element-zinc phosphate有什么zhuo yong

No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals
View Affiliations
Hide Affiliations
Affiliations:
a) Author to whom correspondence should be addressed. Electronic mail:
AIP Advances 1, 042143 (Thu Dec 01 00:00:00 UTC 2011);
Access full text
I have read the terms and conditions of &Ratings and Commenting&.
http://aip./content/aip/journal/adva/1/4/10.4136
Recommend This (0 Recommendations)
to Rate or Recommend this
A series of Nd:LuxY1-xVO4 (x = 0.10, 0.26, 0.41, 0.61, 0.67, 0.80) mixed laser crystals were grown and researched systematically, for the first time to our knowledge. Their thermal properties were investigated, including the specific heat,thermal expansion,thermal conductivity and the material constant. Their spectral properties were measured and their spectral parameters were calculated by J-O theory, including the absorptionspectrum,emission spectrum,fluorescence lifetime and emission cross section. In CW laser operation, a maximum output power of 3.1 W was obtained from the Nd:Lu0.10Y0.90VO4 mixed crystal, corresponding to an optical conversion efficiency of 51.7 %, and a slope efficiency of 59.8 %. When Cr:YAG crystal was used as the saturable absorber, passively Q-switched pulse laser operation was achieved for Nd:LuxY1-xVO4 series crystals. The best pulse performance came from Nd:Lu0.10Y0.90VO4 crystal, with the maximum pulse energy of 169 μJ and the highest peak power of 26.4 kW.
Received 19 September 2011
Accepted 27 October 2011
Published online 11 November 2011
Acknowledgments:
This work is supported by the National Natural Science Foundation of China (804074), Natural Science Foundation of Shandong Province, China (2009ZRB01907, ZR), Program for New Century Excellent Talents in University, and Independent Innovation Foundation of Shandong University (, , ).
Article outline:
I. INTRODUCTION
II. CRYSTAL GROWTH
III. THERMAL EXPERIMENT
A. Density
B. Specific heat
C. Thermal expansion
D. Thermal diffusion & thermal conductivity
E. Material constant
IV. SPECTRAL EXPERIMENT
A. Absorptionspectrum
B. Emission spectrum
C. Fluorescence lifetime
D. Spectrum parameter
V. LASER PERFORMANCE
A. CW operation
B. Passively Q-switched operation
VI. CONCLUSIONS
Key Topics
/content/aip/journal/adva/1/4/10.4136
Fields, M.
Birnbaum, and C. L.
Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
2. Antonio
Agnesi, Annalisa
Guandalini, and Giancarlo
Reali, “Efficient 671-nm pump source by intracavity doubling of a diode-pumped Nd :YVO4 laser,” J. Opt. Soc. Am. B 19, 1078–1082 (2002).
Ogilvy, Michael J.
Withford, Peter
Dekker and James A.
Piper, “Efficient diode double-end-pumped Nd:YVO4 laser operating at 1342 nm,” Opt. Express 11, 2411–2415 (2003).
Maunier, J. L.
Doualan, R.
Moncorgé, A.
Speghini, M.
Bettinelli, and E.
Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19, 1794–1800 (2002).
Liu, Huaijin
Zhang, Zhengping
Wang, Jiyang
Wang, Zongshu
Shao, Minhua
Jiang, and Horst
Weber, “Continuous-wave and pulsed laser performance of Nd:LuVO4 crystal,” Opt. Lett. 29, 168–170 (2004).
Zhao, H. J.
Zhang, J. Y.
Wang, H. K.
Kong, X. F.
Cheng, J. H.
Lin, X. B.
Wang, Z. S.
Shao, and M. H.
Jiang, “Growth and characterization of the new laser crystal Nd:LuVO4,” Opt. Mater. 26, 319–325 (2004).
7. Huaijin
Zhang, Junhai
Liu, Jiyang
Wang, Changqing
Zhu, Zongshu
Shao, Xianlin
Meng, Xiaobo
Hu, Minhua
Jiang, and Yuk Tak
Chow, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18–27 (2002).
Liu, Bernd
Ozygus, Suhui
Yang, Jurgen
Erhard, Ute
Seelig, Adalbert
Ding, and Horst
Weber, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. B. 20, 652–661 (2003).
Zagumennyi, V. G.
Ostroumov, I. A.
Shcherbakov, T.
Jensen, J. P.
Meyen, and G.
Huber, “The Nd:GdVO4 crystal: a new material for diode pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
Zhang, X. L.
Zhu, H. Z.
Dawes, C. Q.
Wang, and Y. T.
Chow, “Investigation on the growth and laser properties of Nd:GdVO4 single crystal,” Cryst. Res. Technol. 33, 801–806 (1998).
http://dx.doi.org/10.1002/(SICI)98)33:53.0.CO;2-C
11. Junhai
Liu, Xianlin
Meng, Zongshu
Shao, and Minhua
Jiang, “Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1-xVO4 crystals,” Appl. Phys. Lett. 83, 1289–1291 (2003).
12. Yonggui
Yu, Jiyang
Wang, Huaijin
Zhang, Haohai
Yu, Zhengping
Wang, Minhua
Jiang, Hairui
Xia, and R. I.
Boughton, “Growth and characterization of Nd:YxGd1-xVO4 series laser crystals,” J. Opt. Soc. Am. B. 25, 995–1001 (2008).
Li, Guiqiu
Li, Shengzhi
Zhao, Chao
Liu, and Huaijin
Zhang, “Enhancement of passively Q-switched performance at 1.34 μm with a class of Nd:GdxY1-xVO4 crystals,” Opt. Express. 18, 21551–21556 (2010).
14. Haohai
Yu, Huaijin
Zhang, Zhengping
Wang, Jiyang
Wang, Yonggui
Yu, Zongshu
Shao, and Minhua
Jiang, “Enhancement of passive Q-switching performance with mixed Nd:LuxGd1-xVO4 laser crystals,” Opt. Lett. 32, 2152–2154 (2007).
Zhang, Z. P.
Wang, J. Y.
Wang, Y. G.
Cheng, Z. S.
Shao, and M. H.
Jiang, “Characterization of mixed Nd:LuxGd1-xVO4 laser crystals,” J. Appl. Phys. 101, 113109 (2007).
Kong, L. J.
Qin, X. L.
Meng, Z. J.
Xiong, “Passive mode locking of a diode-pumped Nd:Gd0.64Y0.36VO4 laser with a GaAs saturable absorber mirror,” Appl. Phys. B 80, 475–477 (2005).
17. Haohai
Yu, Huaijin
Zhang, Zhengping
Wang, Jiyang
Wang, Yonggui
Yu, Dingyuan
Tang, Guoqiang
Luo, and Minhua
Jiang, “Passive mode-locking performance with a mixed Nd:Lu0.5Gd0.5VO4 crystal,” Opt. Express. 17, 3264–3269 (2009).
Xu, and B.
Zhao, “Continuous wave and passively Q-switched laser performance of the mixed crystal Nd:Lu0.15Y0.85VO4,” Laser Phys. Lett. 7, 339–342 (2010).
Li, Shengzhi
Zhao, Zhuang
Zhuo, and Kejian
Yang, “Passively mode-locked performance of a diode-pumped Nd:Lu0.15Y0.85VO4 laser,” J. Opt. Soc. Am. B. 26, 2445–2448 (2009).
Du, and T.
Li, “Passively Q-switched laser performance of Nd:Lu0.15Y0.85VO4 operating at 1.34 μm with a V:YAG saturable absorber,” Laser Physics 21, 61–65 (2011).
21. Shuaiyi
Zhang, Haitao
Huang, Mingjian
Xu, Jianqiu
Xu, Weibiao
Chen, Jingliang
He, and Bin
Zhao, “Continuous wave and passively Q-switched laser performance of the mixed crystal Nd:Lux(x=0.5)Y1-xVO4,” Opt. Commun. 284, 1342–1345 (2011).
Huang, S. Y.
Zhang, J. L.
Zhao, and J. L.
He, “the continuous-wave passive mode-locking operation of a diode-pumped mixed Nd:Lu0.5Y0.5VO4 laser,” Laser Phys. Lett. 8, 197–200 (2011).
Zhuo, S. G.
Jiang, C. X.
Zhao, and J. Z.
Chen, “Study of the laser performance of a novel mixed Nd:Y0.8Lu0.2VO4 crystal,” Laser Phys. Lett. 7, 116–119 (2010).
24. Zhuang
Zhuo, Shiguang
Li, Chunxia
Shan, Jianmin
Jiang, Bin
Zhao, Jian
Li, and Jianzhong
Chen, “Diode-end-pumped passively Q-switched Nd:Y0.8Lu0.2VO4 laser with Cr4+:YAG crystal,” Opt. Commun. 283, 1886–1888 (2010).
Shimamura, T.
Castel, A.
Latynina, P.
Molina, E. G.
Villora, P.
Mythili, P.
Veber, J. P.
Chaminade, A.
Funaki, T.
Hatanaka, and K.
Naoe, “Growth of {Tb3}[Sc2-xLux](Al3)O12 single crystals for visible-infrared optical isolators,” Cryst. Growth Des. 10, 3466–3470 (2010).
26. Huaijin
Zhang, Yonggui
Cheng, Jiyang
Wang, Xutang
Tao, Minhua
Jiang, and Huirui
Xia, “Thermal properties measurement and laser operation of a new Yb:Gd0.68Lu0.32VO4 crystal,” Opt. Express 16, 11481–11486 (2008).
Asundi, Y.
Chen, and Z.
Xiong, “Study of the mechanical properties of Nd:YVO4 crystal by use of laser interferometry and finite-element analysis,” Appl. Opt. 40, 1396–1403 (2001).
Cheng, H. J.
Zhang, Y. G.
Wang, X. T.
Tao, J. H.
Petrov, Z. C.
Ling, H. R.
Xia, and M. H.
Jiang, “Thermal properties and continuous-wave laser performance of Yb:LuVO4 crystal,” Appl. Phys. B 86, 681–685 (2007).
Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
Oflet, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
Krupke, “Induced-emission cross sections in neodymium laser glasses,” IEEE. J. Quantum. Electron. 10, 450–457 (1974).
Zhao, J. Y.
Wang, H. J.
Gao, H. R.
Xia, and R. I.
Boughton, “Lattice vibration and optical properties of crystalline Nd:KLu(WO4)2,” Chem. Phys. Lett. 450, 274 (2008).
Han, and G. F.
Wang, “Crystal growth and spectral properties of Nd3+:KY(WO4)2 crystal,” J. Crystal Growth 247, 551–554 (2003).
Zhao, H. J.
Zhang, Y. B.
Liu, J. Y.
Wang, X. G.
Xia, and M. H.
Jiang, “Spectroscopic characterization and laser performance of Nd:LuVO4 single crystal,” Opt. Mater. 28, 950–955 (2006).
Degnan, “Optimization of passively Q-Switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
http://aip./content/aip/journal/adva/1/4/10.4136
Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals
AIP Advances 1, 042143 (2011);
/content/aip/journal/adva/1/4/10.4136
/content/aip/journal/adva/1/4/10.4136
Data & Media loading...
Article metrics loading...
/content/aip/journal/adva/1/4/10.4136
/content/aip/journal/adva/1/4/10.4136
dcterms_title,dcterms_subject,pub_keyword
-contentType:Contributor -contentType:Concept -contentType:Institution
A series of Nd:LuxY1-xVO4 (x = 0.10, 0.26, 0.41, 0.61, 0.67, 0.80) mixed laser crystals were grown and researched systematically, for the first time to our knowledge. Their thermal properties were investigated, including the specific heat,thermal expansion,thermal conductivity and the material constant. Their spectral properties were measured and their spectral parameters were calculated by J-O theory, including the absorptionspectrum,emission spectrum,fluorescence lifetime and emission cross section. In CW laser operation, a maximum output power of 3.1 W was obtained from the Nd:Lu0.10Y0.90VO4 mixed crystal, corresponding to an optical conversion efficiency of 51.7 %, and a slope efficiency of 59.8 %. When Cr:YAG crystal was used as the saturable absorber, passively Q-switched pulse laser operation was achieved for Nd:LuxY1-xVO4 series crystals. The best pulse performance came from Nd:Lu0.10Y0.90VO4 crystal, with the maximum pulse energy of 169 μJ and the highest peak power of 26.4 kW.
Full text loading...
Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals
AIP Advances 1, 042143 (2011);
/content/aip/journal/adva/1/4/10.4136
/deliver/fulltext/aip/journal/adva/1/4/1.3664136.jsessionid=z_WtKDVXMG4iIj2eDmx-qL76.x-aip-live-06?itemId=/content/aip/journal/adva/1/4/10.4136&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
Most read this month
content/aip/journal/adva
Most cited this month
/recommendto/jsessionid=z_WtKDVXMG4iIj2eDmx-qL76.x-aip-live-06?webId=%2Fcontent%2Faip%2Fjournal%2Fadva&title=AIP+Advances&eissn=
AIP Advances & Recommend this title to your library
Access Key
FFree Content
OAOpen Access Content
SSubscribed Content
TFree Trial Content
This is a required field
Please enter a valid email address
Oops! This section
does not exist...Use the links on this page to find existing content.
Click here to download this PDF to your device.
752b8dbdd7fdb8b9568b5
journal.articlezxybnytfddd
Scitation: Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals
http://aip./content/aip/journal/adva/1/4/10.4136
SEARCH_EXPAND_ITEM
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.4136&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.4136'
Right1,Right2,Right3,
journal/journal.article
/content/aip/journal/adva/1/4/10.4136
aipadvances.aip.org/1/4/10.4136/Right1,Right2,Right3Correlation between Bond-Length Change and Vibrational Frequency Shift in Hydrogen-Bonded Complexes Revisited _Acta Phys Chim Sin
ISSN CN 11-1892/O6CODEN WHXUEU
499-503 &&&&doi:
10.3866/PKU.WHXB &&&&&&&&
COMMUNICATION
Correlation between Bond-Length Change and Vibrational Frequency Shift in Hydrogen-Bonded Complexes Revisited
ZHANG Yu, MA Ning,
College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, Henan Province, P. R. China
Full text:
The correlation between the X―H bond-length change and the corresponding X―H stretching frequency shift upon X ―H&&&Y (Y is an electron donor) hydrogen bond formation is the basis for the spectroscopic detection and investigation of the hydrogen bond. However, this view has been questioned in a recent report, suggesting that the widely accepted correlation between the bond-length change and the frequency shift in hydrogen-bonded complexes is unreliable (McDowell, S. A. C.; Buckingham, A. D. J. Am. Chem. Soc. 2005, 127, 15515.). In this work, several robust computational methods have been used to investigate this issue. The results clearly show that a computational artifact leads to the conclusion incorrectly reported by McDowell and Buckingham and that the correlation between the X―H bond-length change and the corresponding X―H stretching frequency shift is still very good in the hydrogen-bonded complexes studied.
Publication Date (Web):
Corresponding Authors: WANG Wei-Zhou Email:
The project was supported by the National Natural Science Foundation of China (), Aid Project for the Leading Young Teachers in Henan Provincial Institutions of Higher Education of China (2010GGJS-166), and Natural Science Foundation of Henan Educational Committee, China (, ).
Cite this article:
ZHANG Yu, MA Ning, WANG Wei-Zhou. Correlation between Bond-Length Change and Vibrational Frequency Shift in Hydrogen-Bonded Complexes Revisited[J]. Acta Phys. -Chim. Sin., 2012,28 (03): 499-503.
&& doi: 10.3866/PKU.WHXB
<INPUT type="hidden" value="I thought you might be interested in the article I found in the publication:《Acta Phys. -Chim. Sin.》 about “Hydrogen-bonded complex|Correlation|Bond-length change|Vibrational frequency shift|Density functional theory”. URL:" name="neirong">
(1) Desiraju, G. R. Angew. Chem. Int. Edit. 2011, 50, 52.&&
(2) Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P.; Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.; Nesbitt, D. J. Pure Appl. Chem. 2011, 83, 1619.&&
(3) Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253.&&
(4) Li, X.; Liu, L.; Schlegel, H. B. J. Am. Chem. Soc. 2002, 124, 9639.&&
(5) McDowell, S. A. C. Buckingham, A. D. J. Am. Chem. Soc. 2005, 127, 15515.&&
(6) Lu, P.; Lin, G. Q.; Li, J. C. Theochem 2005, 723, 95.&&
(7) Sun, T.;Wang, Y. B. Acta Phys. -Chim. Sin. 2011, 27, 2553. [孙涛, 王一波. 物理化学学报, 2011, 27, 2553.]
(8) Schwabe, T.; Grimme, S. Acc. Chem. Res. 2008, 41, 569.&&
(9) Sherrill, C. D. J. Chem. Phys. 2010, 132, 110902.&&
(10) Wang,W.; Zhang, Y.; Ji, B.; Tian, A. J. Chem. Phys. 2011, 134, 224303.&&
(11) S&ndorfy, C. J. Mol. Struct. 2006, 790, 50.&&
(12) Frisch, M. J.; Trucks, G.W.; Schlegel H. B.; et al. Gaussian 09, Revision C.01, Gaussian, Inc.,Wallingford CT, 2010.
(13) Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2, 1009.&&
(14) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.&&
(15) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.&&
(16) Grimme, S. J. Chem. Phys. 2006, 124, 034108.&&
(17) Schwabe, T.; Grimme, S. Phys. Chem. Chem. Phys. 2007, 9, 3397.
(18) Schwabe, T.; Grimme, S. Phys. Chem. Chem. Phys. 2006, 8, 4398.
(19) Pitoň&k, M.; Janowski, T.; Neogr&dy, P.; Pulay, P.; Hobza, P. J. Chem. Theory Comput. 2009, 5, 1761.
(20) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.&&
(21) Zhao, G. J.; Han, K. L. Acc. Chem. Res. 2011, ASAP, doi: 10.1021/ar200135h.

我要回帖

更多关于 zinc phosphate 的文章

 

随机推荐