简谐运动是摆动加匀速android 平移动画匀速,还是折返加匀速android 平移动画匀速

定义/简谐运动
简谐运动又名简谐振动。&  简谐运动&定义:物体在跟偏离平衡位置的位移大小成正比,方向总是指向平衡位置的回复力下的振动叫简谐运动。
回复力/简谐运动
回复力的定义:振子受迫使它回复平衡位置的力,是合外力平行于速度方向上的分力。&  如果用F表示物体受到的回复力,用x表示小球对于平衡位置的位移,根据胡克,F和x成正比,它们之间的关系可用下式来表示:&  F&=&-&kx&  式中的k是劲度系数,负号的意思是:回复力的方向总跟位移的方向相反。
周期与频率/简谐运动
一般简谐运动周期:T=2π√(m/k).&其中m为振子质量,k为振动系统的回复力系数。&  对于,其周期T=2π√(L/g)&(π为圆周率&√为根号&)&由此可推出g=(4π^2×L)/(T^2)&据此可利用实验求某地的重力加速度。&  T与振幅(a&10度)和摆球质量无关。&  当偏角a&10度时&sina≈a=弧(轨迹)/L(半径)≈x/L;F回=-mg/Lx&  根据牛顿第二定律,F=ma,运动物体的加总跟物体所受的合力的大小成正比,并且跟合力的方向相同。&  振幅、周期和频率&  简谐运动的频率(或周期)跟振幅没有关系。&  物体的振动频率本身的性质决定,所以又叫固有频率。
简谐运动方程/简谐运动
一个做匀速圆周运动的物体在一条直径上的投影所做的运动即为简谐运动:R是匀速圆周运动的半径,也是简谐运动的振幅;ω是匀速圆周运动的角速度,也叫做简谐运动的圆频率,ω=√(k/m);φ是t=0时匀速圆周运动的物体偏离该的角度(逆时针为正方向),叫做简谐运动的初相位。在t时刻,简谐运动的位移x=(ωt+φ),简谐运动的速度v=-ωRsin(ωt+φ),简谐运动的加速度a=-(ω^2)Rcos(ωt+φ),这三个式子叫做简谐运动的方程。&  这个运动是假设在没有能量损失引至阻力的情况而发生。&  做简谐运动的物体的加速度跟物体偏离平衡位置的位移大小成正比,方向与位移的方向相反,总指向平衡位置。
微分方程解法/简谐运动
方程:(d&x)*(d&x)/(d&t*t)+kx/m=0&  通解:x(t)=c1*cos(kt)+c2*sin(kt)&  特解:x(t)=x0*cos(kt)+v0/k*sin(kt)&  令:x0=Asinθ)&  结论:Asin(kt+θ)&  振幅为A,初相为θ,周期为T=2π/k,角频率为k。&  其中k为系统的固有频率。
阻尼振动/简谐运动
在阻力作用下的震动,当阻力大小可以忽略时,可以说是简谐运动。&  振动过程中受到阻力的作用,振幅逐渐减小,能量逐渐,直至振动停止。但在整个过程中震动的频率不变。&  简谐运动&振动方程:x=Ae^(-nt)sin(wt+θ).& 阻尼振动曲线性质&:受到的阻力越大,振幅越小;反之,受到的阻力越小,振幅越大 。
受迫振动与共振/简谐运动
&共振造成的杯子碎掉现象受迫振动:振动系统在周期性驱动力作用下的振动。稳定时,的振动频率等于驱动力的频率,跟系统的固有频率无关。驱动力频率越接近固有频率,振幅越大。&  共振:当驱动力的频率等于系统的固有频率时的振动称为共振。物体的振幅增大,能量增加。若能量的增量等于所受阻力而消耗的能量时达到最大振幅,而不会一直增大。
教案/简谐运动
(1)了解什么是机械振动、简谐运动
(2)正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。
能力培养&&通过观察演示实验,概括出机械振动的特征,培养学生的观察、概括能力&教学重点:使学生掌握简谐运动的回复力特征及相关物理量的变化规律
教学难点:偏离平衡位置的位移与位移的概念容易混淆;在一次全振动中速度的变化&课型:启发式的讲授课
教具:钢板尺、铁架台、单摆、竖直弹簧振子、皮筋球、气垫弹簧振子、微型气源&教学过程(教学方法)&教学内容
[引入]我们学习机械运动的规律,是从简单到复杂:匀速运动、匀变速直线运动、平抛运动、匀速圆周运动,今天学习一种更复杂的运动——简谐运动。
1.机械振动
振动是自然界中普遍存在的一种运动形式,请举例说明什么样的运动就是振动?
[讲授]微风中树枝的颤动、心脏的跳动、钟摆的摆动、声带的振动&&这些物体的运动都是振动。请同学们观察几个振动的实验,注意边看边想:物体振动时有什么特征?
[演示实验](1)一端固定的钢板尺[见图1(a)](2)单摆[见图1(b)]
(3)弹簧振子[见图1(c)(d)]&&&&(4)穿在橡皮绳上的塑料球[见图1(e)]
{提问}这些物体的运动各不相同:运动轨迹是直线的、曲线的;运动方向水平的、竖直的;物体各部分运动情况相同的、不同的&&它们的运动有什么共同特征?
{归纳}物体振动时有一中心位置,物体(或物体的一部分)在中心位置两侧做往复运动,振动是机械振动的简称。
2.简谐运动
简谐运动是一种最简单、最基本的振动,我们以弹簧振子为例学习简谐运动。&(1)弹簧振子
演示实验:气垫弹簧振子的振动
[讨论]&a.滑块的运动是平动,可以看作质点
b.弹簧的质量远远小于滑动的质量,可以忽略不计,一个轻质弹簧联接一个质点,弹簧的另一端
固定,就构成了一个弹簧振子
c.没有气垫时,阻力太大,振子不振动;有了气垫时,阻力很小,振子振动。我们研究在没有阻
力的理想条件下弹簧振子的运动。
(2)弹簧振子为什么会振动?
物体做机械振动时,一定受到指向中心位置的力,这个力的作用总能使物体回到中心位置,这个力叫回复力,回复力是根据力的效果命名的,对于弹簧振子,它是弹力。
回复力可以是弹力,或其它的力,或几个力的合力,或某个力的分力。&在O点,回复力是零,叫振动的平衡位置。&(3)简谐运动的特征
弹簧振子在振动过程中,回复力的大小和方向与振子偏离平衡位置的位移有直接关系。在研究机械振动时,我们把偏离平衡位置的位移简称为位移。
3、简谐运动的位移图象——振动图象
简谐运动的振动图象是一条什么形状的图线呢?简谐运动的位移指的是什么位移?(相对平衡位置的位移)&【演示】当弹簧振子振动时,沿垂置于振动方向匀速拉动纸带,毛笔P就在纸带上画出一条振动曲线。&说明:匀速拉动纸带时,纸带移动的距离与时间成正比,纸带拉动一定的对应振子振动一定的时间,因此纸带的运动方向可以代表时间轴的方向,纸带运动的距离就可以代表时间。
介绍这种记录振动方法的实际应用例子:心电图仪、地震仪。&理论和实验都证明:(1)简谐运动的振动图象都是正弦或余弦曲线。&让学生思考后回答:振动图象在什么情况下是正弦,什么情况下是余弦?(由开始计时的位置决定)
1、必作部分2.完成第195页第(3)题
2、简谐运动的描述
教学目标:
1.知道简谐运动的振幅、周期和频率的含义。&2.理解周期和频率的关系。
3.知道振动物体的固有周期和固有频率,并正确理解与振幅无关。
重点难点:振幅、周期和频率的物理意义;理解振动物体的固有周期和固有频率与振幅无关。&教学方法:实验观察、讲授、讨论,计算机辅助教学。&教具:弹簧振子,音叉,&教学过程
1.新课引入
上节课讲了简谐运动的现象和受力情况。我们知道振子在回复力作用下,总以某一位置为中心做往复运动。现在我们观察弹簧振子的运动。将振子拉到平衡位置O的右侧,放手后,振子在O点的两侧做往复运动。振子的运动是否具有周期性?
在圆周运动中,物体的运动由于具有周期性,为了研究其运动规律,我们引入了角速度、周期、转速等物理量。
为了描述简谐运动,也需要引入新的物理量,即振幅、周期和频率。
2.新课讲授
实验演示:观察弹簧振子的运动,可知振子总在一定范围内运动。说明振子离开平衡位置的距离在一定的数值范围内,这就是我们要学的第一个概念——振幅。
(1)、振幅A:振动物体离开平衡位置的最大距离。我们要注意,振幅是振动物体离开平衡位置的最大距离,而不是最大位移。这就意味着,振幅是一个数值,指的是最大位移的绝对值。
【板书】2、振动的周期和频率
(1)、振动的周期T:做简谐运动的物体完成一次全振动的时间。&振动的频率f:单位时间内完成全振动的次数。&(2)、周期的单位为秒(s)、频率的单位为赫兹(Hz)。
实验演示:下面我们观察两个劲度系数相差较大的弹簧振子,让这两个弹簧振子开始振动,用秒表或者脉搏计时,比较一下这两个振子的周期和频率。演示实验表明,周期越小的弹簧振子,频率就越大。
【板书】(3)、周期和频率都是表示振动快慢的物理量。两者的关系为:T=1/f&&&或&&&f=1/T
举例来说,若周期T=0.2s,即完成一次全振动需要0.2s,那么1s内完成全振动的次数,就是1/0.2=5s-1.也就是说,1s钟振动5次,即频率为5Hz.
【板书】3、简谐运动的周期或频率与振幅无关
实验演示(引导学生注意听):敲一下音叉,声音逐渐减弱,即振幅逐渐减小,但音调不发生变化,即频率不变.&【板书】&振子的周期(或频率)由振动系统本身的性质决定,称为振子的固有周期或固有频率.
例如:一面锣,它只有一种声音,用锤敲锣,发出响亮的锣声,&锣声很快弱下去,但不会变调.摆动着的秋千,虽摆动幅度发生变化,但频率不发生变化.弹簧振子在实际的振动中,&会逐渐停下来,但频率是不变的.这些都说明所有能振动的物体,都有自己的固有周期或固有频率.
1.A、B两个完全一样的弹簧振子,把A振子移到A的平衡位置右边10cm,把B振子移到B的平衡位置右边5cm,然后同时放手,那么:
A.&A、B运动的方向总是相同的.&B.&A、B运动的方向总是相反的.&C.&A、B运动的方向有时相同、有时相反.&D.&无法判断A、B运动的方向的关系.
1.动手作业:同学们自己制作一个弹簧振子,观察其运动.分别改变振子振动的振幅、弹簧的劲度和振子的质量,其周期和频率是否变化
2.书面作业:把课本162页练习二(1)、(2)题做在练习本上.
[演示1]将摆长相同,质量不同的摆球拉到同一高度释放。
现象:两摆球摆动是同步的,即说明单摆的周期与摆球质量无关,不会受影响。&这个实验主要是为研究属于简谐运动的单摆振动的周期,所以摆角不要超过10°。&接下来看一下振幅对周期的影响。
[演示2]摆角小于10°的情况下,把两个摆球从不同高度释放。(由一名学生来完成实验验证,教师加以指导)&现象:摆球同步振动,说明单摆振动的周期和振幅无关。
刚才做过的两个演示实验,证实了如果两个摆摆长相等,单摆振动周期和摆球质量、振幅无关。如果摆长L不等,改变了这个条件会不会影响周期?
[演示3]取摆长不同,两个摆球从某一高度同时释放,注意要θ≤10°。(由一名学生来完成实验验证,教师加以指导)
现象:两摆振动不同步,而且摆长越长,振动就越慢。这说明单摆振动和摆长有关。
具体有什么关系呢?荷兰物理学惠更斯研究了单摆的振动,在大量可靠的实验基础上,经过一系列的理论推导和证明得到:单摆
的周期和摆长l的平方根成正比,和重力加速度g的平方根成反比,
周期公式:
同时这个公式的提出,也是在单摆振动是简谐运动的前提下,条件:摆角θ≤10°&由周期公式我们看到T与两个因素有关,当g一定,T与成正比;当L一定,T与
成反比;L,g都一定,
T就一定了,对应每一个单摆有一个固有周期T,
(三)课堂小结:本节课主要讲了单摆振动的规律,只有在θ&10°时单摆振动才是简谐运动;单摆振动周期
例&1:已知某单摆的摆长为L,振动周期为T,试表示出单摆所在地的重力加速度g.
例&2:有两个单摆,甲摆振动了15次的同时,乙摆振动了5次,则甲乙两个摆的摆长之比为_________。
5、外力作用下的振动
一、教学目标
(1)知道阻尼振动和无阻尼振动,并能从能量的观点给予说明。
(2)知道受迫振动的概念。知道受迫振动的频率等于驱动力的频率,而跟振动物体的固有频率无关。&(3)理解共振的概念,知道常见的共振的应用和危害。&二、教学重点、难点:受迫振动,共振。
三、教具:弹簧振子、受迫振动演示仪、摆的共振演示器&四、教学过程&(一)复习提问
让学生注意观察教师的演示实验。教师把弹簧振子的振子向右移动至B点,然后释放,则振子在弹性力作用下,在平衡位置附近持续地沿直线振动起来。重复两次让学生在黑板上画出振动图象的示意图(图1中的Ⅰ)。
再次演示上面的振动,只是让起始位置明显地靠近平衡位置,再让学生在原坐标上画出第二次振子振动的图象(图1中的Ⅱ)。Ⅰ和Ⅱ应同频、同相、振幅不同。
结合图象和振子运动与学生一起分析能量的变化并引入新课。&(二)新课教学
现在以弹簧振子为例讨论一下简谐运动的能量问题。
问:振子从B向O运动过程中,它的能量是怎样变化的?引导学生答出弹性势能减少,动能增加。&问:振子从O向C运动过程中能量如何变化?振子由C向O、又由O向B运动的过程中,能量又是如何变化的?
问:振子在振动过程中总的机械能如何变化?引导学生运用机械能守恒定律,得出在不计阻力作用的情况下,总机械能保持不变。
教师指出:将振子从B点释放后在弹簧弹力(回复力)作用下,振子向左运动,速度加大,弹簧形变(位移)减少,弹簧的弹性势能转化为振子的动能。当回到平衡位置O时,弹簧无形变,弹性势能为零,振子动能达到最大值,这时振子的动能等于它在最大位移处(B点)弹簧的弹性势能,也就是等于系统的总机械能。
在任何一位置上,动能和势能之和保持不变,都等于开始振动时的弹性势能,也就是系统的总机械能。&由于简谐运动中总机械能守恒,所以简谐运动中振幅不变。如果初始时B点与O点的距离越大,到O点时,振子的动能越大,则系统所具有的机械能越大。相应地,振子的振幅也就越大,因此简谐运动的振幅与能量相对应。
问:怎样才能使受阻力的振动物体的振幅不变,而一直振动下去呢?引导学生答出,应不断地向系统补充损耗的机械能,以使振动物体的振幅不变。
指出:这种振幅不变的振动叫等幅振动。
举几个等幅振动的例子,例如电铃响的时候,铃锤是做等幅振动。电磁打点计时器工作时,打点针是做等幅振动。挂钟的摆是做等幅振动。&&它们的共同特点是,工作时振动物体不断地受到周期性变化外力的作用。
这种周期性变化的外力叫驱动力。&在驱动力作用下物体的振动叫受迫振动。
再让学生举几个受迫振动的例子,例如内燃机气缸中活塞的运动,缝纫机针头的运动,扬声器纸盆的运动,电话耳机中膜片的运动等都是受迫振动。
问:受迫振动的频率跟什么有关呢?
让学生注意观察演示(图3)。用不同的转速匀速地转动把手,可以发现,开始振子的运动情况比较复杂,但达到稳定后,振子的运动就比较稳定,可以明显地观察到受迫振动的周期等于驱动力的周期。这样就可以得到物体做受迫振动的频率等于驱动力的频率,而跟振子的固有频率无关。
问:受迫振动的振幅又跟什么有关呢?
演示摆的共振(装置如图4),在一根绷紧的绳上挂几个单摆,其中A、B、G球的摆长相等。当使A摆动起来后,A球的振动通过张紧的绳给其余各摆施加周期性的,经一段时间后,它们都会振动起来。驱动力的频率等于A摆的频率。实验发现,在A摆多次摆动后,各球都将以A球的频率振动起来,但振幅不同,固有频率与驱动力频率相等的B、G球的振幅最大,而频率与驱动力频率相差最大的D、E球的振幅最小。
明确指出:驱动力的频率跟物体的固有频率相等时,振幅最大,这种现象叫共振。
讲解一下共振在技术上有其有利的一面,也存在不利的一面。结合课本让同学思考,在生活实际中利用共振和防止共振的实例。
三、请同学小结一下本节要点
1.振动物体都具有能量,能量的大小与振幅有关,振幅越大,振动能量也越大;&2.当振动物体的能量逐渐减小时,振幅也随着减小,这样的振动叫阻尼振动;&3.振幅保持不变的振动叫等幅振动;
4.物体在驱动力作用下的振动是受迫振动,受迫振动的频率等于驱动力的频率;
5.当驱动力的频率等于物体的固有频率时,受迫振动振幅最大的现象叫共振;共振在技术上有其有利的一面,也存在不利的一面;有利的要尽量利用,不利的要尽量防止。
四、巩固练习
支持火车车厢的弹簧的固有频率为2Hz,行驶在每节铁轨长10米的铁路上,则当运行速度为____m/s时,车厢振动最剧烈。[20m/s]
万方数据期刊论文
中国化学工程学报(英文版)
万方数据期刊论文
土木工程学报
万方数据期刊论文
&|&相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。
此词条还可添加&
编辑次数:23次
参与编辑人数:14位
最近更新时间: 21:20:22
贡献光荣榜iTween如何实现匀速平移呢?
iTween.MoveTo(gameObject,iTween.Hash(&z&,30,&time&,8));itween的MoveTo默认是减速运动么?如何让他匀速移动呢??谢谢
要评论请先&或者&
我直接将iTween 默认的EaseType 给改成 linear 了

我要回帖

更多关于 房室折返性心动过速 的文章

 

随机推荐