
玻尔的原子理论的成功与局限:
玻尔的原子理论第一次将量子观引入原子领域,提出定态和跃迁的概念,成功地解释了氢原子光谱规律,但玻尔引入的量子化观点并不完善。在量子力学中,核外电子并没有确定的轨道,玻尔的电子轨道只不过是电子出现概率较大的地方。把电子的概率分布用图像表示时,用小黑点的稠密程度代表概率的大小,其结果如同电子在原子核周围形成的云雾,称为“电子云
发现相似题
与“关于光谱,下列说法中正确的是A.炽热的液体发射明线光谱B.太阳光..”考查相似的试题有:
369759112157432961163337368803352240

我要回帖

更多关于 走明线 的文章

 

随机推荐