海信7.820.4885电源板有pfc电路原理的吗?

  本机型采用物料号为162036的板组件(RSAG2.908.4903-07)。
  产品功能、规格:    1、输入范围 :交流100V~240V 50/60Hz    2、最大输出功率:Poutmax=150W    3、电源额定输出功率:Pout=120W    4、接口:开发中心超薄电源标准接口    方案概述:    启动时,由100V-240V交流电压输入,首先将待机电源启动,12V输出给CPU供电,由CPU根据整机设定情况发出ON/OFF开机指令给电源,通过反馈回路将主电接通,100V-240V交流电压经整流输出,通过PFC电路将整流后的电压升到380V左右,通过LLC电路,经转换输出24V、16V(18V);
  电源结构框架图见图所示:
  分部原理说明:    1.本电源待机电源芯片介绍及工作原理:    (1)NCP1271是待机轻载时具有T-SKIP功能的控制芯片,各管脚功能见下表:
Skip/latch
SKIP等级调整脚和外部锁死输入脚
反馈脚,根据反馈环路所得到的控制输出驱动占空比
电流检测脚
驱动输出脚
芯片供电输入脚
高压输入启动脚
  (2)NCP1271工作原理介绍    NCP1271是由ON开发的新一代电流型PWM反激控制芯片,该芯片集成了高压启动和SOFT-SKIP待机功能,待机功耗非常小的同时保证了待机时电源小。    起动电路:    本电源系统中,NCP1271的启动电路是通过HV脚直接接大电解实现的,大电解通过HV内置的电流源给6脚VCC外接充电,为防止VCC引脚对地短路损坏电流源,当VCC引脚电压低于0.6V时,电流源电流维持在200微安,当VCC引脚电压高于0.6V以后,电流源开始正常给VCC充电至VCC启动电压后关闭。
  当外围电路出现故障,VCC电压掉到5.8V后芯片开始再次启动,如果外围故障依旧存在,启动不成功的话,NCP1271进入DOUBLE HCUP模式,下一次启动时无驱动输出,降低故障时电源损耗。
  软启功能:    NCP1271具有软启功能,芯片启动时有一软起电压VSS由0V在4毫秒内缓慢的上升到1V,VSS将和VFB/3比较,较小值将决定PWM占空比,减小了开机过程中的冲击。
  电流型PWM脉冲宽度    NCP1271是电流型定频PWM控制芯片,通过Rramp、Rcs检测初级电流和Vpwm进行比较,当电流检测电压达到Vpwm时,芯片停止驱动,等待下一个时钟开始。同时芯片具有逐个周期电流最大电流限制功能。
  斜坡补偿功能    电源工作在连续模式占空比超过50%会出现谐波振荡,导致系统工作不稳定,为了降低系统系统闭环增益,NCP1271内置了斜坡补偿功能。
  工作抖动功能    为了更好的解决问题,NCP1271增加了工作频率抖动功能,芯片工作频率以6毫秒为周期线性的变化,频率变化范围为正负7.5%。
  待机工作时SOFT-SKIP功能    为降低待机功率,NCP1271待机轻载时进入间歇工作模式,轻载时FB脚电压降低,当FB脚电压低于芯片一脚Skip/latch电压时芯片停止工作,级次电压降低、FB电压上升,重新达到Skip/latch脚电压时,芯片软启重新工作。和正常工作软启相比时间由4毫秒减少为300微秒。同时间歇工作模式峰值电流可以工作Skip/latch脚外接阻值进行调整。间歇工作模式电感峰值电流越大会增加待机工作电源噪声异响的风险,该芯片间歇工作模式电感最大峰值电流可以从0到100%正常最大峰值电流值之间调整,加上逐个跳频工作周期软启功能,有效的降低了电源待机工作时的噪音问题,同时降低了待机功耗。
  PFC部分    PFC(Power Factor Correction)即校正,主要用来表征电子产品对电能的利用效率。功率因数越高,说明电能的利用效率越高。该部分的作用为能够是输入电流跟随输入电压的变换。从电路上讲为,整流桥后大的电解的电压将不再随着输入电压的变化而变化,而是一个恒定的值。    PFC部分主控部分采用安森美公司的NCP1608,NCP1608是为临界导通升压模式工作的功率因数校正电路设计的。使用该芯片升压电路的输出电压可以恒定也可以跟随输入电压(仍比输入电压高),使用该芯片设计,外围电路简单且总体结构紧凑。芯片内部提供了多种保护功能。包括过压检测(防止输出电压因各种原因导致的失控)、逐脉冲地限制电流、乘法器输出限制MOS尖峰电流等。
  NCP1608是临界模式PFC控制器,其管脚定义及功能如下表所示:
反馈引脚,该引脚接受一个正比于PFC输出电压的电压信号,该电压用于输出调整、输出过压保护、输出欠压保护。
芯片内部误差运放的输出,外接一个补偿网络以设定回路的带宽。
输入电压检测,与2脚配合控制MOS导通时间
输入电流检测
过零点检测
芯片的驱动输出端。
芯片的供电脚。供电范围为:8.8V&20V,启动电压为12.5V。
  LLC部分    随着的发展,软开关技术得到了广泛的发展和应用,已研究出了不少高效率的电路拓扑,主要为谐振型的软开关拓扑和PWM型的软开关拓扑。近几年来,随着半导体器件制造技术的发展,开关管的导通,寄生电容和反向恢复时间越来越小了,这为谐振变换器的发展提供了又一次机遇。对于谐振变换器来说,如果设计得当,能实现软开关变换,从而使得开关电源具有较高的效率。    LLC谐振电路,是我们现在所说的LLC谐振半桥电路的一个通俗的叫法,由于谐振时由于有两个L及一个C发生谐振,故称LLC电路,因此并非是三个英文单词首字母的缩写。
  上图和下图分别给出了LLC谐振变换器的电路图和工作波形。上图中包括两个功率MOSFET(S1和S2),其占空比都为0.5;谐振电容Cs,副边匝数相等的中心抽头变压器Tr,Tr的漏感Ls,激磁电感Lm,Lm在某个时间段也是一个谐振电感,因此,在LLC谐振变换器中的谐振元件主要由以上3个谐振元件构成,即谐振电容Cs,电感Ls和激磁电感Lm;半桥全波整流D1和D2,输出电容Cf。    LLC变换器的稳态工作原理如下。    1、〔t1,t2〕当t=t1时,S2关断,谐振电流给S1的寄生电容放电,一直到S1上的电压为零,然后S1的体二级管导通。此阶段D1导通,Lm上的电压被输出电压钳位,因此,只有Ls和Cs参与谐振。    2、〔t2,t3〕当t=t2时,S1在零电压的条件下导通,变压器原边承受正向电压;D1继续导通,S2及D2截止。此时Cs和Ls参与谐振,而Lm不参与谐振。    3、〔t3,t4〕当t=t3时,S1仍然导通,而D1与D2处于关断状态,Tr副边与电路脱开,此时Lm,Ls和Cs一起参与谐振。实际电路中因此,在这个阶段可以认为激磁电流和谐振电流都保持不变。    4、〔t4,t5〕当t=t4时,S1关断,谐振电流给S2的寄生电容放电,一直到S2上的电压为零,然后S2的体二级管导通。此阶段D2导通,Lm上的电压被输出电压钳位,因此,只有Ls和Cs参与谐振。    5、〔t5,t6〕当t=t5时,S2在零电压的条件下导通,Tr原边承受反向电压;D2继续导通,而S1和D1截止。此时仅Cs和Ls参与谐振,Lm上的电压被输出电压箝位,而不参与谐振。    6、〔t6,t7〕当t=t6时,S2仍然导通,而D1和D2处于关断状态,Tr副边与电路脱开,此时Lm,Ls和Cs一起参与谐振。实际电路中因此,在这个阶段可以认为激磁电流和谐振电流都保持不变。    LLC谐振变换器是通过调节开关频率来调节输出电压的,也就是在不同的输入电压下它的占空比保持不变,与不对称半桥相比,它的掉电维持时间特性比较好,可以广泛地应用在对掉电维持时间要求比较高的场合。
本网站试开通微、小企业商家广告业务;维修点推荐项目。收费实惠有效果!欢迎在QQ或邮箱联系!
试试再找找您想看的资料
资料搜索:
查看相关资料 & & &
   同意评论声明
   发表
尊重网上道德,遵守中华人民共和国的各项有关法律法规
承担一切因您的行为而直接或间接导致的民事或刑事法律责任
本站管理人员有权保留或删除其管辖留言中的任意内容
本站有权在网站内转载或引用您的评论
参与本评论即表明您已经阅读并接受上述条款
匿名 发表于 学习了
copyright & &广电电器(中国梧州) -all right reserved& 若您有什么意见或建议请mail: & &
地址: 电话:(86)774-2826670&详细解析交流与直流及PC电源的主动与被动PFC电路_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
&&¥3.00
喜欢此文档的还喜欢
详细解析交流与直流及PC电源的主动与被动PFC电路
详​细​解​析​交​流​与​直​流​及​P​C​电​源​的​主​动​与​被​动​P​F​C​电​路
阅读已结束,如果下载本文需要使用
想免费下载本文?
把文档贴到Blog、BBS或个人站等:
普通尺寸(450*500pix)
较大尺寸(630*500pix)
你可能喜欢海信液晶电视电源板工作原理和维修技术实例分享
查看: 1430|
摘要: 对于海信液晶带有SMA—E1017的电源想来大家都非常熟悉,我不想多说,只是想介绍一下关于此类电源的一些典型故障的维修及其认识。 电源板炸件的问题: 对于炸件的机器,大家都比较敏感,特别是看到SMA—E1017炸掉,FQ ...
对于带有SMA—的电源想来大家都非常熟悉,我不想多说,只是想介绍一下关于此类电源的一些典型故障的维修及其认识。 电源板炸件的问题: 对于炸件的机器,大家都比较敏感,特别是看到SMA—E1017炸掉,FQA24N50击穿,在我们的心中就比较紧张,恐怕下次再开机时,还会出现这些原件再次炸掉的危险,甚至不知如何下手,才能将机器修好。 关于此类故障应该怎样维修,我想以下一些地方入手: 首先要分析一下元器件炸裂的原因,首先是PFC电路的场效应管为何击穿,究其原因无非两点:1.场效应管过流。2.场应管过压。我们知道场应管过流会损坏,为什么呢?因为在过流时,两个PN结会击穿,而更多的原因是由于Ton周期过长,场效应管在截止时反压过高而损坏。为什么呢?在硬开关中电路中,在开关管的集电极加上吸收回路来降低开关管截止时形成的高压。其电压的大小与电流的变化率成正比(正比于di/dt),也就是当开关管截止时,开关管的反压最高。对于软开关的电源又是如何呢,所谓软开关就是将开关管开关时的功耗降低趋向于0。{我们知道mosfet管的开关时呈阻性,在其饱和导通时呈低阻特性。在平板维修时我们会发现IRF7314,mosfet管的d、s两端的压降用我们的万用表是量不出来的,而普通三极管的饱和压降为0.3V。对于使用场效应管的开关电源,开关管之所以热,其原因就是因为其开关损耗严重。软开关是指ZCS(zero current switching零电流开关)和ZVS(zero voltage switching零电压开关)。}由上可知,开关管在截止时若使用软开关只能使用ZCS,在使用软开关时,开关在截止期间仍然有高压存在,而这个高压,只有零电流时出现。因为在谐振电路中,只有零电流时,电容和电感两端的电压达到最高。由此,我们可以知道当电流超过正常值时,开关管截止时的电压比正常时会高。当这个电压超过其极限值时就会击穿。也就是Ton的周期过长,会损坏开关管。我们修普通电源输出电压高,会损坏开关管原因就是如此。开关管过压会损坏,就不需要再说明了。 所以PFC电源炸件的问题如何解决应从如下入手: 开机炸件属于反馈检测电路有问题,其关键脚是9脚(pfb/ovp),该脚直接PFC输出电压的高低,及其过压保护。重点检查RE017、RE018这两个电阻阻值增大会出现PFC电压高,在早期的机器中出现比较多的是RE017、RE018阻值增大,造成CE019炸裂。还要注意CE017是否漏电。还有一个更为关键的脚就是10脚。该脚为CS,既然是CS而不是OCP,这就决定了它的功能是电流开关(CS为current switching电流开关,而ocp为over current protect 过流保护),该脚决定着Ton的时间,其中左边是一般PFC电源的原理图,右侧是PFC电流波形。由左图可知,PFC电源稳压主要是由输出电压的1/k分压后作为反馈量进行稳压的。
刚表态过的朋友 ()
discuz x3.2 Comsenz Inc.&& 是由85V-264V交流输入,共有5路输出。& 交流电压输入,首先将待机启动,5V输出给CPU供电,由CPU根据整机设定情况发出ON/OFF开机指令给电路,通过反馈回路将主电接通,85V-264V交流电压经整流输出,通过PFC电路将整流后的电压升到380V左右,此电压分成两路:一路通过双管正激,经转换输出24V、28V(或者14V),24V又经过DC/DC控制芯片输出12V;另一路经过待机电源控制电路,经变压器转换输出5V_S,5V_S经过一个开关电路输出5V_M,12V电压作为控制5V_M的控制电压,因此只有在12V正常输出后, 5V_M才能正常输出,5V_M的输出端接。因此只要发光正常发光,说明该电源板的5V_S、5V_M 、24V、12V电源都是正常输出的。(电源结构框架图见图1)
&&& 1)待机电源部分
待机电源部分主控电源管理芯片采用安森美公司的CP1207A,外置800V 3A的MOS管FQPF3N80C,变压器为T803,NCP1207A为准谐振控制芯片,其启动过程为:交流85V~264V输入电压经整流桥整流后,经整流二极管VD811、VZ805、R826进入N803(NCP1207A)的8脚(HV)端,在NCP1207A的内部通过一直流源电路给6脚(V)充电,当Vcc达到芯片启动电平时,NCP1207A开始工作。(以上元器件及其位号请参考原理图)
当待机5V(5V_S)无正常输出时,首先用示波器检测NCP1207A的Vcc供电是否正常,如Vcc供电出现锯齿波,请检测开关电源是否开路。
本待机部分产生待机5V(5V_S)电压和主5V(5V_M)电压,待机5V(5V_S)电压与主5V(5V_M)电压通过一开关V813连接,12V输出作为主5V的开关控制。
NCP1207A的各个引脚功能如下:
具有过压保护、过流保护、以及过热关断等保护电路。
&&&&& 2)PFC部分
&&&&& PFC(Power Factor Correction)即校正,主要用来表征电子产品对电能的利用效率。功率因数越高,说明电能的利用效率越高。该部分的作用为能够是输入电流跟随输入电压的变换。从电路上讲为,整流桥后大的电解的电压将不再随着输入电压的变化而变化,而是一个恒定的值。
,控制器,为有效驱动需要中高功率(100W至3kW)的连续导电模式(CCM)升压转换器而设计。除通常的固定输出电压控制外,它还以输出电压跟踪输入电压的形式工作,称为跟随升压。NCP1653尽管结构简单(8引脚封装),但具有许多较复杂控制器所含的功能:平均电流模式或电压模式控制、软启动、Vcc滞后欠压闭锁、欠压、过压和过载保护以及滞后热关机等。
反馈引脚,该引脚接受一个正比于PFC输出电压的电流信号,该电流用于输出调整、输出过压保护、输出欠压保护。
软启动端,该引脚端为低电平时,芯片驱动无输出
输入电压检测
输入电流检测
芯片的复用脚,如果在该引脚对地接一电容,则芯片工作在平均电流模式;如果未接电容则芯片工作于峰值电流模式。
芯片的驱动输出端。
芯片的供电脚。供电范围为:8.75V—18V,启动电压为13.25V。
& 双管正激部分为本电源的主电源部分,主要输出Inverter供电24V,伴音供电28V(或者14V),24V又经过DC/DC变化器LM2576转变为12V。其主控芯片为安森美公司的NCP1217A,由于NCP1217A只有一路驱动输出,而双管正激架构需要两个驱动输出以来驱动两个MOS管,所以由驱动变压器T804及其外围电路构成一驱动电路,将NCP1217A的驱动脉冲由一个驱动脉冲,由一路经变压器的两路输出变为两路。
&&&& 双管正激的工作原理为:以主输出24V输出为例,两个MOS管V805、V806同时导通或者同时截至,在V805、V806两个MOS管同时导通时,电源电压(PFC的输出电压380V)加到变压器T801的原边绕组上,由于MOS管导通,原边绕组很快有了感应,通过变压器耦合,次级也感应出感生电动势,次级二极管VD817导通,通过L807向电解C854充电。在截至的工作状态下,由于上一个工作时L807已经建立的电流通过VD816导通,构成了的续流电路。(以上元器件及其位号请参考原理图)
&&& NCP1217A的管脚功能为:
&&&& 3)保护电路部分
&&&& &&本电源板除芯片自身具有的保护功能外,还具有次级的短路的短路保护、过压保护、原边的欠压保护等保护功能。
&&&&&& 次级短路、过压保护
上述电路的开关控制是通过控制光藕的电流实现的,高电平时,三极管V816导致,光藕导通主电源处于工作状态。低电平时,三极管V816截至,光藕无电流通过,主电源处于停止工作状态。本电路用V810和V811两个和NPN三极管构成一具有功能的电路。当V811三极管基极出现一高电平时,该电路将被触发,将会使光藕发光二极管阳极拉低,光藕将停止工作,主电源停止工作。
(1)当24V 、28V、12V输出任何一路出现过压时,VZ811、VZ812、VZ813三个稳压二极管都会被相应的导通,通过分压和RC延迟,从而V811三极管基极出现高电平,保护电路触发。
(2)当主电源处于正常工作时,三极管V822的基极为低电平,V822饱和导通,如果饱和导通压降为0.2V,则V822的集电极电平为4.8V。正常工作时,三极管V823的基极电平为高电平状态,V823为截至状态,当24V、28V、12V任何一路电源出现对地短路时,由于V823基极出现低电平,三极管V823导通,从而触发三极管V811基极出现高电平。保护电路触发。
&注:三极管V822的作用为是保证只有在开机状态下保护电路才会起作用,并通过RC延迟,保证在开机时,保护电路不会误触发。
&&&&& 主5V独立的短路保护
如下图所示,变压器后经整流二极管,整流滤波(电容C842、电感L811、电容C843)后,输出5V_S电压供给主芯片CPU,在CPU在正常工作状态下,使12V电源正常输出,12V电源使MOS的G极出现一高电平,MOS导通,从而在MOS的S极出现5V_M电平,供给USB供电。在正常的工作状态下,三极管V812的C极电平为5V,B极电平被三极管VZ816嵌位为3.3V,由于PN结反向偏置,故三极管V812截至。在USB出现短路故障时,由于短路其输出端电平被拉低,三极管V812导通,MOS管G极出现低电平,MOS管截至,USB供电5V自动切断。由于R865的存在,此时切断USB的5V供电后,从而不会影响CPU供电5V和12V的供电。在故障解除后,三极管V812截至,MOS管G极出现高电平,MOS管导通,USB供电5V自动恢复。从而实现USB供电5V的独立、自恢复的短路保护
原边的欠压、PFC过压保护
&&&& 在正常工作时,由于整流桥输出电压在310V左右,会导致VZ805导通,电源控制芯片N803,正常工作。当输入电压跌至不足以导致稳压二极管VZ805导通时,对于PNP三极管V808及V817,由于其基极出现低电平,所以三级管V808及V817都导通,V808的导通导致N803的1脚电平出现高于N803过压保护点(7.2V)一高电平, 从而导致芯片过压保护,芯片N803停止工作。三极管V817的导通,会使三极管V807的基极出现一低电平,导致三级管V807截至,由于V807的截至,导致芯片N801的供电被切断,从而N801停止工作。由于N801及N803都停止工作,所以当输入欠压时,原边电解中即使存在电量,也无法输送至次级,从而实现了欠压保护也消除屏闪现象的出现。同时电路中R907、R908、R909、R841对于输出电解电容上的电压进行检测,当R909两端的电压超过15V时,三极管V819导通,三极管V817导通,三级管V807截至。从而切断V801的供电。从而防止电解电容上的电压继续升高,而起到PFC过压保护的目的。(以上元器件及其位号请参考原理图)
相关测试数据总结
STB3V24V28V12V5V_M
C809380VC809300V
(1)XP81210115V_S
220VN803NCP1207
(2)5V_SN80510.7V0.7V
(5)R847VD830
(6)R866R847
V805GDMOSD
C809300VR824
XP80612VGND
R82324V12V5V
VD830(1N5822)12V5V
VD804VD806
12V5V_M5.4V
a5V_M24V12V5V
b5V_S5V_M5V-S5V_M5V_M
cVZ80912VVZ8095V_M5.4V5.4V
注意:1) 由于该电源板设计有欠压保护电路,所以即使断电以后,电解C809中仍存有大量电荷(电压约300V),所以维修前请对C809放电处理(可以用电烙铁对其放电),且每次通电完毕后都需对C809进行放电处理,防止C809中的残余电荷,电击伤人。
&&&&& 2) 在5V_M或者5V_S空载的情况下,由于N801(NCP1653A)的Vcc电平有可能不能达到芯片的启动电压而无法启动,所以对于在220V输入电压情况下,如C809电平不能达到380V,请给5V-M或者5V_S增加一负载,使5V-M或者5V_S的负载电流至少为500mA。如在5V-M或者5V_S的负载电流为500mA的情况下,C809的电平仍不能达到380V,请检查N801(NCP1653)及其外围电路是否存在故障。&&
34V50VPFCR812C809PFCR808PFC433VPFC
本网站试开通微、小企业商家广告业务;维修点推荐项目。收费实惠有效果!欢迎在QQ或邮箱联系!
试试再找找您想看的资料
资料搜索:
查看相关资料 & & &
   同意评论声明
   发表
尊重网上道德,遵守中华人民共和国的各项有关法律法规
承担一切因您的行为而直接或间接导致的民事或刑事法律责任
本站管理人员有权保留或删除其管辖留言中的任意内容
本站有权在网站内转载或引用您的评论
参与本评论即表明您已经阅读并接受上述条款
不吹牛 发表于 顶一下
copyright & &广电电器(中国梧州) -all right reserved& 若您有什么意见或建议请mail: & &
地址: 电话:(86)774-2826670&

我要回帖

更多关于 三相pfc电路 的文章

 

随机推荐