1的两个立方虚根相加为什么1升等于多少立方分米–1

已知z1 , 是实系数一元二次方程的两个虚根
,w=a(√3+i)z1/z2
且|w| &=求:
(1)
实数a的取值范围;
(2)
| (a – 4 ) + ai |的最大值。
实系数一元二次方程的虚根互为共轭虚数,所以z2=z1~,因此
1)|w|=|a(√+i)z1/z2|
=|a|*|√3+i|*|z1|/|z2|
假设|w|=&1
---&2|a|=&1
---&-1/2=&a=&1/2
2)|(a-4)+ai|=√[(a-4)^2+a^2]=√(2a^2-8a+16)=√[2(a-2)^2+8]
由于二次函数f(a)=2(a-2)^2+8在a=&2时递减,所以-1/2=&a=&1/2时有f(1/2)=&f(a)=&f(-1/2)
因此f(a)有最大值f(-1/2)=12+1/2=25/2
y=√x在定义域内递增,所以|w|有最大值√(25/2)=(5/2)√2.
其他答案(共1个回答)
,
∴a=-1时,f(max)=26,|(a-4)+ai|的最大值=√26
w&0显然吧,因为w&0有y=-2sin|w|x在包含原点的区间是减,w=0显然不对
T=2π/w,所以T/2&=π/3-(-π/3)=2π/3,所以π/w&...
设w=|z|+ai(a∈R),i是虚数单位,z=(1+i)³/(1-i)²且|w|&2
(1)求实数a的取值范围 (2)求|w+a|的取...
取值范围应该是(π,2π)
楼上的解答如果带入5π进行检验,可知明显不成立
f(x)=cos[w(x+θ)]为奇函数,则wθ=kπ+1/2π
据已知,π/4不足f(x)的1/4周期,所以2π/4w&π/4,0&w&2。又因为f(x)=sinwt在[0,π/4] 上单调递增,所以最大值f(π/4)=√3...
解:1)由韦达定理得:a+b=-1
由题设3=|a-b|,所以有9=|a-b|²=|(a+b)²-4ab|=|1-4p|
大家还关注
确定举报此问题
举报原因(必选):
广告或垃圾信息
激进时政或意识形态话题
不雅词句或人身攻击
侵犯他人隐私
其它违法和不良信息
报告,这不是个问题
报告原因(必选):
这不是个问题
这个问题分类似乎错了
这个不是我熟悉的地区扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
下载作业帮安装包
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
怎样求1元2次方程的解!最好通俗点!
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
一元二次方程的解法 一、知识要点: 一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基 础,应引起同学们的重视. 一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2 的整式方程. 解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程.一元二次方程有四种解 法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法. 二、方法、例题精讲: 1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=m± . 例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以 此方程也可用直接开平方法解. (1)(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丢解) ∴x= ∴原方程的解为x1=,x2= (2) 9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2 方程左边成为一个完全平方式:(x+ )2= 当b2-4ac≥0时,x+ =± ∴x=(这就是求根公式) 例2.用配方法解方程 3x2-4x-2=0 将常数项移到方程右边 3x2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2 配方:(x-)2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2= . 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项 系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根. 例3.用公式法解方程 2x2-8x=-5 将方程化为一般形式:2x2-8x+5=0 ∴a=2, b=-8, c=5 b2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x= = = ∴原方程的解为x1=,x2= . 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让 两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个 根.这种解一元二次方程的方法叫做因式分解法. 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x2+3x=0 (3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学) (1)(x+3)(x-6)=-8 化简整理得 x2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解. (2)2x2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,x2=-是原方程的解. 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解. (3)6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x1=, x2=- 是原方程的解. (4)x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解. 小结: 一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般 形式,同时应使二次项系数化为正数. 直接开平方法是最基本的方法. 公式法和配方法是最重要的方法.公式法适用于任何一元二次方程(有人称之为万能法),在使用公式 法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程 是否有解. 配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法 解一元二次方程.但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方 法之一,一定要掌握好.(三种重要的数学方法:换元法,配方法,待定系数法). 例5.用适当的方法解下列方程.(选学) (1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0 (3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0 分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算.观察后发现,方程左边可用平方差 公式分解因式,化成两个一次因式的乘积. (2)可用十字相乘法将方程左边因式分解. (3)化成一般形式后利用公式法解. (4)把方程变形为 4x2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解. (1)4(x+2)2-9(x-3)2=0 [2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0 (5x-5)(-x+13)=0 5x-5=0或-x+13=0 ∴x1=1,x2=13 (2) x2+(2- )x+ -3=0 [x-(-3)](x-1)=0 x-(-3)=0或x-1=0 ∴x1=-3,x2=1 (3)x2-2 x=- x2-2 x+ =0 (先化成一般形式) △=(-2 )2-4 ×=12-8=4>0 ∴x= ∴x1=,x2= (4)4x2-4mx-10x+m2+5m+6=0 4x2-2(2m+5)x+(m+2)(m+3)=0 [2x-(m+2)][2x-(m+3)]=0 2x-(m+2)=0或2x-(m+3)=0 ∴x1= ,x2= 例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根. (选学) 分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我 们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方 法) [3(x+1)+2(x-4)][(x+1)+(x-4)]=0 即 (5x-5)(2x-3)=0 ∴5(x-1)(2x-3)=0 (x-1)(2x-3)=0 ∴x-1=0或2x-3=0 ∴x1=1,x2=是原方程的解. 例7.用配方法解关于x的一元二次方程x2+px+q=0 x2+px+q=0可变形为 x2+px=-q (常数项移到方程右边) x2+px+( )2=-q+()2 (方程两边都加上一次项系数一半的平方) (x+)2= (配方) 当p2-4q≥0时,≥0(必须对p2-4q进行分类讨论) ∴x=- ±= ∴x1= ,x2= 当p2-4q<0时,<0此时原方程无实根. 说明:本题是含有字母系数的方程,题目中对p, q没有附加条件,因此在解题过程中应随时注意对字母 取值的要求,必要时进行分类讨论. 练习: (一)用适当的方法解下列方程: 1. 6x2-x-2=0 2. (x+5)(x-5)=3 3. x2-x=0 4. x2-4x+4=0 5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0 (二)解下列关于x的方程 1.x2-ax+-b2=0 2. x2-( + )ax+ a2=0 练习参考答案: (一)1.x1=- ,x2= 2.x1=2,x2=-2 3.x1=0,x2= 4.x1=x2=2 5.x1=x2= 6.(把2x+3看作一个整体,将方程左边分解因式) [(2x+3)+6][(2x+3)-1]=0 即 (2x+9)(2x+2)=0 ∴2x+9=0或2x+2=0 ∴x1=-,x2=-1是原方程的解. (二)1.x2-ax+( +b)( -b)=0 2、x2-(+ )ax+ a· a=0 [x-( +b)] [x-( -b)]=0 (x- a)(x-a)=0 ∴x-( +b)=0或x-( -b) =0 x- a=0或x-a=0 ∴x1= +b,x2= -b是 ∴x1= a,x2=a是 原方程的解. 原方程的解. 测试 选择题 1.方程x(x-5)=5(x-5)的根是( ) A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5 2.多项式a2+4a-10的值等于11,则a的值为( ). A、3或7 B、-3或7 C、3或-7 D、-3或-7 3.若一元二次方程ax2+bx+c=0中的二次项系数,一次项系数和常数项之和等于零,那么方程必有一个 根是( ). A、0 B、1 C、-1 D、±1 4. 一元二次方程ax2+bx+c=0有一个根是零的条件为( ). A、b≠0且c=0 B、b=0且c≠0 C、b=0且c=0 D、c=0 5. 方程x2-3x=10的两个根是( ). A、-2,5 B、2,-5 C、2,5 D、-2,-5 6. 方程x2-3x+3=0的解是( ). A、 B、 C、 D、无实根 7. 方程2x2-0.15=0的解是( ). A、x= B、x=- C、x1=0.27, x2=-0.27 D、x1=, x2=- 8. 方程x2-x-4=0左边配成一个完全平方式后,所得的方程是( ). A、(x-)2= B、(x- )2=- C、(x- )2= D、以上答案都不对 9. 已知一元二次方程x2-2x-m=0,用配方法解该方程配方后的方程是( ). A、(x-1)2=m2+1 B、(x-1)2=m-1 C、(x-1)2=1-m D、(x-1)2=m+1 答案与解析 答案:1.C 2.C 3.B 4.D 5.A 6.D 7.D 8.C 9.D 解析: 1.分析:移项得:(x-5)2=0,则x1=x2=5, 注意:方程两边不要轻易除以一个整式,另外一元二次方程有实数根,一定是两个. 2.分析:依题意得:a2+4a-10=11, 解得 a=3或a=-7. 3.分析:依题意:有a+b+c=0, 方程左侧为a+b+c, 且具仅有x=1时, ax2+bx+c=a+b+c,意味着当x=1 时,方程成立,则必有根为x=1. 4.分析:一元二次方程 ax2+bx+c=0若有一个根为零, 则ax2+bx+c必存在因式x,则有且仅有c=0时,存在公因式x,所以 c=0. 另外,还可以将x=0代入,得c=0,更简单! 5.分析:原方程变为 x2-3x-10=0, 则(x-5)(x+2)=0 x-5=0 或x+2=0 x1=5, x2=-2. 6.分析:Δ=9-4×3=-3<0,则原方程无实根. 7.分析:2x2=0.15 x2= x=± 注意根式的化简,并注意直接开平方时,不要丢根. 8.分析:两边乘以3得:x2-3x-12=0,然后按照一次项系数配方,x2-3x+(-)2=12+(- )2, 整理为:(x-)2= 方程可以利用等式性质变形,并且 x2-bx配方时,配方项为一次项系数-b的一半的平方. 9.分析:x2-2x=m, 则 x2-2x+1=m+1 则(x-1)2=m+1. 中考解析 考题评析 1.(甘肃省)方程的根是( ) (A) (B) (C) 或 (D) 或 评析:因一元二次方程有两个根,所以用排除法,排除A、B选项,再用验证法在C、D选项中选出正确 选项.也可以用因式分解的方法解此方程求出结果对照选项也可以.选项A、B是只考虑了一方面忘记了一元 二次方程是两个根,所以是错误的,而选项D中x=-1,不能使方程左右相等,所以也是错误的.正确选项为 C. 另外常有同学在方程的两边同时除以一个整式,使得方程丢根,这种错误要避免. 2.(吉林省)一元二次方程的根是__________. 评析:思路,根据方程的特点运用因式分解法,或公式法求解即可. 3.(辽宁省)方程的根为( ) (A)0 (B)–1 (C)0,–1 (D)0,1 评析:思路:因方程为一元二次方程,所以有两个实根,用排除法和验证法可选出正确选项为C,而A、 B两选项只有一个根.D选项一个数不是方程的根.另外可以用直接求方程根的方法. 4.(河南省)已知x的二次方程的一个根是–2,那么k=__________. 评析:k=4.将x=-2代入到原方程中去,构造成关于k的一元二次方程,然后求解. 5.(西安市)用直接开平方法解方程(x-3)2=8得方程的根为( ) (A)x=3+2 (B)x=3-2 (C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2 评析:用解方程的方法直接求解即可,也可不计算,利用一元二次方程有解,则必有两解及8的平方 根,即可选出答案. 课外拓展 一元二次方程 一元二次方程(quadratic equation of one variable)是指含有一个未知数且未知数的最高次项是二 次的整式方程. 一般形式为 ax2+bx+c=0, (a≠0) 在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它 的倒数之和等于 一个已给数,即求出这样的x与,使 x=1, x+ =b, x2-bx+1=0, 他们做出( )2;再做出 ,然后得出+ 及 - .可见巴比伦人已知道一元二次 方程的求根公式.但他们当时并不接受 负数,所以负根是略而不提的. 埃及的纸草文书中也涉及到最简单的二次方程,例如:ax2=b. 在公元前4、5世纪时,我国已掌握了一元二次方程的求根公式. 希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中 之一. 公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程x2+px+q=0的一个求根公 式. 在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种 不同的形式,令 a、b、c为正数,如ax2=bx、ax2=c、 ax2+c=bx、ax2+bx=c、ax2=bx+c 等.把二次方程分成 不同形式作讨论,是依照丢番图的做法.阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一 次 给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识.十六世纪意大利的 数学家们为了解三次方程而开始应用复数根. 韦达()除已知一元方程在复数范围内恒有解外,还给出根与系数的关系. 我国《九章算术.勾股》章中的第二十题是通过求相当于 x2+34x-71000=0的正根而解决的.我国数学 家还在方程的研究中应用了内插法.
为您推荐:
其他类似问题
书上有求根公式啊
能因式分解的就因式分解,不能因式分解的用公式算判别式b^2-4ac小于0时无解,大于等于0套公式:x=(-b+/-根号(b&sup2;-4ac))/2a
通俗的讲就是把包含X平方的算式,变成只包含X的两个算式相乘的形式。如:X2-2X+3=0变成(X-3)(X+1)=0根就是使这个等式可以等于0的X两个括号相乘等于,那么必定是其中一个或者两个是零。所以解是X=3或X=-1
方程有四种解 法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。 二、方法、例题精讲: 1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=m± . 例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11 分析:(...
扫描下载二维码通过两个定点A ( a,0 ),A 1 ( a,a ),且在y轴上截得的弦长等于2 | a |的圆的方程是( )(A)2 x2 + 2 y2 + a x–2 a y –3 a2 = 0 ? (B)2 x2 + 2 y2–a x–2 a y –3 a2 = 0(C)4 x2 + 4 y2 + a x–4 a y –3 a2 = 0 (D)4 x2 + 4 y2–a x–4 a y –3 a2 = 0相关试题&#xe621; 上传我的文档
&#xe602; 下载
&#xe60c; 收藏
该文档贡献者很忙,什么也没留下。
&#xe602; 下载此文档
正在努力加载中...
【精品】高考新题型巧解点悟专题十五复数思想
下载积分:760
内容提示:【精品】高考新题型巧解点悟专题十五复数思想
文档格式:DOC|
浏览次数:1|
上传日期: 02:20:14|
文档星级:&#xe60b;&#xe612;&#xe612;&#xe612;&#xe612;
全文阅读已结束,如果下载本文需要使用
&#xe71b; 760 积分
&#xe602;下载此文档
该用户还上传了这些文档
【精品】高考新题型巧解点悟专题十五复数思想
官方公共微信0.999……等于1么?这个问题有什么意义?
这周我(原文作者,下同)在IO9发了一篇问答,其中一个问题是:无限循环数如何相加才能得到一个有限数的和?
这是芝诺悖论后又一个困扰着诸多数学家们的难题。在芝诺悖论中,一个人如果要过街,他首先走完总程的1/2,接着走完剩下1/2的1/2,以此类推,无穷尽也。几个月前有一个视频认为:
1 + 2 + 3 + ….的和为-1/12,一时间被疯狂转载,网络上顿时掀起热烈讨论。()
不过说到无穷数谜,大多数人第一次遇到的就是:0.999……无限重复下去,最后会等于1么?
从魔兽世界游戏中的留言板到安·德兰论坛,大家对这个问题的争论非常火爆。对于芝诺悖论,大多数人都觉得题中人最后会到达街对过。可同样的情形放到循环小数里,直觉就会告诉你0.999……怎么也不会等于1啊。光是看就知道0.999……比1小,但是差的却不多……大家都认为0.999……这个数只是不断接近目标,却永远也不会达到。
不过,他们的老师(包括我在内),会说:错,0.999……就是1。
想要说服人们站到我这边,我就要用下面的方法:
众所周知, 0.33333……=1/3
两边同时乘以3得到0.999… = 3 / 3 = 1
如果这还不足以让你动摇,试试把0.999…乘上10,也就是将小数点向右挪了一位,所以我们得到了
10 x (0.999…) = 9.999…
现在把两边的烦人小数都去掉,我们在等式两边同时减去0.999……
10 x (0.999…) - 1 x (0.999…) = 9.999… - 0.999…..
得到了9 x (0.999…) = 9.
什么数乘以9会等于9?自然是1。
对于大部分人,这种证明方法就足够了。但是老实说,这套证明体系缺了点什么,也没有真正解决0.999……=1的不确定。事实上这种手段只是用了些代数上的小把戏,你不会真的以为1/3=0.333……吧?
比起相信1/3=0.333……,其实还有更可怕的:
1 + 2 + 4 + 8 + 16 + …?
省略号在这里的意思是相加过程会永远持续下去,每次相加的数字大小都是上一次的两倍。这么大的和毋庸置疑应该是无穷大了。但是你试试乘以2,会发生什么?
2 x (1 + 2 + 4 + 8 + 16 + ….) = 2 + 4 + 8 + 16 + …
好像和原来的和差不多,只是(1 + 2 + 4 + 8 + 16 + …)前面多了个1,所以(2 + 4 + 8 + 16 + …)比(1 + 2 + 4 + 8 + 16 + …)小1,换句话说:
2 x (1 + 2 + 4 + 8 + 16 + …) - 1 x (1 + 2 + 4 + 8 + 16 + …) = -1
相减得到:
1 + 2 + 4 + 8 + 16 + … = -1
将越来越大的数字相加无限次,结果却等于-1?
更疯狂了来了,求下列无穷和:
1 – 1 + 1 – 1 + 1 – 1 + …
有人会这样理解:
(1-1) + (1-1) + (1-1) + … = 0 + 0 + 0 + …
除了上面这种和为0的观点,还有一种理念认为应该这样看待算式:
1 - (1 - 1) - (1 - 1) - (1 - 1) - … = 1 – 0 – 0 – 0 …
结果和为1,到底是0还是1?还是“一半时间是0,一半时间是1?”最后的值是多少取决于你停在那里,但是无穷和是不会停的!
先不要着急下结论,我们先假设T是这个神秘的和:
T = 1 – 1 + 1 – 1 + 1 – 1 + …
两边同时取负
-T = -1 + 1 - 1 + 1 - …
我们注意到右边刚好是T-1,也就是说:
-T = -1 + 1 - 1 + 1 - … = T - 1
所以 -T = T - 1,这个方程只有当T=1/2时才有解。一个由许多整数相加的无穷和到最后竟然神奇地出现了分数解?
你是不是还是觉得没有道理?但是包括意大利数学家格兰迪在内的一些人表示1 - 1 + 1 - 1 + 1 - 1 + …最后会出现分数解,许多时候,人们将1 - 1 + 1 - 1 + 1 - 1 + …称为格兰迪级数。在1703年发表的一份文章中,格兰迪认为这个发散级数的和应为1/2,这个不可思议的结论也代表了宇宙从无到有的造物过程,许多当时的著名数学家,包括莱布尼茨和欧拉都赞同格兰迪的计算,不过不包括他的证明过程。
实际上,0.999……之谜的答案还需要更深入的探索。你无须勉强同意我的代数解法,你完全可以坚持认为0.999…不等于1,而等于1减去一个无穷小的数。既然说到这里,0.333……同样不等于1/3,同样差无穷小的那么一点点。要证明这点需要一点力气,不过也不是做不到。在数学领域,非标准分析这门学科就是专门研究这种数字问题的。非标准分析理论由亚伯拉罕·罗宾逊在20世纪中期创立,也正是非标准分析的出现,人们才终于搞清楚了无穷数的概念。要研究无穷数,你不仅要研究无穷小数,还要研究无穷大数。
好吧,回到我们的问题上来,0.999… 到底是什么?是1么?还是比1小无穷小的数?
现在揭晓正确答案:0.999……可以表达为:
0.9 + 0.09 + 0.009 + 0.0009 + …
这又是什么意思?其实看着让人厌烦的省略号才是真正的问题所在。如果我们有100堆东西,我们还是可以数得出具体数量。但是无穷多我们要怎么办?问题变得不一样了。真实世界绝不可能出现无穷多的“堆”。那么无穷和的数学值又是什么?答案是——除非我们给于一个值,否则不存在这样一个值。法国数学家柯西提出了这个伟大创新理念,他在19世纪20年代将极限这个概念引入了微积分。
伟大数学家哈代在《发散级数》一书中很好的解释了这个问题:
“除非符号分配被定义,现代数学家从来不会认为数学符号有‘意义’,即便是18世纪最伟大的数学家也不觉得定义符号是件琐碎的事情。现在的数学家们都没有定义的习惯:他们觉得写上“我们将X定义为Y”这么许多字相当不自然。”在柯西之前,大多数数学家都会问“1 - 1 + 1 - 1 +…等于几?”,他们不会问“如何去定义1 - 1 + 1 - 1 +…?”这种思维习惯让这些数学家陷入不必要的困惑和争论中。
随着你0.9 + 0.09 + 0.009 + …不断相加下去,最后的值会越来越接近1。最后这个无穷和会随着无穷的相加,最终到达1,并且永远留在1的位置。哈代则认为,这个无穷数应该被简单地定义为1,他也花了一番功夫证明这样定义不会造成其它地方出现什么大矛盾。
对于格兰迪级数1 - 1 + 1 - 1 + …,柯西的理论不管用了。用Lindsay Lohan的名言说就是:极限不存在!
崇尚柯西解法的挪威数学家Niels Henrik Abel在1828年写道:“发散级数是恶魔发明出的东西, 任何基于发散级数的证明都是自取其辱。”而哈代的观点(也是我们今天的观点)更为宽容。对于某些发散级数,我们可以赋值,对于另一些发散级数,我们则不应该赋值。现代数学家会说如果要对格兰迪级数赋予一个值,那么就应该是1/2,因为在所有关于无穷和的理论中,但凡能够引起一些注意的,要么认为这个级数的值为1/2,要么像柯西一样拒绝赋值。1+2+3+4……这个级数的情况也很相似,这是一个发散级数,柯西会说这个级数没有值。但是如果真的要给这个级数一个值的话,-1/12可能是最好的选择。
0.999…这个问题之所以能引起如此大的争论,因为它与我们的直觉不符。我们希望任何一个无穷级数都恰好能够符合运算操作,所以好像0.999……需要等于1。另一方面,我们希望每个数字都有一串唯一的小数位数表示,这就与同样一个数既可以用1表示,也可以用0.999…表示相矛盾。两种愿望无法共存,所以必须舍弃其中一个。柯西用独一无二的十进制展开打开了一扇解决这个问题的窗户,在提出后的2个世纪里,这种解法的价值得到了充分证明。
虽然英语有时候使用两种不同字母串(例如,两个单词)来表示世界中一样相同东西的两种同义词,但是我们并没有因此产生任何困扰。同样的,两种不同的数字串表示同一个数字也不是什么天塌下来的事情。
0.999……等于1么?没错,0.999……确实等于1。前提是我们大家一致同意这个不断重复的无穷小数的意思就是1。
基于创作共用协议(BY-NC)发布。
给这篇稿打赏,让译者更有动力
支付宝打赏 [x]
您的大名:
打赏金额:
21:09:44 :
20:44:45 :
href="http://jandan.net//divergent-series-problem.html#comment-b
20:47:26 :
20:41:46 :
20:50:42 :
21:25:28 :
20:43:09 :
20:42:23 :
21:32:39 :

我要回帖

更多关于 1ml等于多少立方厘米 的文章

 

随机推荐