函数属于现代数学的六大分支中哪个分支领域

下载作业帮安装包
扫二维码下载作业帮
1.75亿学生的选择
数学函数搞不懂咋办
函数 在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素 (这只是一元函数f(x)=y的情况,请按英文原文把普遍定义给出,谢谢). ----A variable so related to another that for each value assumed by one there is a value determined for the other. 应变量,函数一个与他量有关联的变量,这一量中的任何一值都能在他量中找到对应的固定值. ----A rule of correspondence between two sets such that there is a unique element in the second set assigned to each element in the first set. 函数两组元素一一对应的规则,第一组中的每个元素在第二组中只有唯一的对应量. 函数的概念对于数学和数量学的每一个分支来说都是最基础的. 术语函数,映射,对应,变换通常都有同一个意思. 但函数只表示数与数之间的对应关系,映射还可表示点与点之间,图形之间等的对应关系.可以说函数包含于映射. 历史 函数这个数学名词是莱布尼兹在1694年开始使用的,以描述曲线的一个相关量,如曲线的斜率或者曲线上的某一点.莱布尼兹所指的函数现在被称作可导函数,数学家之外的普通人一般接触到的函数即属此类.对于可导函数可以讨论它的极限和导数.此两者描述了函数输出值的变化同输入值变化的关系,是微积分学的基础. 1718年,约翰·贝努里(en:Johann Bernoulli)把函数定义为“一个变量的函数是指由这个变量和常量以任何一种方式组成的一种量.”1748年,约翰·贝努里的学生欧拉(Leonhard Euler)在《无穷分析引论》一书中说:“一个变量的函数是由该变量和一些数或[常量]]以任何一种方式构成的解析表达式”.例如f(x) = sin(x) + x3.1775年,欧拉在《微分学原理》一书中又提出了函数的一个定义:“如果某些量以如下方式依赖于另一些量,即当后者变化时,前者本身也发生变化,则称前一些量是后一些量的函数.” 19世纪的数学家开始对数学的各个分支作规范整理.维尔斯特拉斯(Karl Weierstrass)提出将微积分学建立在算术,而不是几何的基础上,因而更趋向于欧拉的定义. 通过扩展函数的定义,数学家能够对一些“奇怪”的数学对象进行研究,例如不可导的连续函数.这些函数曾经被认为只具有理论价值,迟至20世纪初时它们仍被视作“怪物”.稍后,人们发现这些函数在对如布朗运动之类的物理现象进行建模时有重要的作用. 到19世纪末,数学家开始尝试利用集合论来规范数学.他们试图将每一类数学对象定义为一个集合.狄利克雷(Johann Peter Gustav Lejeune Dirichlet)给出了现代正式的函数定义.狄利克雷的定义将函数视作数学关系的特例.然而对于实际应用的情况,现代定义和欧拉定义的区别可以忽略不计. 二次函数 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax??+bx+c(a,b,c为常数,a≠0) 则称y为x的二次函数. 二次函数表达式的右边通常为二次三项式. II.二次函数的三种表达式 一般式:y=ax??+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h)??+k [抛物线的顶点P(h,k)] 交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b??)/4a x1,x2=(-b±√b??-4ac)/2a III.二次函数的图象 在平面直角坐标系中作出二次函数y=x??的图象, 可以看出,二次函数的图象是一条抛物线. IV.抛物线的性质 1.抛物线是轴对称图形.对称轴为直线 x = -b/2a. 对称轴与抛物线唯一的交点为抛物线的顶点P. 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为 P [ -b/2a ,(4ac-b??)/4a ]. 当-b/2a=0时,P在y轴上;当Δ= b??-4ac=0时,P在x轴上. 3.二次项系数a决定抛物线的开口方向和大小. 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口. |a|越大,则抛物线的开口越小. 4.一次项系数b和二次项系数a共同决定对称轴的位置. 当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右. 5.常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b??-4ac>0时,抛物线与x轴有2个交点. Δ= b??-4ac=0时,抛物线与x轴有1个交点. Δ= b??-4ac<0时,抛物线与x轴没有交点. V.二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax??+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax??+bx+c=0 此时,函数图象与x轴有无交点即方程有无实数根. 函数与x轴交点的横坐标即为方程的根. 一次函数 I、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b(k,b为常数,k≠0) 则称y是x的一次函数. 特别地,当b=0时,y是x的正比例函数. II、一次函数的性质: y的变化值与对应的x的变化值成正比例,比值为k 即 △y/△x=k III、一次函数的图象及性质: 1. 作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象——一条直线.因此,作一次函数的图象只需知道2点,并连成直线即可. 2. 性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b. 3. k,b与函数图象所在象限. 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小. 当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限. 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象. 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限. IV、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式. (1)设一次函数的表达式(也叫解析式)为y=kx+b. (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b.所以可以列出2个方程: y1=kx1+b① 和 y2=kx2+b②. (3)解这个二元一次方程,得到k,b的值. (4)最后得到一次函数的表达式. V、一次函数在生活中的应用 1.当时间t一定,距离s是速度v的一次函数.s=vt. 2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数.设水池中原有水量S.g=S-ft. 反比例函数 形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数. 自变量x的取值范围是不等于0的一切实数. 反比例函数的图像为双曲线. 如图,上面给出了k分别为正和负(2和-2)时的函数图像. 三角函数 三角函数是数学中属于初等函数中的超越函数的一类函数.它们的本质是任意角的集合与一个比值的集合的变量之间的映射.通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域.另一种定义是在直角三角形中,但并不完全.现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系. 由于三角函数的周期性,它并不具有单值函数意义上的反函数. 三角函数在复数中有较为重要的应用.在物理学中,三角函数也是常用的工具. 它有六种基本函数: 函数名 正弦 余弦 正切 余切 正割 余割 符号 sin cos tan cot sec csc 正弦函数 sin(A)=a/h 余弦函数 cos(A)=b/h 正切函数 tan(A)=a/b 余切函数 cot(A)=b/a 在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素.函数的概念对于数学和数量学的每一个分支来说都是最基础的. 术语函数,映射,对应,变换通常都是同一个意思. 简而言之,函数是将唯一的输出值赋予每一输入的“法则”.这一“法则”可以用函数表达式、数学关系,或者一个将输入值与输出值对应列出的简单表格来表示.函数最重要的性质是其决定性,即同一输入总是对应同一输出(注意,反之未必成立).从这种视角,可以将函数看作“机器”或者“黑盒”,它将有效的输入值变换为唯一的输出值.通常将输入值称作函数的参数,将输出值称作函数的值. 最常见的函数的参数和函数值都是数,其对应关系用函数式表示,函数值可以通过直接将参数值代入函数式得到.如下例, f(x) = x2 ,x 的平方即是函数值. 也可以将函数很简单的推广到与多个参量相关的情况.例如: g(x,y) = xy 有两个参量x和y,以乘积xy为值.与前面不同,这一“法则”与两个输入相关.其实,可以将这两个输入看作一个有序对(x, y),记g为以这个有序对(x, y)作参数的函数,这个函数的值是xy. 科学研究中经常出现未知或不能给出表达式的函数.例如地球上不同时刻温度的分布,这一函数以地点和时间为参量,以某一地点、某一时刻的温度作为输出. 函数的概念并不局限于数的计算,甚至也不局限于计算.函数的数学概念更为宽泛,而且不仅仅包括数之间的映射关系.函数将“定义域”(输入集)与“对映域”(可能输出集)联系起来,使得定义域的每一个元素都唯一对应对映域中的一个元素.函数,如下文所述,被抽象定义为确定的数学关系.由于函数定义的一般性,函数概念对于几乎所有的数学分支都是很基本的.
为您推荐:
其他类似问题
函数是较难的一章内容,像这样抽象的内容要靠理解概念,才会做题~~从理解函数的概念开始,注意初中函数和高中的区别,还有就是做题的时候一定要严格遵循概念,是什么就是什么,不要自己构想~~至于后面的指数函数和对数函数要理解图像,并能熟练运用图像解决问题。应该就没什么问题了...
扫描下载二维码函数是初中数与代数课程领域学习的主线_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
函数是初中数与代数课程领域学习的主线
上传于|0|0|暂无简介
阅读已结束,如果下载本文需要使用0下载券
想免费下载更多文档?
定制HR最喜欢的简历
你可能喜欢数学分析(数学基础分支)_百度百科
?数学基础分支
(数学基础分支)
又称高级,中最古老、最基本的分支。一般指以和一般理论为主要内容,并包括它们的理论基础(、函数和的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。数学中的分析分支是专门研究实数与及其函数的数学分支。它的发展由微积分开始,并扩展到函数的、可及可等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。微积分学是(Differential Calculus)和(Integral Calculus)的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。后来人们也将微积分学称为(Analysis),或称无穷小分析,专指运用或等极限过程分析处理计算问题的学问。早期的微积分,已经被数学家和天文学家用来解决了大量的实际问题,但是由于无法对无穷小概念作出令人信服的解释,在很长的一段时间内得不到发展,有很多数学家对这个理论持怀疑态度,(Cauchy)和后来的(weierstrass)完善了作为理论基础的,摆脱了“要多小有多小”、“无限趋向”等对模糊性的极限描述,使用精密的数学语言来描述极限的定义,使微积分逐渐演变为逻辑严密的数学基础学科,被称为“Mathematical Analysis”,中文译作“数学分析”。
数学分析理论基础
数学分析的主要内容是微积分学,微积分学的理论基础是极限理论,极限理论的理论基础是实数理论。实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起了严密的数学分析理论体系。
数学分析发展历史
数学分析早期发展
在数学的早期,数学分析的结果是隐含给出的。比如,的就隐含了的和。再后来,古希腊数学家如和使数学分析变得更加明确,但还不是很正式。他们在使用去计算区域和固体的面积和体积时,使用了极限和的概念。在数学的早期,12世纪的数学家给出了的例子。
数学分析早期创立
数学分析的创立始于17世纪以(Newton,I.)和(Leibniz,G.W)为代表的开创性工作,而完成于19世纪以(Cauchy)和(Weierstrass)为代表的奠基性工作。从牛顿开始就将微积分学及其有关内容称为分析。其后,微积分学领域不断扩大,但许多数学家还是沿用这一名称。时至今日,许多内容虽已从微积分学中分离出去,成了独立的学科,而人们仍以分析统称之。数学分析亦简称分析。
数学分析研究对象
数学分析的研究对象是函数,它从局部和整体这两个方面研究函数的基本性态,从而形成微分学和积分学的基本内容。微分学研究变化率等函数的局部特征,和微分是它的主要概念,求导数的过程就是微分法。围绕着导数与微分的性质、计算和直接应用,形成微分学的主要内容。积分学则从总体上研究微小变化(尤其是非均匀变化)积累的总效果,其基本概念是(反导数)和,求积分的过程就是积分法。积分的性质、计算、推广与直接应用构成积分学的全部内容。牛顿和莱布尼茨对数学的杰出贡献就在于,他们在1670年左右,总结了求导数与求积分的一系列基本法则,发现了求导数与求积分是两种互逆的运算,并通过后来以他们的名字命名的著名公式——反映了这种互逆关系,从而使本来各自独立发展的微分学和积分学结合而成一门新的学科—微积分学。又由于他们及一些后继学者(特别是(Euler))的贡献,使得本来仅为少数数学家所了解,只能相当艰难地处理一些个别具体问题的微分与积分方法,成为一种常人稍加训练即可掌握的近于机械的方法,打开了把它广泛应用于科学技术领域的大门,其影响所及,难以估量。因此,微积分的出现与发展被认为是人类文明史上划时代的事件之一。与积分相比,无穷级数也是微小量的叠加与积累,只不过取离散的形式(积分是连续的形式)。因此,在数学分析中,无穷级数与微积分从来都是密不可分和相辅相成的。在历史上,无穷级数的使用由来已久,但只在成为数学分析的一部分后,才得到真正的发展和广泛应用。
数学分析基本方法
数学分析的基本方法是的方法,或者说是无穷小分析。洛比达(L’Hospital)于1696年在巴黎出版的世界上第一本微积分教科书,欧拉于1748年出版的两卷本沟通微积分与初等分析的书,书名中都出现过无穷小分析这个词。在微积分学发展的初期,这种新的方法显示出巨大的力量,因而得到大批重要的成果。许多与微积分有关的新的数学分支,如、微分方程以至于微分几何和,都在18—19世纪初发展起来。然而,初期的分析还是比较粗糙的,被新方法的力量鼓舞的数学家们经常不顾演绎的逻辑根据,使用着直观的猜测和自相矛盾的推理,以致在整个18世纪,对这种方法的合理性普遍存在着怀疑。这些怀疑在很大程度上是从当时经常使用的无穷小的含义与用法上引起的。随意使用与解释无穷小导致了混乱和神秘感。许多人参与了无穷小本质的论争,其中有些人,如(Lagrange),试图排除无穷小与极限,把微积分代数化。论争使函数与极限的概念逐渐明朗化。越来越多的的数学家认识到,必须把数学分析的概念与其在客观世界的原型以及人的直觉区分开来。
因而,从19世纪初开始了一个一个把分析算术化(使分析成为一种像算术那样的系统)为特征的新的数学分析的批判改造时期。柯西于1821年出版的《分析教程》是分析严密化的一个标志。在这本书中,柯西建立了接近现代形式的极限,把无穷小定义为趋于零的变量,从而结束了百年的争论。在极限的基础上,柯西定义了函数的连续性、导数、的积分和级数的收敛性(后来知道,(Bolzano)同时也做过类似的工作)。进一步,于(Dirichlet)1837年提出了函数的严格定义,魏尔斯特拉斯引进了极限的ε-δ定义。基本上实现了分析的算术化,使分析从几何直观的局限中得到了“解放”,从而驱散了17—18世纪笼罩在微积分外面的神秘云雾。
继而在此基础上,(Riemann)于1854年和(Darboux)于1875年对建立了严密的积分理论,19世纪后半叶,(Dedekind)等人完成了严格的实数理论。至此,数学分析的理论和方法完全建立在牢固的基础之上,基本上形成了一个完整的体系,也为20世纪现代分析的发展铺平了道路。[1]
数学分析相关联系
微积分理论的产生离不开物理学,天文学,经济学,几何学等学科的发展,微积分理论从其产生之日起就显示了巨大的应用活力,所以在数学分析的教学中,应强化微积分与相邻学科之间的联系,强调应用背景,充实理论的应用性内容。数学分析的教学除体现本课程严格的逻辑体系外,也要反映现的发展趋势,吸收和采用现代数学的思想观点与先进的处理方法,提高学生的数学修养。
程民德,何思谦等.数学辞海(第一卷):山西教育出版社 中国科学技术出版社 东南大学出版社,2002

我要回帖

更多关于 数学分支体系 的文章

 

随机推荐