plasma physics of plasmaand controlled fusion 在哪个平台搜索

文档分类:
下载前请先预览,预览内容跟原文是一样的,在线预览图片经过高度压缩,下载原文更清晰。
您的浏览器不支持进度条
淘豆网网友近日为您收集整理了关于Fundamentals Of Plasma Physics And Controlled Fusion的文档,希望对您的工作和学习有所帮助。以下是文档介绍:Fundamentals of Plasma Physicsand Controlled FusionKenro MiyamotoFundamentals of Plasma Physics and Controlled Fusionby Kenro MiyamotoiFundamentals of Plasma Physicsand Controlled FusionKenro MiyamotoContentsPreface1 Nature of Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Charge Neutrality and Landau Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Fusion Core Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Plasma Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Velocity Space Distribution Function, Electron and Ion Temperatures . . . . . . . . . . . . . . . . . .7 2.2 Plasma Frequency, Debye Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2.3 Cyclotron Frequency, Larmor Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Drift Velocity of Guiding Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 ic Moment, Mirror Connement, Longitudinal Adiabatic Constant . . . . . . . . . . . . 12 2.6 Coulomb Collision Time, Fast Neutral Beam Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.7 Runaway Electron, Dreicer Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.8 Electric Resistivity, Ohmic Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 2.9 Variety of Time and Space Scales in Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 ic Conguration and Particle Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1 Maxwell Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 ic Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 3.3 Equation of Motion of a Charged Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Particle Orbit in Axially Symmetric System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.5 Drift of Guiding Center in Toroidal Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28a Guiding Center of Circulating Particlesb Guiding Center of Banana Particles3.6 Orbit of Guiding Center and ic Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.7 Eect of Longitudinal Electric Field on Banana Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4 Velocity Space Distribution Function andBoltzmann's Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1 Phase Space and Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 4.2 Boltzmann's Equation and Vlasov's Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5 Plasma as ohydrodynamic Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1 ohydrodynamic Equations for Two Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 5.2 ogydrodynamic Equations for One Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.3 Simplied ohydrodynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41ii Contents5.4 oacoustic Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 6.1 Pressure Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 6.2 Equilibrium Equation for Axially Symmetric and Translationally Symmetric Systems . 47 6.3 Tokamak Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.4 Poloidal Field for Tokamak Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.5 Upper Limit of Beta Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.6 Prsch-Schluter Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 6.7 Virial Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 7 Diusion of Plasma, Connement Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 7.1 Collisional Diusion (Classical Diusion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64a ohydrodynamic Treatmentb A Particle Model7.2 Neoclassical Diusion of Electrons in Tokamak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 7.3 Fluctuation Loss, Bohm Diusion, and Stationary Convective Loss . . . . . . . . . . . . . . . . . . . 69 7.4 Loss by ic Fluctuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 8 ohydrodynamic Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 8.1 Interchange, Sausage and Kink Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74a Interchange Instabilityb Stability Criterion for Interchange Instability, ic Wellc Sausage Instabilityd Kink Instability8.2 Formulation of ohydrodynamic Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82a Linearization of ohydrodynamic Equationsb Energy Principle8.3 Instabilities of a Cylindrical Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87a Instabilities of Sharp-Boundary Conguration: Kruskal-Shafranov Conditionb Instabilities of Diuse-Boundary Congurationsc Suydam's Criteriond Tokamak Conguratione Reversed Field Pinch8.4 Hain-Lust ohydrodynamic Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 8.5 Ballooning Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 8.6 i Mode due to Density and Temperature Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 9 Resistive Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 9.1 Tearing Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 9.2 Resistive Drift Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 10 Plasma as Medium of ic Wave Propagation . . . . . . . . . . . . . . . . . . . 116 10.1 Dispersion Equation of Waves in a Cold Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 10.2 Properties of Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119a Polarization and Particle Motionb Cuto and Resonance10.3 Waves in a ponents Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 10.4 Various Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124a Alfven Waveb Ion Cyclotron Wave and Fast Wavec Lower Hybrid Resonanced Upper Hybrid ResonanceContents iiie Electron Cyclotron Wave10.5 Conditions for Electrostatic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 11 Landau Damping and Cyclotron Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 11.1 Landau Damping (Amplication) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 11.2 Transit-Time Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134 11.3 Cyclotron Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 11.4 Quasi-Linear Theory of Evolution in the Distribution Function . . . . . . . . . . . . . . . . . . . . . 136 12 Wave Propagation and Wave Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 12.1 Energy Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 12.2 Ray Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 12.3 Dielectric Tensor of Hot Plasma, Wave Absorption and Heating . . . . . . . . . . . . . . . . . . . . 144 12.4 Wave Heating in Ion Cyclotron Range of Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 12.5 Lower Hybrid Wave Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 12.6 Electron Cyclotron Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 13 Velocity Space Instabilities (Electrostatic Waves) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157 13.1 Dispersion Equation of Electrostatic Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 13.2 Two Streams Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 13.3 Electron Beam Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159 13.4 Harris Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 14 Instabilities driven by Energetic Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 14.1 Fishbone Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162a Formulationb MHD Potential Energyc ic Integral of ponentd Growth Rate of Fishbone Instability14.2 Toroidal Alfven Eigenmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169a Toroidicity Inuced Alfven Eigenmodeb Instabilities of TAE Driven by Energetic Particlesc Various Alfven Modes15 Development of Fusion Researches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 16 Tokamak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 16.1 Tokamak Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 16.2 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193a Case with Conducting Shellb Case without Conducting Shellc Equilibrium Beta Limit of Tokamaks with Elongated Plasma Cross Section16.3 MHD Stability and Density Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 16.4 Beta Limit of Elongated Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 16.5 Impurity Control, Scrape-O Layer and Divertor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198 16.6 Connement Scaling of L Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 16.7 H Mode and Improved Connement Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 16.8 Noninductive Current Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209a Lower Hybrid Current Driveb Electron Cyclotron Current Drivec Neutral Beam Current Drived Bootstrap Current16.9 Neoclassical Tearing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 16.10 Resistive Wall Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224iv Contentsa Growth Rate of Resistive Wall Modeb Feedback Stabilization of Resistive Wall Mode16.11 Parameters of Tokamak Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 17 Non-Tokamak Connement System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 17.1 Reversed Field Pinch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238a Reversed Field Pinch Congurationb MHD Relaxationc Connementd Oscillating Field Current Drive17.2 Stellarator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242a Helical Fieldb Stellarator Devicesc Neoclassical Diusion in Helical Fieldd Connement of Stellarator Plasmas17.3 Open End Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251a Connement Times in Mirrors and Cuspsb Connement Experiments with Mirrorsc Instabilities in Mirror Systemsd Tandem Mirrors18 Inertial Connement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 18.1 Pellet Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 18.2 Implosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263AppendixA Derivation of MHD Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267B Energy Integral of Axisymmetric Toroidal System . . . . . . . . . . . . . . . . . . . . . . . . . . . .271B.1 Energy Integral in Illuminating Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271B.2 Energy Integral of Axisymmetric Toroidal System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273B.3 Energy Integral of High n Ballooning Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278C Derivation of Dielectric Tensor in Hot Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280C.1 Formulation of Dispersion Relation in Hot Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280C.2 Solution of Linearized Vlasov Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281C.3 Dielectric Tensor of Hot Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282C.4 Dielectric Tensor of bi-Maxwellian Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285C.5 Dispersion Relation of Electrostatic Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286C.6 Dispersion Relation of Electrostatic Wave in Inhomogenous Plasma . . . . . . . . . . . . . . . . 287Physical Constants, Plasma Parameters and Mathematical Formula . . . . . . . . . . . . . 291Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294Preface vPrefacePrimary objective of this lecture note is to provide a basic text for the students to studyplasma physics and controlled fusion researches. Secondary objective is to oer a reference bookdescribing analytical methods of plasma physics for the researchers. This was written basedon lecture notes for a graduate course and an advanced undergraduate course those have beenoered at Department of Physics, Faculty of Science, University of Tokyo.In ch.1 and 2, basic concept of plasma and its characteristics are explained. In ch.3, orbitsof ion and electron are described in several ic eld congurations. Chapter 4 formulatesBoltzmann equation of velocity space distribution function, which is the basic relation of plasmaphysics.From ch.5 to ch.9, plasmas are described as ohydrodynamic (MHD) °uid. MHD equa-tion of motion (ch.5), equilibrium (ch.6) and diusion and connement time of plasma (ch.7) aredescribed by the °uid model. Chapters 8 and 9 discuss problems of MHD instabilities whethera small perturbation will grow to disrupt the plasma or will damp to a stable state. The basicMHD equation of motion can be derived by taking an appropriate average of Boltzmann equa-tion. This mathematical process is described in appendix A. The derivation of useful energyintegral formula of axisymmetric toroidal system and the analysis of high n ballooning mode aredescribed in appendix B.From ch.10 to ch.14, plasmas are treated by ic theory. This medium, in which waves andperturbations propagate, is generally inhomogeneous and anisotropic. It may absorb or evenamplify the wave. Cold plasma model described in ch.10 is applicable when the thermal velocityof plasma particles is much smaller than the phase velocity of wave. Because of its simplicity,the dielectric tensor of cold plasma can be easily derived and the properties of various wavecan be discussed in the case of cold plasma. If the refractive index es large and thephase velocity of the wave parable to the thermal velocity of the plasma particles,then the particles and the wave interact with each other. In ch.11, Landau damping, whichis the most characteristic collective phenomenon of plasma, as well as cyclotron damping aredescribed. Chapter 12 discusses wave heating (wave absorption) in hot plasma, in which thethermal velocity of particles parable to the wave phase velocity, by use of the dielectrictensor of hot plasma. In ch.13 the amplication of wave, that is, the growth of perturbationand instabilities, is described. Since long mathematical process is necessary for the derivation ofdielectric tensor of hot plasma, its processes are described in appendix C. In ch.14 instabilitiesdriven by energetc particles, that is, shbone instability and toroidal Alfven eigenmodes aredescribed.In ch.15, connement researches toward fusion grade plasmas are reviewed. During the lastdecade, tokamak experiments have made remarkable progresses. Now realistic designs of toka-mak reactors have been actively pursued. In ch.16, research works of critical subjects on tokamakplasmas and reactors are explained. As non-tokamak connement systems, reversed eld pinch,stellarator, tandem mirror are described in ch.16. Elementary introduction of inertial conne-ment is added in ch.17.Readers may have impression that there is too much mathematics in this lecture note. Howeverthere is a reason for that. If a graduate student tries to read and understand, for examples,three of frequently cited short papers on the analysis of high n ballooning mode by Connor,Hastie, Taylor, shbone instability by L.Chen, White, Rosenbluth, toroidal Alfven eigenmodeby Betti, Freidberg without preparative knowledge, he must read and understand several tensof cited references and references of references. I would guess from my experience that he wouldbe obliged to work hard for several months. It is one of motivation to write this lecture noteto save his time to struggle with mathematical derivation so that he could spend more time tothink physics and experimental results.viThis lecture note has been attempted to present the basic physics and analytical methodswhich are necessary for understanding and predicting plasma behavior and to provide the recentstatus of fusion researches for graduate and senior undergraduate students. I also hope that itwill be a useful reference for scientists and engineers working in the relevant elds.October 2000Kenro MiyamotoProfessor Emeritus Unversity of Tokyomiyamoto@phys.s.u-tokyo.ac.jpThe pdf le of this lecture note is being prepared in Research Reports of .viiviii播放器加载中,请稍候...
该用户其他文档
下载所得到的文件列表Fundamentals Of Plasma Physics And Controlled Fusion.pdf
文档介绍:
Fundamentals of Plasma Physicsand Controlled FusionKenro MiyamotoFundamentals of Plasma Physics and Controlled Fusionby Kenro MiyamotoiFundamentals of Plasma Physicsand Controlled FusionKenro MiyamotoContentsPreface1 Nature of Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
内容来自淘豆网转载请标明出处.

我要回帖

更多关于 radio controlled 的文章

 

随机推荐