如图所示,物体A,B叠放在一起,放在倾角为θ的光滑斜面的倾角为上,A,B接触恰成水平, 已知θ等于30度,物体

高中物理 COOCO.因你而专业 !
你好!请或
使用次数:3
入库时间:
如图所示,有一倾角为θ的斜面体 B静置在水平地面上,物体A放在斜面上且与B保持相对静止。现对斜面体B施加向左的水平推力,使物体A和斜面体B一起向左做加速运动,加速度从零开始逐渐增大,直到A和B开始发生相对运动,则关于A物体受到B物体的支持力FN和摩擦力Ff,下列说法正确的是:
A.FN增大,Ff持续增大
B.FN不变,Ff不变
C.FN增大,Ff先减小后增大
D.FN减小,Ff先增大后减小
如果没有找到你要的试题答案和解析,请尝试下下面的试题搜索功能。百万题库任你搜索。搜索成功率80%如图所示,两长方体木块A和B叠放在光滑水平面上,质量分别为m和M,A与B之间的最大静摩擦力为f0,B与劲度系数为k的水平轻质弹簧连接构成弹簧振子.A和B&在振动过程中始终不发生相对滑动,则(  )A.A受到B的摩擦力Ff与B离开平衡位置位移x总满足f=-kmM+mxB.它们的最大加速度不能大于f0/MC.它们的振幅不可能大于0D.它们的振幅不可能大于0
点击展开完整题目
A.(选修模块3-3)(12分)(1)下列四幅图的有关说法中正确的是&&&&&&  A.分子间距离为r0时,分子间不存在引力和斥力B.水面上的单分子油膜,在测量油膜直径d大小时可把他们当做球形处理C.食盐晶体中的钠、氯离子按一定规律分布,具有空间上的周期性D.猛推木质推杆,气体对外界做正功,密闭的气体温度升高,压强变大(2)已知某物质摩尔质量为M,密度为ρ,阿伏加德罗常数为NA,则该物质的分子质量为&&&&&&,单位体积的分子数为&&&&&&.&(3)如图,一定质量的理想气体从状态A经等容过程变化到状态B,此过程中气体吸收的热量Q=6.0×102J,求:①该气体在状态A时的压强;②该气体从状态A到状态B过程中内能的增量。B.(选修模块3-4)(12分)(1)下列四幅图的有关说法中正确的是&&& && A.由两个简谐运动的图像可知:它们的相位差为/2或者 B.当球与横梁之间存在摩擦的情况下,球的振动不是简谐运动 C.频率相同的两列波叠加时,某些区域的振动加强,某些区域的振动减弱 D.当简谐波向右传播时,质点A此时的速度沿y轴正方向(2)1905年爱因斯坦提出的狭义相对论是以狭义相对性原理和&&&&&&&&&&&这两条基本假设为前提的;在相对于地面以0.8c运动的光火箭上的人观测到地面上的的生命进程比火箭上的生命进程要   (填快或慢)。(3)如图所示,△ABC为等腰直角三棱镜的横截面,∠C=90°,一束激光a沿平行于AB边射入棱镜,经一次折射后射到BC边时,刚好能发生全反射,求该棱镜的折射率n和棱镜中的光速。C.(选修模块3-5)(12分)(1)下列说法正确的是A.某放射性元素经过19天后,余下的该元素的质量为原来的1/32,则该元素的半衰期为 3.8天B.a粒子散射实验说明原子核内部具有复杂结构C.对放射性物质施加压力,其半衰期将减少D.氢原子从定态n=3跃迁到定态n= 2,再跃迁到定态n = 1,则后一次跃迁辐射的光的波长比前一次的要短(2)光电效应和&&&&&&&都证明光具有粒子性,&&&&&&提出实物粒子也具有波动性。(3)如图所示,水平光滑地面上依次放置着质量均为m ="0.08" kg的10块完全相同的长直木板。质量M =" 1.0" kg、大小可忽略的小铜块以初速度v0="6.0" m/s从长木板左端滑上木板,当铜块滑离第一块木板时,速度大小为v1="4.0" m/S。铜块最终停在第二块木板上。取g="10" m/s2,结果保留两位有效数字。求:①第一块木板的最终速度②铜块的最终速度
点击展开完整题目
A.(选修模块3-3)(12分)
(1)下列四幅图的有关说法中正确的是&&&&&&  
A.分子间距离为r0时,分子间不存在引力和斥力
B.水面上的单分子油膜,在测量油膜直径d大小时可把他们当做球形处理
C.食盐晶体中的钠、氯离子按一定规律分布,具有空间上的周期性
D.猛推木质推杆,气体对外界做正功,密闭的气体温度升高,压强变大
(2)已知某物质摩尔质量为M,密度为ρ,阿伏加德罗常数为NA,则该物质的分子质量为&&&&&&,单位体积的分子数为&&&&&&.&
(3)如图,一定质量的理想气体从状态A经等容过程变化到状态B,此过程中气体吸收的热量Q=6.0×102J,
①该气体在状态A时的压强;
②该气体从状态A到状态B过程中内能的增量。
B.(选修模块3-4)(12分)
(1)下列四幅图的有关说法中正确的是&&& &&
A.由两个简谐运动的图像可知:它们的相位差为/2或者
B.当球与横梁之间存在摩擦的情况下,球的振动不是简谐运动
C.频率相同的两列波叠加时,某些区域的振动加强,某些区域的振动减弱
D.当简谐波向右传播时,质点A此时的速度沿y轴正方向
(2)1905年爱因斯坦提出的狭义相对论是以狭义相对性原理和&&&&&&&&&&&这两条基本假设为前提的;在相对于地面以0.8c运动的光火箭上的人观测到地面上的的生命进程比火箭上的生命进程要   (填快或慢)。
(3)如图所示,△ABC为等腰直角三棱镜的横截面,∠C=90°,一束激光a沿平行于AB边射入棱镜,经一次折射后射到BC边时,刚好能发生全反射,求该棱镜的折射率n和棱镜中的光速。
C.(选修模块3-5)(12分)
(1)下列说法正确的是
A.某放射性元素经过19天后,余下的该元素的质量为原来的1/32,则该元素的半衰期为 3.8天
B.a粒子散射实验说明原子核内部具有复杂结构
C.对放射性物质施加压力,其半衰期将减少
D.氢原子从定态n=3跃迁到定态n= 2,再跃迁到定态n = 1,则后一次跃迁辐射的光的波长比前一次的要短
(2)光电效应和&&&&&&&都证明光具有粒子性,&&&&&&提出实物粒子也具有波动性。
(3)如图所示,水平光滑地面上依次放置着质量均为m
=&0.08& kg的10块完全相同的长直木板。质量M
=& 1.0& kg、大小可忽略的小铜块以初速度v0=&6.0& m/s从长木板左端滑上木板,当铜块滑离第一块木板时,速度大小为v1=&4.0& m/S。铜块最终停在第二块木板上。取g=&10& m/s2,结果保留两位有效数字。求:
①第一块木板的最终速度
②铜块的最终速度
点击展开完整题目
A.(选修模块3-3)(12分)(1)下列四幅图的有关说法中正确的是&&&&&&  A.分子间距离为r0时,分子间不存在引力和斥力B.水面上的单分子油膜,在测量油膜直径d大小时可把他们当做球形处理C.食盐晶体中的钠、氯离子按一定规律分布,具有空间上的周期性D.猛推木质推杆,气体对外界做正功,密闭的气体温度升高,压强变大(2)已知某物质摩尔质量为M,密度为ρ,阿伏加德罗常数为NA,则该物质的分子质量为&&&&&&,单位体积的分子数为&&&&&&.&(3)如图,一定质量的理想气体从状态A经等容过程变化到状态B,此过程中气体吸收的热量Q=6.0×102J,求:①该气体在状态A时的压强;②该气体从状态A到状态B过程中内能的增量。B.(选修模块3-4)(12分)(1)下列四幅图的有关说法中正确的是&&& && A.由两个简谐运动的图像可知:它们的相位差为/2或者 B.当球与横梁之间存在摩擦的情况下,球的振动不是简谐运动 C.频率相同的两列波叠加时,某些区域的振动加强,某些区域的振动减弱 D.当简谐波向右传播时,质点A此时的速度沿y轴正方向(2)1905年爱因斯坦提出的狭义相对论是以狭义相对性原理和&&&&&&&&&&&这两条基本假设为前提的;在相对于地面以0.8c运动的光火箭上的人观测到地面上的的生命进程比火箭上的生命进程要   (填快或慢)。(3)如图所示,△ABC为等腰直角三棱镜的横截面,∠C=90°,一束激光a沿平行于AB边射入棱镜,经一次折射后射到BC边时,刚好能发生全反射,求该棱镜的折射率n和棱镜中的光速。C.(选修模块3-5)(12分)(1)下列说法正确的是A.某放射性元素经过19天后,余下的该元素的质量为原来的1/32,则该元素的半衰期为 3.8天B.a粒子散射实验说明原子核内部具有复杂结构C.对放射性物质施加压力,其半衰期将减少D.氢原子从定态n=3跃迁到定态n= 2,再跃迁到定态n = 1,则后一次跃迁辐射的光的波长比前一次的要短(2)光电效应和&&&&&&&都证明光具有粒子性,&&&&&&提出实物粒子也具有波动性。(3)如图所示,水平光滑地面上依次放置着质量均为m ="0.08" kg的10块完全相同的长直木板。质量M =" 1.0" kg、大小可忽略的小铜块以初速度v0="6.0" m/s从长木板左端滑上木板,当铜块滑离第一块木板时,速度大小为v1="4.0" m/S。铜块最终停在第二块木板上。取g="10" m/s2,结果保留两位有效数字。求:①第一块木板的最终速度②铜块的最终速度
点击展开完整题目
第六部分 振动和波第一讲 基本知识介绍《振动和波》的竞赛考纲和高考要求有很大的不同,必须做一些相对详细的补充。一、简谐运动1、简谐运动定义:=&-k& & & & & & &①凡是所受合力和位移满足①式的质点,均可称之为谐振子,如弹簧振子、小角度单摆等。谐振子的加速度:=&-2、简谐运动的方程回避高等数学工具,我们可以将简谐运动看成匀速圆周运动在某一条直线上的投影运动(以下均看在x方向的投影),圆周运动的半径即为简谐运动的振幅A&。依据:x&=&-mω2Acosθ=&-mω2对于一个给定的匀速圆周运动,m、ω是恒定不变的,可以令:mω2&= k&这样,以上两式就符合了简谐运动的定义式①。所以,x方向的位移、速度、加速度就是简谐运动的相关规律。从图1不难得出——位移方程:&= Acos(ωt +&φ) & & & & & & & & & & & & & & & & & & & &②速度方程:&=&-ωAsin(ωt +φ) & & & & & & & & & & & & & & & & & &&③加速度方程:=&-ω2A cos(ωt +φ) & & & & & & & & & & & & & & & & &&④相关名词:(ωt +φ)称相位,φ称初相。运动学参量的相互关系:=&-ω2A =&tgφ=&-3、简谐运动的合成a、同方向、同频率振动合成。两个振动x1&= A1cos(ωt +φ1)和x2&= A2cos(ωt +φ2)&合成,可令合振动x = Acos(ωt +φ)&,由于x = x1&+ x2&,解得A =&&,φ= arctg&显然,当φ2-φ1&= 2kπ时(k = 0,±1,±2,…),合振幅A最大,当φ2-φ1&=&(2k + 1)π时(k = 0,±1,±2,…),合振幅最小。b、方向垂直、同频率振动合成。当质点同时参与两个垂直的振动x = A1cos(ωt +&φ1)和y = A2cos(ωt +&φ2)时,这两个振动方程事实上已经构成了质点在二维空间运动的轨迹参数方程,消去参数t后,得一般形式的轨迹方程为+-2cos(φ2-φ1) = sin2(φ2-φ1)显然,当φ2-φ1&= 2kπ时(k = 0,±1,±2,…),有y =&x&,轨迹为直线,合运动仍为简谐运动;当φ2-φ1&=&(2k + 1)π时(k = 0,±1,±2,…),有+= 1&,轨迹为椭圆,合运动不再是简谐运动;当φ2-φ1取其它值,轨迹将更为复杂,称“李萨如图形”,不是简谐运动。c、同方向、同振幅、频率相近的振动合成。令x1&= Acos(ω1t +&φ)和x2&= Acos(ω2t +&φ)&,由于合运动x = x1&+ x2&,得:x =(2Acost)cos(t +φ)。合运动是振动,但不是简谐运动,称为角频率为的“拍”现象。4、简谐运动的周期由②式得:ω=&&,而圆周运动的角速度和简谐运动的角频率是一致的,所以T = 2π& & & & & & & & & & & & & & & & & & & & & & & & & & &&⑤5、简谐运动的能量一个做简谐运动的振子的能量由动能和势能构成,即=&mv2&+&kx2&=&kA2注意:振子的势能是由(回复力系数)k和(相对平衡位置位移)x决定的一个抽象的概念,而不是具体地指重力势能或弹性势能。当我们计量了振子的抽象势能后,其它的具体势能不能再做重复计量。6、阻尼振动、受迫振动和共振和高考要求基本相同。二、机械波1、波的产生和传播产生的过程和条件;传播的性质,相关参量(决定参量的物理因素)2、机械波的描述a、波动图象。和振动图象的联系b、波动方程如果一列简谐波沿x方向传播,振源的振动方程为y = Acos(ωt + φ),波的传播速度为v ,那么在离振源x处一个振动质点的振动方程便是y = Acos〔ωt + φ -&·2π〕= Acos〔ω(t -&)+ φ〕这个方程展示的是一个复变函数。对任意一个时刻t ,都有一个y(x)的正弦函数,在x-y坐标下可以描绘出一个瞬时波形。所以,称y = Acos〔ω(t -&)+ φ〕为波动方程。3、波的干涉a、波的叠加。几列波在同一介质种传播时,能独立的维持它们的各自形态传播,在相遇的区域则遵从矢量叠加(包括位移、速度和加速度的叠加)。b、波的干涉。两列波频率相同、相位差恒定时,在同一介质中的叠加将形成一种特殊形态:振动加强的区域和振动削弱的区域稳定分布且彼此隔开。我们可以用波程差的方法来讨论干涉的定量规律。如图2所示,我们用S1和S2表示两个波源,P表示空间任意一点。当振源的振动方向相同时,令振源S1的振动方程为y1&= A1cosωt ,振源S1的振动方程为y2&= A2cosωt ,则在空间P点(距S1为r1&,距S2为r2),两振源引起的分振动分别是y1′= A1cos〔ω(t&?&)〕y2′= A2cos〔ω(t&?&)〕P点便出现两个频率相同、初相不同的振动叠加问题(φ1&=&&,φ2&=&),且初相差Δφ=&(r2&– r1)。根据前面已经做过的讨论,有r2&?&r1&= kλ时(k = 0,±1,±2,…),P点振动加强,振幅为A1&+ A2&;r2&?&r1&=(2k&?&1)时(k = 0,±1,±2,…),P点振动削弱,振幅为│A1-A2│。4、波的反射、折射和衍射知识点和高考要求相同。5、多普勒效应当波源或者接受者相对与波的传播介质运动时,接收者会发现波的频率发生变化。多普勒效应的定量讨论可以分为以下三种情况(在讨论中注意:波源的发波频率f和波相对介质的传播速度v是恒定不变的)——a、只有接收者相对介质运动(如图3所示)设接收者以速度v1正对静止的波源运动。如果接收者静止在A点,他单位时间接收的波的个数为f&,当他迎着波源运动时,设其在单位时间到达B点,则= v1&,、在从A运动到B的过程中,接收者事实上“提前”多接收到了n个波n =&=&=&显然,在单位时间内,接收者接收到的总的波的数目为:f + n =&f&,这就是接收者发现的频率f1&。即f1&=&f&显然,如果v1背离波源运动,只要将上式中的v1代入负值即可。如果v1的方向不是正对S&,只要将v1出正对的分量即可。b、只有波源相对介质运动(如图4所示)设波源以速度v2正对静止的接收者运动。如果波源S不动,在单位时间内,接收者在A点应接收f个波,故S到A的距离:= fλ&在单位时间内,S运动至S′,即= v2&。由于波源的运动,事实造成了S到A的f个波被压缩在了S′到A的空间里,波长将变短,新的波长λ′=&=&=&=&而每个波在介质中的传播速度仍为v&,故“被压缩”的波(A接收到的波)的频率变为f2&=&=&f&当v2背离接收者,或有一定夹角的讨论,类似a情形。c、当接收者和波源均相对传播介质运动当接收者正对波源以速度v1(相对介质速度)运动,波源也正对接收者以速度v2(相对介质速度)运动,我们的讨论可以在b情形的过程上延续…f3&=&&f2&=&f&关于速度方向改变的问题,讨论类似a情形。6、声波a、乐音和噪音b、声音的三要素:音调、响度和音品c、声音的共鸣第二讲 重要模型与专题一、简谐运动的证明与周期计算物理情形:如图5所示,将一粗细均匀、两边开口的U型管固定,其中装有一定量的水银,汞柱总长为L&。当水银受到一个初始的扰动后,开始在管中振动。忽略管壁对汞的阻力,试证明汞柱做简谐运动,并求其周期。模型分析:对简谐运动的证明,只要以汞柱为对象,看它的回复力与位移关系是否满足定义式①,值得注意的是,回复力系指振动方向上的合力(而非整体合力)。当简谐运动被证明后,回复力系数k就有了,求周期就是顺理成章的事。本题中,可设汞柱两端偏离平衡位置的瞬时位移为x&、水银密度为ρ、U型管横截面积为S&,则次瞬时的回复力ΣF =&ρg2xS =&x由于L、m为固定值,可令:&= k&,而且ΣF与x的方向相反,故汞柱做简谐运动。周期T&=&2π=&2π答:汞柱的周期为2π&。学生活动:如图6所示,两个相同的柱形滚轮平行、登高、水平放置,绕各自的轴线等角速、反方向地转动,在滚轮上覆盖一块均质的木板。已知两滚轮轴线的距离为L 、滚轮与木板之间的动摩擦因素为μ、木板的质量为m ,且木板放置时,重心不在两滚轮的正中央。试证明木板做简谐运动,并求木板运动的周期。思路提示:找平衡位置(木板重心在两滚轮中央处)→ú力矩平衡和Σ?F6= 0结合求两处弹力→ú求摩擦力合力…答案:木板运动周期为2π&。巩固应用:如图7所示,三根长度均为L = 2.00m地质量均匀直杆,构成一正三角形框架ABC,C点悬挂在一光滑水平轴上,整个框架可绕转轴转动。杆AB是一导轨,一电动松鼠可在导轨上运动。现观察到松鼠正在导轨上运动,而框架却静止不动,试讨论松鼠的运动是一种什么样的运动。解说:由于框架静止不动,松鼠在竖直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。设松鼠的质量为m ,即:N = mg & & & & & & & & & & & & & &①再回到框架,其静止平衡必满足框架所受合力矩为零。以C点为转轴,形成力矩的只有松鼠的压力N、和松鼠可能加速的静摩擦力f ,它们合力矩为零,即:MN&= Mf现考查松鼠在框架上的某个一般位置(如图7,设它在导轨方向上距C点为x),上式即成:N·x = f·Lsin60° & & & & & & & & ②解①②两式可得:f =&x ,且f的方向水平向左。根据牛顿第三定律,这个力就是松鼠在导轨方向上的合力。如果我们以C在导轨上的投影点为参考点,x就是松鼠的瞬时位移。再考虑到合力与位移的方向因素,松鼠的合力与位移满足关系——=&-k其中k =&&,对于这个系统而言,k是固定不变的。显然这就是简谐运动的定义式。答案:松鼠做简谐运动。评说:这是第十三届物理奥赛预赛试题,问法比较模糊。如果理解为定性求解,以上答案已经足够。但考虑到原题中还是有定量的条件,所以做进一步的定量运算也是有必要的。譬如,我们可以求出松鼠的运动周期为:T = 2π&= 2π&= 2.64s 。二、典型的简谐运动1、弹簧振子物理情形:如图8所示,用弹性系数为k的轻质弹簧连着一个质量为m的小球,置于倾角为θ
点击展开完整题目如图所示,物体A和B的质量分别为2kg和1kg,用跨过定滑轮的细线相连,静止地叠放在傾角为θ=30°的光滑斜面上,A与B间的动摩擦因数为,现有一平行于斜面向下的力F作用在物体B上,设最大静摩擦力等于滑动摩擦力,若要使物体运动,则F至少为(g=10m/s2).(  )A.20NB.22NC.11ND.17N★★★★★推荐试卷
解析质量好解析质量中解析质量差倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数为μ=0.5,现给A施以一水平力F,如图所示.设最大静摩擦力与滑动摩擦力相等(sin37°=0.6,cos37°=0.8),如果物体A能在斜面上静止,求水平推力F与G的比值范围.
答案加载中。。。
本题由精英家教网负责整理,如果本题并非您所查找的题目,可以利用下面的找答案功能进行查找,如果对本题疑问,可以在评论中提出,精英家教网的小路老师每天晚上都在线,陪您一起完成作业。你可以将你的习题集名称在评论中告诉我,我们将会在最短时间内把你的习题集解答整理并发布。
请选择年级高一高二高三请输入相应的习题集名称(选填):
科目:高中物理
如图所示,在倾角为37°的斜面上,固定一宽L=0.25m的平行金属导轨,在导轨上端接入电源和变阻器.电源电动势E=12V,内阻为r=1.0Ω.一质量m=20g的金属棒ab与两导轨垂直并接触良好.整个装置处于磁感强度B=0.80T、垂直于斜面向上的匀强磁场中(导轨与金属棒的电阻不计).金属导轨是光滑的,取g=10m/s2,且已知sin37°=0.60,cos37°=0.80,要保持金属棒静止在导轨上时,求:(1)回路中电流的大小;(2)滑动变阻器接入电路的阻值.
点击展开完整题目
科目:高中物理
在如图倾角为37°的斜面上,从A点以6m/s的速度水平抛出一小球,小球落在B点,如图所示,则小球刚落到斜面时的速度方向;AB两点间距离和小球在空中飞行时间,则以下说法正确的是(  )A.小球在空中飞行时间为0.85sB.AB两点距离为6.75mC.小球在B点时的速度方向与水平方向夹角的正切值为1.5D.到达B点时的速度为12m/s
点击展开完整题目
科目:高中物理
如图1所示,在表面粗糙、倾角为37°的斜面上,有一质量为m的物块,被平行于斜面的力F推着沿斜面向上运动,推力F与物块速度v随时间t变化的关系如图2所示.(g=10m/s2,sin37°=0.6).求:(1)物块的质量m;(2)t=2s时物块与斜面间摩擦力的功率P.
点击展开完整题目
科目:高中物理
如图所示,abcd为质量M=2kg的“”型导轨(电阻不计),放在光滑绝缘的、倾角为θ=37°的斜面上,另有一根质量m=1.2kg的截面为正方形的金属棒PQ平行于bc边放在导轨上面,PQ棒左侧靠着绝缘的垂直于斜面固定的光滑立柱e、f.导轨和金属棒都处于匀强磁场中,磁场以OO′为界,OO′左侧的磁场方向垂直于斜面向上,右侧的磁场方向沿斜面向下,磁感应强度大小都为B=1.0T.导轨的bc段长L=1.0m,棒PQ单位长度的电阻为r0=0.5Ω/m,金属棒与导轨始终接触良好,两者间的动摩擦因数μ=0.5.设导轨和光滑斜面都足够长,将导轨无初速释放,求(取g=10m/s2,sin37°=0.6,cos37°=0.8.图中MN、bc、OO′、PQ彼此平行且处在水平方向.导轨abcd不会因运动而变形.)(1)导轨运动的最大加速度;(2)导轨运动的最大速度.
点击展开完整题目
科目:高中物理
如图所示,质量mA=4kg的物体A放在倾角为θ=37°的斜面上时,恰好能匀速下滑.现用细线系住物体A,并平行于斜面向上绕过光滑的定滑轮,另一端系住物体B,释放后物体A沿斜面以加速度a=2m/s2匀加速上滑.(sin37°=0.6,cos37°=0.8)求:(1)物体A与斜面间的动摩擦因数;(2)细线对物体A的拉力;(3)物体B的质量.
点击展开完整题目如图所示,质量为mA=0.4kg的物体A与质量为mB=2kg的物体B叠放在倾角为30°的斜面上,物体B在平行于斜面向上的拉力F作用下运动,已知A、B总保持相对静止,若A、B间的动摩擦因数μ1=0.4,B与斜面间的动摩擦因数μ2=,(g取10N/kg),若整个装置沿斜面向上做匀加速运动,且AB恰好没有相对滑动.则:(1)此时AB间的摩擦力大小为多少?(2)拉力F为多少?&
解析质量好解析质量中解析质量差

我要回帖

更多关于 光滑斜面倾角为37 的文章

 

随机推荐