一下是编译结果,请问是什么原因? 'totallines' - undeclared variableidentifier执行 cl.exe 时出错.

小木虫 --- 500万硕博科研人员喜爱的学术科研平台
&&查看话题
[求助成功]VASP 计算 graphene 的错误
最近组里买了VASP, 想测试一下计算graphene, 但是发现出现的问题不能理解, 拿出来让大家诊断一下.
(1) POSCAR 文件
8.000& && &-0.007& && & 0.000
0.001& && & 4.000& && & 0.000
0.000& && & 0.000& && &10.000
0.3015& &0.0345& &0.6670
0.2066& &0.0003& &0.6670
0.6035&&-0.9311& &0.6670
0.5084& &0.0345& &0.6670
0.3014& &0.0345& &0.6670
0.2066& &0.0003& &0.6670
0.6034&&-0.9312& &0.6670
0.5084& &0.0345& &0.6670
0.3015& &0.0345& &0.6670
0.2066& &0.0003& &0.6670
0.6035& &0.0688& &0.6670
0.5084& &0.0345& &0.6670
0.3014& &0.0343& &0.6670
0.2065& &0.0002& &0.6670
0.6035& &0.0688& &0.6670
0.5084& &0.0344& &0.6670
(2) KPOINTS文件
Automatic generation
1& && & 1& && & 1
0.0& &&&0.0& &&&0.0
(3) INCAR文件
SYSTEM = 341_graphene
ENCUT = 650
PREC= Normal
(4) POTCAR文件
用的是&&PAW C_GW_new 19Mar2012
(5) OUTCAR文件
vasp.5.2.11 18Jan11 complex
executed on& && && && & LinuxIFC date &&19:31:11
serial version
--------------------------------------------------------------------------------------------------------
POTCAR:& & PAW C_GW_new 19Mar2012& && && && && &
POTCAR:& & PAW C_GW_new 19Mar2012& && && && && &
& &VRHFIN =C: s2p2& && && && && && && && && && && && && && && && && && && && &&&
& &LEXCH&&= PE& && && && && && && && && && && && && && && && && && && && && && &
& &EATOM&&=& &147.1560 eV,& &10.8157 Ry& && && && && && && && && && && && && &&&
& && && && && && && && && && && && && && && && && && && && && && && && && && &&&
& &TITEL&&= PAW C_GW_new 19Mar2012& && && && && && && && && && && && && && && &
& &LULTRA =& && &&&F& & use ultrasoft PP ?& && && && && && && && && && && && &&&
& &IUNSCR =& && &&&1& & unscreen: 0-lin 1-nonlin 2-no& && && && && && && && && &
& &RPACOR =& & 0.800& & partial core radius& && && && && && && && && && && && &
& &POMASS =& &12.011; ZVAL& &=& & 4.000& & mass and valenz& && && && && && && &
& &RCORE&&=& & 1.600& & outmost cutoff radius& && && && && && && && && && && &&&
& &RWIGS&&=& & 1.600; RWIGS&&=& & 0.847& & wigner-seitz radius (au A)& && && &&&
& &ENMAX&&=&&413.992; ENMIN&&=&&310.494 eV& && && && && && && && && && && && &&&
& &ICORE&&=& && &&&3& & local potential& && && && && && && && && && && && && &&&
& &LCOR& &=& && &&&T& & correct aug charges& && && && && && && && && && && && &
& &LPAW& &=& && &&&T& & paw PP& && && && && && && && && && && && && && && && &&&
& &EAUG& &= & && && && && && && && && && && && && && && && && && && && &
& &DEXC& &=& & 0.000& && && && && && && && && && && && && && && && && && && && &
& &RMAX& &=& & 1.630& & core radius for proj-oper& && && && && && && && && && &
& &RAUG& &=& & 1.300& & factor for augmentation sphere& && && && && && && && &&&
& &RDEP& &=& & 1.601& & radius for radial grids& && && && && && && && && && && &
& &RDEPT&&=& & 1.200& & core radius for aug-charge& && && && && && && && && && &
& && && && && && && && && && && && && && && && && && && && && && && && && && &&&
& &Atomic configuration& && && && && && && && && && && && && && && && && && && &
& & 5 entries& && && && && && && && && && && && && && && && && && && && && && &
& &&&n&&l& &j& && && && &E& && &&&occ.& && && && && && && && && && && && && && &
& &&&1&&0&&0.50& && &-273.3789& &2.0000& && && && && && && && && && && && && &&&
& &&&2&&0&&0.50& && & -13.7508& &2.0000& && && && && && && && && && && && && &&&
& &&&2&&1&&0.50& && &&&-5.2854& &2.0000& && && && && && && && && && && && && &&&
& &&&3&&2&&1.50& && &&&-5.4423& &0.0000& && && && && && && && && && && && && &&&
& &&&4&&3&&2.50& && &&&-5.4423& &0.0000& && && && && && && && && && && && && &&&
& &Description& && && && && && && && && && && && && && && && && && && && && && &
& &&&l& && & E& && && &&&TYP&&RCUT& & TYP&&RCUT& && && && && && && && && && && &
& &&&0& & -13.7508457& &&&23&&1.200& && && && && && && && && && && && && && && &
& &&&0& &&&-7.5219285& &&&23&&1.200& && && && && && && && && && && && && && && &
& &&&0& & 272.1165200& &&&23&&1.300& && && && && && && && && && && && && && && &
& &&&1& &&&-5.2854382& &&&23&&1.500& && && && && && && && && && && && && && && &
& &&&1& & 108.8466080& &&&23&&1.500& && && && && && && && && && && && && && && &
& &&&2& &&&27.2116520& &&&23&&1.500& && && && && && && && && && && && && && && &
& &&&2& & 190.4815640& &&&23&&1.600& && && && && && && && && && && && && && && &
& &&&3& &&&54.4233040& &&&23&&1.400& && && && && && && && && && && && && && && &
&&local pseudopotential read in
&&partial core-charges read in
&&partial kinetic energy density read in
&&kinetic energy density of atom read in
&&atomic valenz-charges read in
&&non local Contribution for L=& && && &&&0&&read in
& & real space projection operators read in
&&non local Contribution for L=& && && &&&0&&read in
& & real space projection operators read in
&&non local Contribution for L=& && && &&&0&&read in
& & real space projection operators read in
&&non local Contribution for L=& && && &&&1&&read in
& & real space projection operators read in
&&non local Contribution for L=& && && &&&1&&read in
& & real space projection operators read in
&&non local Contribution for L=& && && &&&2&&read in
& & real space projection operators read in
&&non local Contribution for L=& && && &&&2&&read in
& & real space projection operators read in
& & PAW grid and wavefunctions read in
& &number of l-projection&&operators is LMAX&&=& && && &&&7
& &number of lm-projection operators is LMMAX =& && && & 19
&&PAW C_GW_new 19Mar2012& && && && && & :
energy of atom&&1& && & EATOM= -147.1560
kinetic energy error for atom=& & 0.0045 (will be added to EATOM!!)
POSCAR: C& && && && && && && && && && && && && &
&&positions in direct lattice
&&No initial velocities read in
exchange correlation table for&&LEXCH =& && &&&8
& &RHO(1)=& & 0.500& && & N(1)&&=& &&&2000
& &RHO(2)=&&100.500& && & N(2)&&=& &&&4000
--------------------------------------------------------------------------------------------------------
ion&&position& && && && && &nearest neighbor table
& &1&&0.083&&0.250&&0.227-& &8 1.42&&11 1.42& &3 1.42
& &2&&0.333&&0.000&&0.227-& &4 1.42& &3 1.42&&12 1.42
& &3&&0.167&&1.000&&0.227-& &9 1.42& &2 1.42& &1 1.42
& &4&&0.417&&0.250&&0.227-& &5 1.42& &2 1.42&&10 1.42
& &5&&0.583&&0.250&&0.227-& &4 1.42&&15 1.42& &7 1.42
& &6&&0.833&&0.000&&0.227-& &8 1.42& &7 1.42&&16 1.42
& &7&&0.667&&1.000&&0.227-&&13 1.42& &6 1.42& &5 1.42
& &8&&0.917&&0.250&&0.227-& &1 1.42& &6 1.42&&14 1.42
& &9&&0.083&&0.750&&0.227-&&16 1.42& &3 1.42&&11 1.42
&&10&&0.333&&0.500&&0.227-&&12 1.42&&11 1.42& &4 1.42
&&11&&0.167&&0.500&&0.227-& &1 1.42&&10 1.42& &9 1.42
&&12&&0.417&&0.750&&0.227-&&13 1.42&&10 1.42& &2 1.42
&&13&&0.583&&0.750&&0.227-&&12 1.42& &7 1.42&&15 1.42
&&14&&0.833&&0.500&&0.227-&&16 1.42&&15 1.42& &8 1.42
&&15&&0.667&&0.500&&0.227-& &5 1.42&&14 1.42&&13 1.42
&&16&&0.917&&0.750&&0.227-& &9 1.42&&14 1.42& &6 1.42
&&LATTYP: Found a simple orthorhombic cell.
ALAT& && & =& &&&4.
B/A-ratio&&=& &&&1.
C/A-ratio&&=& &&&2.
&&Lattice vectors:
A1 = (& &0.,&&-4.,& &0.)
A2 = (&&-8.,& &0.,& &0.)
A3 = (& &0.,& &0., -10.)
Subroutine PRICEL returns following result:
&&LATTYP: Found a simple orthorhombic cell.
ALAT& && & =& &&&2.
B/A-ratio&&=& &&&1.
C/A-ratio&&=& &&&4.
&&Lattice vectors:
A1 = (& &0.,&&-2.,& &0.)
A2 = (&&-4.,& &0.,& &0.)
A3 = (& &0.,& &0., -10.)
& &4 primitive cells build up your supercell.
Analysis of symmetry for initial positions (statically):
Routine SETGRP: Setting up the symmetry group for a
simple orthorhombic supercell.
Subroutine GETGRP returns: Found&&8 space group operations
(whereof&&2 operations were pure point group operations)
out of a pool of&&8 trial point group operations.
The static configuration has the point symmetry C_1h.
The point group associated with its full space group is D_2h.
Analysis of symmetry for dynamics (positions and initial velocities):
Subroutine DYNSYM returns: Found&&8 space group operations
(whereof&&2 operations were pure point group operations)
out of a pool of&&8 trial space group operations
(whereof&&2 operations were pure point group operations)
and found also& &&&4 'primitive' translations
The dynamic configuration has the point symmetry C_1h.
The point group associated with its full space group is D_2h.
KPOINTS: Automatic generation& && && && && && &&&
Automatic generation of k-mesh.
Subroutine IBZKPT returns following result:
===========================================
Found& && &1 irreducible k-points:
Following reciprocal coordinates:
& && && && &Coordinates& && && && && &Weight
&&0...000000& && &1.000000
Following cartesian coordinates:
& && && && &Coordinates& && && && && &Weight
&&0...000000& && &1.000000
--------------------------------------------------------------------------------------------------------
Dimension of arrays:
& &k-points& && && &&&NKPTS =& && &1& &k-points in BZ& &&&NKDIM =& && &1& &number of bands& & NBANDS=& &&&41
& &number of dos& && &NEDOS =& & 301& &number of ions& &&&NIONS =& &&&16
& &non local maximal&&LDIM&&=& && &7& &non local SUM 2l+1 LMDIM =& &&&19
& &total plane-waves&&NPLWV = 110592
& &max r-space proj& &IRMAX =& && &1& &max aug-charges& & IRDMAX=& &2769
& &dimension x,y,z NGX =& & 54 NGY =& &32 NGZ =& &64
& &dimension x,y,z NGXF=& &108 NGYF=& &64 NGZF=&&128
& &support grid& & NGXF=& &108 NGYF=& &64 NGZF=&&128
& &ions per type =& && && && &&&16
NGX,Y,Z& &is equivalent&&to a cutoff of&&10.54, 10.81, 10.64 a.u.
NGXF,Y,Z&&is equivalent&&to a cutoff of&&21.07, 21.63, 21.28 a.u.
I would recommend the setting:
& &dimension x,y,z NGX =& & 53 NGY =& &31 NGZ =& &62
SYSTEM =&&341_graphene& && && && && && && && && &
POSCAR =&&C& && && && && && && && && && && && && &
Startparameter for this run:
& &NWRITE =& && &2& & write-flag & timer
& &PREC& &= normal& & normal or accurate (medium, high low for compatibility)
& &ISTART =& && &0& & job& &: 0-new&&1-cont&&2-samecut
& &ICHARG =& && &2& & charge: 1-file 2-atom 10-const
& &ISPIN&&=& && &1& & spin polarized calculation?
& &LNONCOLLINEAR =& && &F non collinear calculations
& &LSORBIT =& && &F& & spin-orbit coupling
& &INIWAV =& && &1& & electr: 0-lowe 1-rand&&2-diag
& &LASPH&&=& && &F& & aspherical Exc in radial PAW
& &METAGGA=& && &F& & non-selfconsistent MetaGGA calc.
Electronic Relaxation 1
& &ENCUT&&=&&650.0 eV&&47.77 Ry& & 6.91 a.u.&&17.71 10.23 20.79*2*pi/ulx,y,z
& &ENINI&&=&&650.0& &&&initial cutoff
& &ENAUG&&= 1213.9 eV&&augmentation charge cutoff
& &NELM& &=& &&&60;& &NELMIN=&&2; NELMDL=&&0& &&&# of ELM steps
& &EDIFF&&= 0.1E-03& &stopping-criterion for ELM
& &LREAL&&=& && &F& & real-space projection
& &LCOMPAT=& && &F& & compatible to vasp.4.4
& &GGA_COMPAT&&= T& & GGA compatible to vasp.4.4-vasp.4.6
& &LMAXPAW& &&&= -100 max onsite density
& &LMAXMIX& &&&=& & 2 max onsite mixed and CHGCAR
& &VOSKOWN=& && &0& & Vosko Wilk Nusair interpolation
& &ROPT& &=& & 0.00000
Ionic relaxation
& &EDIFFG = 0.1E-02& &stopping-criterion for IOM
& &NSW& & =& && &0& & number of steps for IOM
& &NBLOCK =& && &1;& &KBLOCK =& && &1& & outer block
& &IBRION =& &&&-1& & ionic relax: 0-MD 1-quasi-New 2-CG
& &NFREE&&=& && &0& & steps in history (QN), initial steepest desc. (CG)
& &ISIF& &=& && &2& & stress and relaxation
& &IWAVPR =& && &0& & prediction:&&0-non 1-charg 2-wave 3-comb
& &ISYM& &=& && &2& & 0-nonsym 1-usesym 2-fastsym
& &LCORR&&=& && &T& & Harris-Foulkes like correction to forces
& &POTIM&&= 0.5000& & time-step for ionic-motion
& &TEIN& &=& & 0.0& & initial temperature
& &TEBEG&&=& & 0.0;& &TEEND&&=& &0.0 temperature during run
& &SMASS&&=&&-3.00& & Nose mass-parameter (am)
& &estimated Nose-frequenzy (Omega)& &=&&0.10E-29 period in steps =****** mass=&&-0.166E-26a.u.
& &NPACO&&=& & 256;& &APACO&&= 16.0&&distance and # of slots for P.C.
& &PSTRESS=& & 0.0 pullay stress
&&Mass of Ions in am
& &POMASS =&&12.01
&&Ionic Valenz
& &ZVAL& &=& &4.00
&&Atomic Wigner-Seitz radii
& &RWIGS&&=&&-1.00
&&virtual crystal weights
& &VCA& & =& &1.00
& &NELECT =& && &64.0000& & total number of electrons
& &NUPDOWN=& && &-1.0000& & fix difference up-down
DOS related values:
& &EMIN& &=&&10.00;& &EMAX& &=-10.00&&energy-range for DOS
& &EFERMI =& &0.00
& &ISMEAR =& &&&1;& &SIGMA&&=& &0.20&&broadening in eV -4-tet -1-fermi 0-gaus
Electronic relaxation 2 (details)
& &IALGO&&=& &&&38& & algorithm
& &LDIAG&&=& && &T& & sub-space diagonalisation (order eigenvalues)
& &LSUBROT=& && &T& & optimize rotation matrix (better conditioning)
& &TURBO& & =& && &0& & 0=normal 1=particle mesh
& &IRESTART =& && &0& & 0=no restart 2=restart with 2 vectors
& &NREBOOT&&=& && &0& & no. of reboots
& &NMIN& &&&=& && &0& & reboot dimension
& &EREF& &&&=& &0.00& & reference energy to select bands
& &IMIX& &=& && &4& & mixing-type and parameters
& &&&AMIX& &&&=& &0.40;& &BMIX& &&&=&&1.00
& &&&AMIX_MAG =& &1.60;& &BMIX_MAG =&&1.00
& &&&AMIN& &&&=& &0.10
& &&&WC& &=& &100.;& &INIMIX=& &1;&&MIXPRE=& &1
Intra band minimization:
& &WEIMIN = 0.0000& &&&energy-eigenvalue tresh-hold
& &EBREAK =&&0.61E-06&&absolut break condition
& &DEPER&&=& &0.30& &&&relativ break condition&&
& &TIME& &=& &0.40& &&&timestep for ELM
&&volume/ion in A,a.u.& && && && && &=& && &26.20& && & 176.80
&&Fermi-wavevector in a.u.,A,eV,Ry& &&&=& &0....765596
&&Thomas-Fermi vector in A& && && && & =& &1.994591
Write flags
& &LWAVE&&=& && &T& & write WAVECAR
& &LCHARG =& && &T& & write CHGCAR
& &LVTOT&&=& && &F& & write LOCPOT, total local potential
& &LVHAR&&=& && &F& & write LOCPOT, Hartree potential only
& &LELF& &=& && &F& & write electronic localiz. function (ELF)
& &LORBIT =& && &0& & 0 simple, 1 ext, 2 COOP (PROOUT)
Dipole corrections
& &LMONO&&=& && &F& & monopole corrections only (constant potential shift)
& &LDIPOL =& && &F& & correct potential (dipole corrections)
& &IDIPOL =& && &0& & 1-x, 2-y, 3-z, 4-all directions
& &EPSILON=&&1.0000000 bulk dielectric constant
Exchange correlation treatment:
& &GGA& &&&=& & --& & GGA type
& &LEXCH& &=& &&&8& & internal setting for exchange type
& &VOSKOWN=& && &0& & Vosko Wilk Nusair interpolation
& &LHFCALC =& &&&F& & Hartree Fock is set to
& &LHFONE&&=& &&&F& & Hartree Fock one center treatment
& &AEXX& & =& & 0.0000 exact exchange contribution
Linear response parameters
& &LEPSILON=& &&&F& & determine dielectric tensor
& &LRPA& & =& &&&F& & only Hartree local field effects (RPA)
& &LNABLA&&=& &&&F& & use nabla operator in PAW spheres
& &LVEL& & =& &&&F& & velocity operator in full k-point grid
& &LINTERFAST=& &F&&fast interpolation
& &KINTER&&=& &&&0& & interpolate to denser k-point grid
& &CSHIFT&&=0.1000& & complex shift for real part using Kramers Kronig
& &OMEGAMAX=&&-1.0& & maximum frequency
& &RTIME& &=& & 0.100 relaxation time in fs
Orbital magnetization related:
& &ORBITALMAG=& &&&F&&switch on orbital magnetization
& &LCHIMAG& &=& &&&F&&perturbation theory with respect to B field
--------------------------------------------------------------------------------------------------------
Static calculation
charge density and potential will be updated during run
non-spin polarized calculation
Variant of blocked Davidson
Davidson routine will perform the subspace rotation
perform sub-space diagonalisation
& & after iterative eigenvector-optimisation
modified Broyden-mixing scheme, WC =& && &100.0
initial mixing is a Kerker type mixing with AMIX =&&0.4000 and BMIX =& && &1.0000
Hartree-type preconditioning will be used
using additional bands& && && && &9
reciprocal scheme for non local part
use partial core corrections
calculate Harris-corrections to forces
& &(improved forces if not selfconsistent)
use gradient corrections
use of overlap-Matrix (Vanderbilt PP)
Methfessel and Paxton&&Order N= 1 SIGMA&&=& &0.20
--------------------------------------------------------------------------------------------------------
&&energy-cutoff&&:& && &650.00
&&volume of cell :& && &419.18
& && &direct lattice vectors& && && && && &&&reciprocal lattice vectors
& &&&8.&&0.&&0.& &&&0.&&0.&&0.
& &&&0.&&4.&&0.& &&&0.&&0.&&0.
& &&&0.&&0..& &&&0.&&0.&&0.
&&length of vectors
& &&&8.&&4..& &&&0.&&0.&&0.
k-points in units of 2pi/SCALE and weight: Automatic generation& && && && && && &&&
& &0...& && & 1.000
k-points in reciprocal lattice and weights: Automatic generation& && && && && && &&&
& &0...& && & 1.000
position of ions in fractional coordinates (direct lattice)
position of ions in cartesian coordinates&&(Angst):
--------------------------------------------------------------------------------------------------------
k-point&&1 :&&0..0000&&plane waves:& &15747
maximum number of plane-waves:& &&&15747
maximum index in each direction:
& &IXMAX=& &17& &IYMAX=& &10& &IZMAX=& &20
& &IXMIN=&&-17& &IYMIN=&&-10& &IZMIN=&&-20
WARNING: aliasing errors must be expected set NGX to&&70 to avoid them
WARNING: aliasing errors must be expected set NGY to&&42 to avoid them
WARNING: aliasing errors must be expected set NGZ to&&82 to avoid them
aliasing errors are usually negligible using standard VASP settings
and one can safely disregard these warnings
total amount of memory used by VASP on root node& & 94678. kBytes
========================================================================
& &base& && &:& && &30000. kBytes
& &nonl-proj :& && & 6424. kBytes
& &grid& && &:& && &47448. kBytes
& &one-center:& && &&&277. kBytes
& &wavefun& &:& && &10529. kBytes
Broyden mixing: mesh for mixing (old mesh)
& &NGX = 35& &NGY = 21& &NGZ = 41
&&(NGX&&=108& &NGY&&= 64& &NGZ&&=128)
&&gives a total of&&30135 points
initial charge density was supplied:
charge density of overlapping atoms calculated
number of electron& && &64.0000000 magnetization
keeping initial charge density in first step
--------------------------------------------------------------------------------------------------------
Maximum index for augmentation-charges& && && &2521 (set IRDMAX)
--------------------------------------------------------------------------------------------------------
First call to EWALD:&&gamma=& &0.237
Maximum number of real-space cells 2x 4x 2
Maximum number of reciprocal cells 3x 2x 4
& & FEWALD:&&cpu time& & 0.00: real time& & 0.01
----------------------------------------- Iteration& & 1(& &1)&&---------------------------------------
& & POTLOK:&&cpu time& & 0.94: real time& & 0.94
& & SETDIJ:&&cpu time& & 0.06: real time& & 0.06
----------------------------------------- Iteration& & 1(& &1)&&---------------------------------------
----------------------------------------- Iteration& & 1(& &1)&&---------------------------------------
----------------------------------------- Iteration& & 1(& &1)&&---------------------------------------
----------------------------------------- Iteration& & 1(& &1)&&---------------------------------------
& & POTLOK:&&cpu time& & 1.44: real time& & 1.44
& & SETDIJ:&&cpu time& & 0.08: real time& & 0.08
两种情况造成:
1,编译时的mpi和你现在的环境变量中的不是同一个mpi,而且你的脚本中没有mpi的信息
2,运行直接没有启动mpd(对某些是需要的),如果可以找到mpd命令,那么你在脚本中运行vasp之前的前一行,加上
建议:对于集群这样的问题很常见,你要编译好一个软件后,创建脚本,把所用的环境变量写进去,以后提交的时候就不会出现这样的问题。
下面是我的脚本可供参考:
#BSUB -n 8
#BSUB -app vasp
#BSUB -R "span"
#BSUB -o %J.out
#BSUB -e %J.err
#BSUB -a intelmpi
. /hptc_cluster3/application/compiler/intel/fce/10.1.015/bin/ifortvars.sh
. /hptc_cluster3/application/compiler/intel/cce/10.1.015/bin/iccvars.sh
. /hptc_cluster3/application/compiler/intel/mkl/10.1.1.019/tools/environment/mklvarsem64t.sh
. /hptc_cluster3/application/mpi/intel/3.2/bin64/mpivars.sh
mpirun.lsf&&vasp
这确实也是我的一个疑问. 按理, 我是用了mpi来编译的, 但是显然, OUTCAR文件的第三行说明这个还是serial version.
"vasp.5.2.11 18Jan11 complex
executed on& && && && & LinuxIFC date &&19:31:11
serial version"
对于VASP, 如何判断计算是并行还是串行的?
脚本应该不是问题, 我是用Intel64 hydra mpich来编译的, 每次登陆时会将环境变量加载了. 而且用同样的可执行程序和脚本, 另外的一个测试任务(不同体系)在计算中. 当然, 那个任务的计算速度和串行相比, 没有任何的提高. 我想肯定是编译的过程中有些问题的. 我待会将makefile贴出来.
对于这个graphene, 如果我将体系做小, 一个cell两个C原子, 那计算是可以进行完整的. 
所以我的怀疑是:
(1) 编译有问题, 至少在并行那一块有些问题;
(2) 计算文件, INCAR或者KPOINTS可能有些问题? 不管怎样, 48个C原子, 应该是可以处理的体系. 谁能帮着确认一下这点?
你是串行的,并行的你没有编译!
另外这里还有错误:
forrtl: severe (10): cannot overwrite existing file, unit 16, file /gubbins_data/lhuang4/vasp/graphene/341/DOSCAR
你先删除试试吧,
现在错误的原因基本出来了,你没有并行编译,是多个核分别运行vasp,在你只有几个原子的时候,很快就会算完,此时DOSCAR的写入不会有问题。但是当你的体系比较大的时候,其中一个核运行的时候占用了文件DOSCAR,此时另外一个核又要使用‘replace’状态来产生新的DOSCAR,很明显,占用的DOSCAR是不会被替换掉的,因此导致错误的产生。
你还是先学学怎么编译并行的软件把,至少vasp论坛里面是有的
每个软件有他自己使用的环境变量,自动加载的知识.bashrc的。很多时候我们使用不同的mpi编译软件,而bashrc只能指定一个mpi,这个时候就需要提交任务的时候把这个软件需要的环境变量加进去。
用MPI编译只是必要条件,但是并不是编译程并行版的充分条件,关键是有没有加类似于-DMPI之类的并行预编译参数~
研究生必备与500万研究生在线互动!
扫描下载送金币
浏览器进程
打开微信扫一扫
随时随地聊科研

我要回帖

更多关于 undeclared 的文章

 

随机推荐