学好通信,傅式变换应该掌握程度 英文到什么程度,求指教

1060人阅读
为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换?&
写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创。在此向多位原创作者致敬!!!
一、傅立叶变换的由来
关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven&W.&Smith,&Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是:
要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。
二、傅立叶变换的提出
让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean&Baptiste&Joseph&Fourier(),&Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph&Louis&Lagrange,&)和拉普拉斯(Pierre&Simon&de&Laplace,&),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。
谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。
为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。
三、傅立叶变换分类
根据原信号的不同类型,我们可以把傅立叶变换分为四种类别:
<span style="color:#&
非周期性连续信号&
傅立叶变换(Fourier&Transform)&
<span style="color:#&
周期性连续信号&
傅立叶级数(Fourier&Series)&
<span style="color:#&
非周期性离散信号&
离散时域傅立叶变换(Discrete&Time&Fourier&Transform)&
<span style="color:#&
周期性离散信号&
离散傅立叶变换(Discrete&Fourier&Transform)&
下图是四种原信号图例:
&这四种傅立叶变换都是针对正无穷大和负无穷大的信号,即信号的长度是无穷大的,我们知道这对于计算机处理来说是不可能的,那么有没有针对长度有限的傅立叶变换呢?没有。因为正余弦波被定义成从负无穷小到正无穷大,我们无法把一个长度无限的信号组合成长度有限的信号。面对这种困难,方法是把长度有限的信号表示成长度无限的信号,可以把信号无限地从左右进行延伸,延伸的部分用零来表示,这样,这个信号就可以被看成是非周期性离散信号,我们就可以用到离散时域傅立叶变换的方法。还有,也可以把信号用复制的方法进行延伸,这样信号就变成了周期性离散信号,这时我们就可以用离散傅立叶变换方法进行变换。这里我们要学的是离散信号,对于连续信号我们不作讨论,因为计算机只能处理离散的数&#20540;信号,我们的最终目的是运用计算机来处理信号的。
但是对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示,这对于计算机来说是不可能实现的。所以对于离散信号的变换只有离散傅立叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,后面我们要理解的也正是DFT方法。这里要理解的是我们使用周期性的信号目的是为了能够用数学方法来解决问题,至于考虑周期性信号是从哪里得到或怎样得到是无意义的。
每种傅立叶变换都分成实数和复数两种方法,对于实数方法是最好理解的,但是复数方法就相对复杂许多了,需要懂得有关复数的理论知识,不过,如果理解了实数离散傅立叶变换(real&DFT),再去理解复数傅立叶就更容易了,所以我们先把复数的傅立叶放到一边去,先来理解实数傅立叶变换,在后面我们会先讲讲关于复数的基本理论,然后在理解了实数傅立叶变换的基础上再来理解复数傅立叶变换。
还有,这里我们所要说的变换(transform)虽然是数学意义上的变换,但跟函数变换是不同的,函数变换是符合一一映射准则的,对于离散数字信号处理(DSP),有许多的变换:傅立叶变换、拉普拉斯变换、Z变换、希尔伯特变换、离散余弦变换等,这些都扩展了函数变换的定义,允许输入和输出有多种的&#20540;,简单地说变换就是把一堆的数据变成另一堆的数据的方法。
四、傅立叶变换的物理意义
傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。
和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。
从现代数学的&#30524;光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。&任意&的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1.&傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2.&傅立叶变换的逆变换容易求出,而且形式与正变换非常类&#20284;;3.&正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;4.&离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;5.&著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。
正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。
五、图像傅立叶变换的物理意义
图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率&#20540;很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率&#20540;较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。
傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰。
另外我还想说明以下几点:&
<span style="color:#、图像经过二维傅立叶变换后,其变换系数矩阵表明:&
若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅立叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。&
<span style="color:#&、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)。
六、一个关于实数离散傅立叶变换(Real&DFT)的例子
先来看一个变换实例,一个原始信号的长度是16,于是可以把这个信号分解9个余弦波和9个正弦波(一个长度为N的信号可以分解成N/2&#43;1个正余弦信号,这是为什么呢?结合下面的18个正余弦图,我想从计算机处理精度上就不难理解,一个长度为N的信号,最多只能有N/2&#43;1个不同频率,再多的频率就超过了计算机所能所处理的精度范围,如下图:
<span style="color:#个正弦信号:
<span style="color:#个余弦信号:
把以上所有信号相加即可得到原始信号,至于是怎么分别变换出9种不同频率信号的,我们先不急,先看看对于以上的变换结果,在程序中又是该怎么表示的,我们可以看看下面这个示例图:
上图中左边表示时域中的信号,右边是频域信号表示方法,从左向右表示正向转换(Forward&DFT),从右向左表示逆向转换(Inverse&DFT),用小写x[]表示信号在每个时间点上的幅度&#20540;数组,&用大写X[]表示每种频率的幅度&#20540;数组,&因为有N/2&#43;1种频率,所以该数组长度为N/2&#43;1,X[]数组又分两种,一种是表示余弦波的不同频率幅度&#20540;:Re&X[],另一种是表示正弦波的不同频率幅度&#20540;:Im&X[],Re是实数(Real)的意思,Im是虚数(Imagine)的意思,采用复数的表示方法把正余弦波组合起来进行表示,但这里我们不考虑复数的其它作用,只记住是一种组合方法而已,目的是为了便于表达(在后面我们会知道,复数形式的傅立叶变换长度是N,而不是N/2&#43;1)。
七、用Matlab实现快速傅立叶变换
FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。&
虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。&
现在就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此啰嗦了。&
采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。&
假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模&#20540;,就是该频率&#20540;下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰&#20540;为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模&#20540;就是A的N/2倍。而第一个点就是直流分量,它的模&#20540;就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N&#43;1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。&
假设FFT之后某点n用复数a&#43;bi表示,那么这个复数的模就是An=根号a*a&#43;b*b,相位就是Pn=atan2(b,a)。根据以上的结果,就可以计算出n点(n≠1,且n&=N/2)对应的信号的表达式为:An/(N/2)*cos(2*pi*Fn*t&#43;Pn),即2*An/N*cos(2*pi*Fn*t&#43;Pn)。对于n=1点的信号,是直流分量,幅度即为A1/N。由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。&
下面以一个实际的信号来做说明。假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:S=2&#43;3*cos(2*pi*50*t-pi*30/180)&#43;1.5*cos(2*pi*75*t&#43;pi*90/180)。式中cos参数为弧度,所以-30度和90度要分别换算成弧度。我们以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰&#20540;,其它各点应该接近0。实际情况如何呢?我们来看看FFT的结果的模&#20540;如图所示。
从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的&#20540;。我们分别将这三个点附近的数据拿上来细看:&
<span style="color:#点:&512&#43;0i&
<span style="color:#点:&-2.6195E-14&-&1.4162E-13i&
<span style="color:#点:&-2.8586E-14&-&1.1898E-13i&
<span style="color:#点:-6.2076E-13&-&2.1713E-12i&
<span style="color:#点:332.55&-&192i&
<span style="color:#点:-1.6707E-12&-&1.5241E-12i&
<span style="color:#点:-2..0076E-12i&
<span style="color:#点:3.4315E-12&&#43;&192i&
<span style="color:#点:-3.0263E-14&&#43;7.5609E-13i&
很明显,1点、51点、76点的&#20540;都比较大,它附近的点&#20540;都很小,可以认为是0,即在那些频率点上的信号幅度为0。接着,我们来计算各点的幅度&#20540;。分别计算这三个点的模&#20540;,结果如下:&
<span style="color:#点:&512&
<span style="color:#点:384&
<span style="color:#点:192&
按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来的幅度是正确的。&
然后再来计算相位信息。直流信号没有相位可言,不用管它。先计算50Hz信号的相位,atan2(-192,&332.55)=-0.5236,结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。再计算75Hz信号的相位,atan2(192,&3..5708弧度,换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。
总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模&#20540;除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。相位的计算可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角度&#20540;,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。解决这个问题的方法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。具体的频率细分法可参考相关文献。
八、&让傅立叶变换从理性蜕变到感性,从抽象升华到具体
<span style="color:#、我们都知道,LTI系统对谐波函数的响应也是相同频率的谐波函数,只是幅度和相位可能不同罢了,因此我们用谐波函数来表示信号正是为了导出频域的概念。那你就会问为什么我们要在频域来分析信号,它比时域分析究竟好在哪里呢?这个问题非常好,我来回答你,第一,在频域观察和分析信号有助于揭示系统的本质属性,更重要的是对于某些系统可以极大地简化其设计和分析过程。这一点想必大家都知道,我不再啰嗦!第二,从数学上来看,系统从时域到频域的转换就意味着系统的微分或差分方程将转变为代数方程,而系统的分析也将采用描述系统的复系数代数方程而不是微分或差分方程。既然如此,那么请问?童鞋,你是喜欢跟微分差分方程玩儿呢还是喜欢跟代数方程玩儿呢?假若你说你更喜欢跟微分差分方程玩儿。那我也无话可说啦!
可能你还是觉得以上所述只是一个很理性的认识,那么接下来,满足你的感性需求。其实,在生活中,我们无时无刻不在进行着傅立叶变换。(什么?我没有听错吧?!)对的,请相信你的耳朵,你完全没有听错。我们来看人类听觉系统的处理过程:当我们听到一个声音,大脑的实际反应是什么?事实上耳朵感觉到一个时变的空气压力,这种变化也许是一个类&#20284;于口哨声的单音。当我们听到一个口哨声时,我们所关心的并不是气压随时间的振动(它非常非常快!),而是声音的三个特征:基音、声强以及音长。基音可以理解为频率的同义词,声强不是别的,它就是幅度。我们的耳朵—大脑系统能有效地将信号表示成三个简单的特征参数:基音、声强以及音长,并不理会气压的快速变化过程(一个重复的变化过程)。这样耳朵—大脑系统就提取了信号的本质信息。傅立叶变换的分析过程与此类&#20284;,只不过我们从数学意义把它更加精确化和专业话罢了。
<span style="color:#、不要把傅立叶变换想得那么高深莫测,其实它就是对傅立叶级数的一种拓展。我们知道,傅立叶级数能描述无限时间的周期信号。那么,傅立叶级数能不能描述某些特殊的无限时间的非周期信号呢?答案是,不能。但我们经常要分析处理这样的信号啊!于是傅立叶变换这个家伙现身啦!傅立叶变换就是为了使傅立叶级数能够描述所有(没错!就是所有!)周期和非周期的无限时间信号而导出的,因而傅立叶变换是对傅立叶级数的一种拓展。
可能你还是觉得以上所述只是一个很抽象的认识,那么接下来,满足你的具体需求。我们先不管是怎么进行拓展的。我们先关注另外两个概念:周期信号和非周期信号。他们的显著区别就在于:周期信号每隔一个有限的时间即基波周期To重复一次。它自始至终都将以这个基波周期To重复。而非周期信号则没有一个确定的或固定的周期,可能在一段时间内他将重复某一段波形很多次,但不会在整个无限长时间范围都如此。我们找到一个周期信号的傅立叶级数,然后让这个信号的基波周期趋于无限,就完成了从傅立叶级数到傅立叶变换的演变过程。因为当周期信号的基波周期趋于无限时,它的波形在有限长时间内都不会重复,这时它就不具有周期性啦!也就是说,说一个信号具有无限长的周期和说它是一个非周期信号实际上是一回事!
参考知识库
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
访问:52877次
积分:1119
积分:1119
排名:千里之外
原创:49篇
转载:84篇
(7)(1)(1)(26)(50)(2)(3)(10)(7)(10)(10)(6)&#xe621; 上传我的文档
&#xe602; 下载
&#xe60c; 收藏
我是大学的一名学生,学的是医学专业,我会整理医学类儿科资料
&#xe602; 下载此文档
正在努力加载中...
傅里叶变换在通信系统中的应用.
下载积分:3000
内容提示:傅里叶变换在通信系统中的应用.
文档格式:PPT|
浏览次数:24|
上传日期: 01:55:36|
文档星级:&#xe60b;&#xe612;&#xe612;&#xe612;&#xe612;
该用户还上传了这些文档
傅里叶变换在通信系统中的应用.
官方公共微信【好好学习】傅里叶变换_luziasilazixiutai吧_百度贴吧
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&签到排名:今日本吧第个签到,本吧因你更精彩,明天继续来努力!
本吧签到人数:0可签7级以上的吧50个
本月漏签0次!成为超级会员,赠送8张补签卡连续签到:天&&累计签到:天超级会员单次开通12个月以上,赠送连续签到卡3张
关注:139贴子:
【好好学习】傅里叶变换
3D双端东方魔幻网游「大青云」勾魂公测,穿越逆转,封神故事,全新演绎!
高等代数中三角函数的指数表示(由泰勒级数易得):sinz=[e^(iz)-e^(-iz)]/(2i)cosz=[e^(iz)+e^(-iz)]/2tanx=[e^(iz)-e^(-iz)]/[ie^(iz)+ie^(-iz)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+… ≤此时三角函数定义域已推广至整个复数集。·三角函数作为微分方程的解:对于微分方程组 y=-y&#39;&#39;;y=y&#39;&#39;&#39;&#39;,有通解Q,可证明Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。补充:由相应的指数表示我们可以定义一种类似的函数--双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。
e^(a+bi)=e^a(cosb+sinb *i)【著名的欧拉公式:e^πi+1=0即可由此推出】
傅立叶生于法国中部欧塞尔(Auxerre)一个裁缝家庭,8岁时沦为孤儿,就读于地方军校,1795年任巴黎综合工科大学助傅立叶的家乡-欧塞尔(图中A)教,1798年随拿破仑军队远征埃及,受到拿破仑器重,回国后被任命为格伦诺布尔省省长。傅立叶早在1807年就写成关于热传导的基本论文《热的传播》,向巴黎科学院呈交,但经拉格朗日、拉普拉斯和勒让德审阅后被科学院拒绝,1811年又提交了经修改的论文,该文获科学院大奖,却未正式发表。傅立叶在论文中推导出著名的热传导方程 ,并在求解该方程时发现解函数可以由三角函数构成的级数形式表示,从而提出任一函数都可以展成三角函数的无穷级数。傅立叶级数(即三角级数)、傅立叶分析等理论均由此创始。
傅立叶由于对传热理论的贡献于1817年当选为巴黎科学院院士。1822年,傅立叶终于出版了专著《热的解析理论》(Theorieanalytique de la Chaleur ,Didot ,Paris,1822)。这部经典著作将欧拉、伯努利等人在一些特殊情形下应用的三角级数方法发展成内容丰富的一般理论,三角级数后来就以傅立叶的名字命名。傅立叶应用三角级数求解热传导方程,为了处理无穷区域的热传导问题又导出了当前所称的“傅立叶积分”,这一切都极大地推动了偏微分方程边值问题的研究。然而傅立叶的工作意义远不止此,它迫使人们对函数概念作修正、推广,特别是引起了对不连续函数的探讨;三角级数收敛性问题更刺激了集合论的诞生。因此,《热的解析理论》影响了整个19世纪分析严格化的进程。傅立叶1822年成为科学院终身秘书。
人物年表编辑日傅立叶生于欧塞尔,9岁父母双亡, 被当地教堂收养。1780年由一主教送入地方军事学校读书。约瑟夫·傅里叶1785年回乡教数学。人物年表编辑日傅立叶生于欧塞尔,9岁父母双亡, 被当地教堂收养。1780年由一主教送入地方军事学校读书。1785年回乡教数学。1794到巴黎,成为高等师范学校的首批学员。1795年到巴黎综合工科学校执教。1798年随拿破仑远征埃及时任军中文书和埃及研究院秘书。1801年回国后任伊泽尔省地方长官。1807年向巴黎科学院呈交《热的传播》论文,推导出著名的热传导方程,提出任一函数都可以展成三角函数的无穷级数。1817年当选为科学院院士。1822年任该院终身秘书,后又任法兰西学院终身秘书和理工科大学校务委员会主席。并提出了他在热流上的作品:《热的解析理论》(Théorie analytique de la chaleur,英:Analytical theory of heat)。日卒于巴黎。3数学研究编辑1、让·巴普蒂斯·约瑟夫·傅立叶主要贡献是在研究热的传播时创立了一套数学理论。2、最早使用定积分符号,改进了代数方程符号法则的证法和实根个数的判别法等。3、傅立叶变换的基本思想首先由傅里叶提出,所以以其名字来命名以示纪念。从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。4、傅立叶变换属于调和分析的内容。分析二字,可以解释为深入的研究。从字面上来看,“分析”二字,实际就是条分缕析而已。它通过对函数的 条分缕析来达到对复杂函数的深入理解和研究。从哲学上看,&分析主义&和&还原主义&,就是要通过对事物内部适当的分析达到增进对其本质理解的目的。比如近代原子论试图把世界上所有物质的本源分析为原子,而原子不过数百种而已,相对物质世界的无限丰富,这种分析和分类无疑为认识事物的各种性质提供了很好的手段。5、在数学领域,也是这样,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。&任意&的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇。4相关理论编辑热的解释1822年傅里叶提出了他在热流上的作品:热的解析理论(Théorie analytique de la chaleur),其中他根据他所推理的牛顿冷却定律,即两相邻流动的热分子和他们非常小的温度差成正比。这本书被Freeman翻译与在编辑上&#39;更正&#39;成英文后56年(1878)。书中还编辑了许多在编辑上的更正,并在1888年由达布在法国重新出版。 在这项工作中有三个重要贡献,一个是纯粹的数学,两个物理本质。在数学中,傅里叶声称的函数中,任何一个变量,不论是否连续或不连续,可扩大成一系列的正弦倍数的变量。虽然这个结果是不正确的,但在傅里叶的观察中,一些不连续函数的无穷级数的总和是一个突破。约瑟夫路易斯拉格朗曾给予了这个(假的)定理特别的例子,并暗示这是一般的方法,但他没有继续这个主题。约翰狄利克雷是第一个在具有限制条件下给予一个满意的示范。这本书的一个物理贡献是二维的概念同质性方程;即一个方程如果任何一方的平等,只能在正式比赛的尺寸正确的。傅里叶还开发了三维分析,是代表物理单位的方法,如速度和加速度,其基本层面的质量,时间和长度,以获得他们之间的关系。其他物理的贡献是傅里叶的建议,关于热量的导电扩散的偏微分方程,也就是现在传授给每一个学生的数学物理。傅立叶变换1、傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子。2、傅立叶变换的逆变换容易求出,而且形式与正变换非常类似。3、正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的傅立叶求解。在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。4、著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段。5、离散形式的傅立叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。确定的方程傅里叶留下了未完成的工作是被克劳德路易纳维编辑且在1831年出版的确定的方程。这项工作包含了许多原始的问题弗朗索瓦Budan在1807年和1811年,已阐明了一般人都知道的傅里叶的理论,但这个示范并不完全令人满意。傅里叶的证明和常常在教科书中给予的理论方程是一样的。最终解决这个问题是由查尔斯弗朗索瓦雅克斯特姆在1829年解决的。“温室效应”在1820年傅里叶计算出,一个物体,如果有地球那样的大小,以及到太阳的距离和地球一样,如果只考虑入射太阳辐射的加热效应,那它应该比地球实际的温度更冷。他检查了其他的观察到的可能的热源的文章,并在1824年和1827年就此发表了文章。虽然傅里叶最终建议,星际辐射可能占了其他热源的一大部分,但他也考虑到一种可能性:地球的大气层可能是一种隔热体。这种看法被广泛公认为是有关当前广为人知的“温室效应”的第一项建议。位于拉雪兹神父公墓的傅里叶的墓地傅里叶在他的文章提到了索绪尔的实验。在软木中,他插入几个透明的玻璃,借由间隔的空气分离。正午的阳光透过透明玻璃的顶部被允许进入。车厢内部的这个装置让温度变的更高。傅里叶认为气体在大气中可形成稳定的屏障,如玻璃。这一结论可能导致了后来的所使用的&#39;温室效应&#39;的比喻是指确定的大气温度过程。傅里叶指出,实际的机制,确定了包括温度,大气对流不存在于索绪尔的实验装置。在电子学中,傅里叶级数是一种频域分析工具,可以理解成一种复杂的周期波分解成直流项、基波(角频率为ω)和各次谐波(角频率为nω)的和,也就是级数中的各项。一般,随着n的增大,各次谐波的能量逐渐衰减,所以一般从级数中取前n项之和就可以很好接近原周期波形。这是傅里叶级数在电子学分析中的重要应用
直降200!魅族 MX6售1599元起
第一类间断点如果 x0 是函数 f(x) 的间断点,但左极限及右极限都存在,则称 x0 为函数 f(x) 的第一类间断点(discontinuity point of the first kind)。在第一类间断点中,左右极限相等者称可去间断点,不相等者称为跳跃间断点。非第一类间断点即为第二类间断点(discontinuity point of the second kind)。第一类间断点必没有原函数,第二类则不定。相关知识编辑设函数 y=f(x) 在点 x0 的某一邻域内有定义,如果函数 f(x) 当 x→x0 时的极限存在,且等于它在点 x0 处的函数值 f(x0),即 limf(x)=f(x0)(x→x0),那么就称函数 f(x) 在点 x0 处 连续。不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(x→x0)f(x)不存在;3、虽在x=x0有定义且limf(x)(x→x0)存在,但lim f(x) ≠f(x0)(x→x0)时则称函数在x0处不连续或间断。
深入浅出的讲解傅里叶变换日 09:11 来源:知乎 作者:Heinrich   我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者……  这篇文章的核心思想就是:  要让读者在不看任何数学公式的情况下理解傅里叶分析。  傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。  ————以上是定场诗————  下面进入正题:  抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多……  一、嘛叫频域  从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。  先举一个公式上并非很恰当,但意义上再贴切不过的例子:  在你的理解中,一段音乐是什么呢?    这是我们对音乐最普遍的理解,一个随着时间变化的震动。但我相信对于乐器小能手们来说,音乐更直观的理解是这样的:    好的!下课,同学们再见。  是的,其实这一段写到这里已经可以结束了。上图是音乐在时域的样子,而下图则是音乐在频域的样子。所以频域这一概念对大家都从不陌生,只是从来没意识到而已。  现在我们可以回过头来重新看看一开始那句痴人说梦般的话:世界是永恒的。  将以上两图简化:  时域:    频域:    在时域,我们观察到钢琴的琴弦一会上一会下的摆动,就如同一支股票的走势;而在频域,只有那一个永恒的音符。  所(前方高能!~~~~~~~~~~~非战斗人员退散~~~~~~~)  以(~~~~~~~~~~~~~~~前方高能预警~~~~~~~~~~~~~~前方高能~~~~~~~~)  你眼中看似落叶纷飞变化无常的世界,实际只是躺在上帝怀中一份早已谱好的乐章。  (众人:鸡汤滚出知乎!)  抱歉,这不是一句鸡汤文,而是黑板上确凿的公式:傅里叶同学告诉我们,任何周期函数,都可以看作是不同振幅,不同相位正弦波的叠加。在第一个例子里我们可以理解为,利用对不同琴键不同力度,不同时间点的敲击,可以组合出任何一首乐曲。  而贯穿时域与频域的方法之一,就是传中说的傅里叶分析。傅里叶分析可分为傅里叶级数(Fourier Serie)和傅里叶变换(Fourier Transformation),我们从简单的开始谈起。
 二、傅里叶级数(Fourier Series)  还是举个栗子并且有图有真相才好理解。  如果我说我能用前面说的正弦曲线波叠加出一个带90度角的矩形波来,你会相信吗?你不会,就像当年的我一样。但是看看下图:    第一幅图是一个郁闷的正弦波cos(x)  第二幅图是2个卖萌的正弦波的叠加cos(x)+a.cos(3x)  第三幅图是4个发春的正弦波的叠加  第四幅图是10个便秘的正弦波的叠加  随着正弦波数量逐渐的增长,他们最终会叠加成一个标准的矩形,大家从中体会到了什么道理?  (只要努力,弯的都能掰直!)  随着叠加的递增,所有正弦波中上升的部分逐渐让原本缓慢增加的曲线不断变陡,而所有正弦波中下降的部分又抵消了上升到最高处时继续上升的部分使其变为水平线。一个矩形就这么叠加而成了。但是要多少个正弦波叠加起来才能形成一个标准90度角的矩形波呢?不幸的告诉大家,答案是无穷多个。(上帝:我能让你们猜着我?)  不仅仅是矩形,你能想到的任何波形都是可以如此方法用正弦波叠加起来的。这是没有接触过傅里叶分析的人在直觉上的第一个难点,但是一旦接受了这样的设定,游戏就开始有意思起来了。  还是上图的正弦波累加成矩形波,我们换一个角度来看看:    在这几幅图中,最前面黑色的线就是所有正弦波叠加而成的总和,也就是越来越接近矩形波的那个图形。而后面依不同颜色排列而成的正弦波就是组合为矩形波的各个分量。这些正弦波按照频率从低到高从前向后排列开来,而每一个波的振幅都是不同的。一定有细心的读者发现了,每两个正弦波之间都还有一条直线,那并不是分割线,而是振幅为0的正弦波!也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。  这里,不同频率的正弦波我们成为频率分量。  好了,关键的地方来了!!  如果我们把第一个频率最低的频率分量看作“1”,我们就有了构建频域的最基本单元。  对于我们最常见的有理数轴,数字“1”就是有理数轴的基本单元。  (好吧,数学称法为——基。在那个年代,这个字还没有其他奇怪的解释,后面还有正交基这样的词汇我会说吗?)  时域的基本单元就是“1秒”,如果我们将一个角频率为的正弦波cos(t)看作基础,那么频域的基本单元就是。
 有了“1”,还要有“0”才能构成世界,那么频域的“0”是什么呢?cos(0t)就是一个周期无限长的正弦波,也就是一条直线!所以在频域,0频率也被称为直流分量,在傅里叶级数的叠加中,它仅仅影响全部波形相对于数轴整体向上或是向下而不改变波的形状。  接下来,让我们回到初中,回忆一下已经死去的八戒,啊不,已经死去的老师是怎么定义正弦波的吧。    正弦波就是一个圆周运动在一条直线上的投影。所以频域的基本单元也可以理解为一个始终在旋转的圆  不能传动态图真是太让人惋惜了……  想看动图的同学请戳这里:  File:Fourier series square wave circles animation.gif以及这里:  File:Fourier series sawtooth wave circles animation.gif点出去的朋友不要被wiki拐跑了,wiki写的哪有这里的文章这么没节操是不是。  介绍完了频域的基本组成单元,我们就可以看一看一个矩形波,在频域里的另一个模样了:    这是什么奇怪的东西?  这就是矩形波在频域的样子,是不是完全认不出来了?教科书一般就给到这里然后留给了读者无穷的遐想,以及无穷的吐槽,其实教科书只要补一张图就足够了:频域图像,也就是俗称的频谱,就是——    再清楚一点:    可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。振幅为0的正弦波。  动图请戳:
老实说,在我学傅里叶变换时,维基的这个图还没有出现,那时我就想到了这种表达方法,而且,后面还会加入维基没有表示出来的另一个谱——相位谱。  但是在讲相位谱之前,我们先回顾一下刚刚的这个例子究竟意味着什么。记得前面说过的那句“世界是静止的”吗?估计好多人对这句话都已经吐槽半天了。想象一下,世界上每一个看似混乱的表象,实际都是一条时间轴上不规则的曲线,但实际这些曲线都是由这些无穷无尽的正弦波组成。我们看似不规律的事情反而是规律的正弦波在时域上的投影,而正弦波又是一个旋转的圆在直线上的投影。那么你的脑海中会产生一个什么画面呢?  我们眼中的世界就像皮影戏的大幕布,幕布的后面有无数的齿轮,大齿轮带动小齿轮,小齿轮再带动更小的。在最外面的小齿轮上有一个小人——那就是我们自己。我们只看到这个小人毫无规律的在幕布前表演,却无法预测他下一步会去哪。而幕布后面的齿轮却永远一直那样不停的旋转,永不停歇。这样说来有些宿命论的感觉。说实话,这种对人生的描绘是我一个朋友在我们都是高中生的时候感叹的,当时想想似懂非懂,直到有一天我学到了傅里叶级数……  抱歉,还是没写完。但是我想坚持看到这里的人已经很不容易了。我们都休息一下,下一讲再继续……
 上一篇文章发出来之后,为了掐死我,大家真是很下工夫啊,有拿给姐姐看的,有拿给妹妹看的,还有拿给女朋友看的,就是为了听到一句“完全看不懂啊”。幸亏我留了个心眼,不然就真的像标题配图那样了。我的文章题目是,如果看了这篇文章你“还”不懂就过来掐死我,潜台词就是在你学了,但是没学明白的情况下看了还是不懂,才过来掐死我。  另外,想跟很多人抱歉,因为评论太多了,时间有限,不能给每个人回复,还望大家谅解。但是很感谢一直在评论区帮忙解答读者问题的各位,就不一一@了。  这里郑重感谢大连海事大学的吴楠老师,一位学识渊博、备课缜密、但授课不拘一格的年轻教师!当时大三他教我通信原理,但是他先用了4结课帮我们复习了很多信号与系统的基本概念,那个用乐谱代表频域的概念就是他讲的,一下子让我对这门课豁然开朗,才有了今天的这篇文章。  ————————————今天的定场诗有点长——————————  下面继续开始我们无节操的旅程:  上次的关键词是:从侧面看。这次的关键词是:从下面看。  在第二课最开始,我想先回答很多人的一个问题:傅里叶分析究竟是干什么用的?这段相对比较枯燥,已经知道了的同学可以直接跳到下一个分割线。  先说一个最直接的用途。无论听广播还是看电视,我们一定对一个词不陌生——频道。频道频道,就是频率的通道,不同的频道就是将不同的频率作为一个通道来进行信息传输。下面大家尝试一件事:  先在纸上画一个sin(x),不一定标准,意思差不多就行。不是很难吧。  好,接下去画一个sin(3x)+sin(5x)的图形。  别说标准不标准了,曲线什么时候上升什么时候下降你都不一定画的对吧?  好,画不出来不要紧,我把sin(3x)+sin(5x)的曲线给你,但是前提是你不知道这个曲线的方程式,现在需要你把sin(5x)给我从图里拿出去,看看剩下的是什么。这基本是不可能做到的。  但是在频域呢?则简单的很,无非就是几条竖线而已。  所以很多在时域看似不可能做到的数学操作,在频域相反很容易。这就是需要傅里叶变换的地方。尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为滤波,是信号处理最重要的概念之一,只有在频域才能轻松的做到。  再说一个更重要,但是稍微复杂一点的用途——求解微分方程。(这段有点难度,看不懂的可以直接跳过这段)微分方程的重要性不用我过多介绍了。各行各业都用的到。但是求解微分方程却是一件相当麻烦的事情。因为除了要计算加减乘除,还要计算微分积分。而傅里叶变换则可以让微分和积分在频域中变为乘法和除法,大学数学瞬间变小学算术有没有。  傅里叶分析当然还有其他更重要的用途,我们随着讲随着提。  ————————————————————————————————————
 下面我们继续说相位谱:  通过时域到频域的变换,我们得到了一个从侧面看的频谱,但是这个频谱并没有包含时域中全部的信息。因为频谱只代表每一个对应的正弦波的振幅是多少,而没有提到相位。基础的正弦波A.sin(wt+θ)中,振幅,频率,相位缺一不可,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。那么这个相位谱在哪呢?我们看下图,这次为了避免图片太混论,我们用7个波叠加的图。    鉴于正弦波是周期的,我们需要设定一个用来标记正弦波位置的东西。在图中就是那些小红点。小红点是距离频率轴最近的波峰,而这个波峰所处的位置离频率轴有多远呢?为了看的更清楚,我们将红色的点投影到下平面,投影点我们用粉色点来表示。当然,这些粉色的点只标注了波峰距离频率轴的距离,并不是相位。    这里需要纠正一个概念:时间差并不是相位差。如果将全部周期看作2Pi或者360度的话,相位差则是时间差在一个周期中所占的比例。我们将时间差除周期再乘2Pi,就得到了相位差。  在完整的立体图中,我们将投影得到的时间差依次除以所在频率的周期,就得到了最下面的相位谱。所以,频谱是从侧面看,相位谱是从下面看。下次偷看女生裙底被发现的话,可以告诉她:“对不起,我只是想看看你的相位谱。”  注意到,相位谱中的相位除了0,就是Pi。因为cos(t+Pi)=-cos(t),所以实际上相位为Pi的波只是上下翻转了而已。对于周期方波的傅里叶级数,这样的相位谱已经是很简单的了。另外值得注意的是,由于cos(t+2Pi)=cos(t),所以相位差是周期的,pi和3pi,5pi,7pi都是相同的相位。人为定义相位谱的值域为(-pi,pi〕,所以图中的相位差均为Pi。
  最后来一张大集合:    好了,你是不是觉得我们已经讲完傅里叶级数了?  抱歉让你失望了,以上我们讲解的只是傅里叶级数的三角函数形式。接下去才是最究极的傅里叶级数——指数形式傅里叶级数。但是为了能更好的理解指数形式的傅里叶级数,我们还需要一个工具来帮忙——欧拉公式。  欧拉公式,以及指数形式的傅里叶级数,我们下一讲再讲。谢谢大家(鞠躬)。  —————————————————————————————————————  今天讲的部分不多,但是我希望大家能够理解,我也有自己的生活,留给知乎的时间并不多,但是我很喜欢在知乎与别人交流的过程。上一次的那些文章大家知道我当时写了多久么?四天,每天写6小时那种,而且当时还是在假期。主要是图太不好做了,有人问到作图的方法,其实就是简单的MATLAB+PHOTOSHOP,作图的确是很费时间,但是我相信做出这些图是值得的,因为我相信图一定比文字更好理解。也希望可以将这些自己学习时的感受和经验更完整的分享给需要的人。  所以请大家稍微有点耐心,我会认真把这个故事讲完。也谢谢大家的理解和支持。
在这几幅图中,最前面黑色的线就是所有正弦波叠加而成的总和,也就是越来越接近矩形波的那个图形。而后面依不同颜色排列而成的正弦波就是组合为矩形波的各个分量。这些正弦波按照频率从低到高从前向后排列开来,而每一个波的振幅都是不同的。一定有细心的读者发现了,每两个正弦波之间都还有一条直线,那并不是分割线,而是振幅为0的正弦波!也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。  这里,不同频率的正弦波我们成为频率分量。  好了,关键的地方来了!!  如果我们把第一个频率最低的频率分量看作“1”,我们就有了构建频域的最基本单元。  对于我们最常见的有理数轴,数字“1”就是有理数轴的基本单元。  (好吧,数学称法为——基。在那个年代,这个字还没有其他奇怪的解释,后面还有正交基这样的词汇我会说吗?)  时域的基本单元就是“1秒”,如果我们将一个角频率为的正弦波cos(t)看作基础,那么频域的基本单元就是。  有了“1”,还要有“0”才能构成世界,那么频域的“0”是什么呢?cos(0t)就是一个周期无限长的正弦波,也就是一条直线!所以在频域,0频率也被称为直流分量,在傅里叶级数的叠加中,它仅仅影响全部波形相对于数轴整体向上或是向下而不改变波的形状。  接下来,让我们回到初中,回忆一下已经死去的八戒,啊不,已经死去的老师是怎么定义正弦波的吧。
正弦波就是一个圆周运动在一条直线上的投影。所以频域的基本单元也可以理解为一个始终在旋转的圆:
贴吧热议榜
使用签名档&&
保存至快速回贴

我要回帖

更多关于 掌握外语语种程度如何 的文章

 

随机推荐