广工半导体热敏电阻为什么随着湿度增加电阻降低

2016第三届物联网大会
智能后视镜产品方案对接会
中国LED智能照明高峰论坛
第三届·无线通信技术研讨会
第二届·中国IoT大会
ETFo智能安防技术论坛
移入鼠标可放大二维码
湿度环境下关于薄膜电阻的稳定性测试
来源:Vishay供稿 作者:Reiner W. Kuehl...日 09:32
[导读] 在以往的论文里,提到过薄膜电阻的阻值随时间变化而发生漂移的现象,描述的是在“干热”条件下发生的情况。然而,在相对湿度较高的地方或应用里使用电子设备时,对元器件的可靠性来说仍然是一个挑战。
  摘要:在以往的论文里,提到过薄膜电阻的阻值随时间变化而发生漂移的现象,描述的是在&干热&条件下发生的情况。然而,在相对湿度较高的地方或应用里使用电子设备时,对元器件的可靠性来说仍然是一个挑战。因此,行业标准AEC-Q200要求在偏置湿度测试85℃ / 85 % RH条件下,也要对无源元件进行测试。通过认证的薄膜电阻采用了适当的稳定R层和电绝缘漆,能够通过 85 / 85测试。
  会出现下面这些问题:
  (1)通过1000小时的偏置85 / 85测试,对实际当中应用的薄膜电阻意味着什么?
  (2) 在一定的负载和环境条件下,是否有可能通过使用经过一定时间之后的85 /85测试数据或HAST数据,预测在最坏情况下的电阻漂移?
  要回答这些问题和其他与测试有关的问题,我们对电阻在40 &C / 93 % RH 和85 &C / 85 % RH的工作情况,以及常用的标准测试情况,进行了长时间的实验对比。在大约0.5%和10%的最大标定工作功率下,使用我们最灵敏的薄膜电阻层系统,将这些试验的时间延长到4000小时。除此以外,我们还进行了70 &C / 90 % RH, 90 &C / 40 % RH, 以及HAST130条件下的测试,对电阻的温度、湿度的线性度,以及电压对漂移的影响进行了研究。
  本文将说明这个对比研究的结果,那些数据点使我们能够回答温度和电压的加速因子问题。这些成果将和现有的预测模型做对比。这些研究成果为设计出一个在整个温度-湿度-时间域内覆盖所有老化条件、系统特性和元器件健康预测的新模型提供了基础,
  主要内容
  & 开发和定义一个电子元器件的通用(偏置)湿度加速和长期预测模型,并将这个模型用于研究灵敏的薄膜电阻。
  & 模型考虑了热和湿度对降级的影响,这样就可以在整个温度-湿度-时间域内做预测。
  & 明确的ln&t & 1 / T框图包含了全部信息,使我们能够计算文中讨论的塑模/漆,以及功能层上所有相关材料的数据(活化能,湿度有关的材料特性,偏置电压加速效应等)。
  & 老化/氧化和腐蚀之间是有区别的。通过将暴露时间标准化,替代被测参数的漂移,可以消除这些相互矛盾现象之间的不一致性。
  & 通常用实际的当前蒸汽压做为明确的物理速率,替换相对湿度rh。在我们的模型里,rh的作用是估计扩散的实际速率。
  & 分别找出电绝缘漆或塑模的扩散特性,做为温度和湿度影响元器件参数降级的主要因素。
  1. 引言
  在前一篇论文里已经介绍了在最高到175℃的相对温度-时间-范围内的干热条件下如何预测漂移。主要发现是由阿伦尼乌斯定律推导出的随时间变化的现象,以及过程常量Tstab。在时间相关的阿伦尼乌斯等式基础上提出了预测模型,可以确保器件安全和可靠地工作,预计时间可以达到200000小时或 20年以上。
  对于工作在非常重要且十分恶劣环境条件下的应用,汽车行业对可靠性提出了更高的目标。除了在很多年前就已成为标准的40 &C / 93 % RH测试,偏置85 &C / 85 % RH测试已经成为标准认证和车用无源元件的强制要求。尤其是无源元件的相互作用和降级机理的细节还相当模糊。在很多研讨会和发布上,元器件制造商都表示85 / 85测试对他们的专用元器件来说太困难了(例如:AEC-RW 2012: Polymer-C; AEC-RW 2008: Tantalum-C,经过168小时的85 / 85测试)。
  器件符合85 / 85对长期使用意味着什么(如17年的产品寿命,在标定电压下可工作小时),汽车行业对此是一头雾水。因此对无源元件预测模型的问题和需求随之而来,尤其是电阻。既然Lawson等式还是预测有源器件的主流方法,有人会问,Lawson预测模型是否也适合电阻的潮湿老化和降级呢。
  很多开放式的问题促使我们去重拾我们已经研究过和公开出版的薄膜电阻的预测方法,到目前为止,这些问题还没有合适的模型,能够检验该怎么把偏置湿度现象考虑进来,或者做得更好一点,能够整合进来。
  2. 偏置湿度: 老化或腐蚀效应
  测试表明,由于热尤其是潮湿条件的不同,过度潮湿测试的结果大相径庭。在潮湿环境中暴露1000小时后,试验结果的差异显示在图1中。
  图 1:试验结果的差别
  这些事实包含了很多开放式问题:
  & 为什么测试温度仅仅增加45K,偏置湿度的影响会这么大?
  & 为什么薄膜电阻对偏置湿度的反应比干热更敏感?
  & 为什么更高的电压会导致更低的漂移?
  & 在偏置湿度测试中,降级的加速机制是什么?
  & 是否有合适的方法,能够估计和预测经过偏置湿度应力后的阻值漂移?
  最初的85/85测试被设计成可以加速湿气渗透进非密封的IC封装,以便引发金属层里的腐蚀失效。在评估测试结果的时候,应当始终搞清楚,测试结果是由(可预测)的老化过程还是由(破坏性)的降级造成的。这样我们就可以彻底地区分氧化/钝化效应和腐蚀机制。图2显示了由这两种原因引起参数漂移的基本区别。
  图2: 氧化/钝化与腐蚀机制
  3. 深入研究的测试程序
  我们的测试计划通盘考虑了下面这些因素:
  & 按照AEC-Q200(同一批次,对所有被测变体进行激光微调)的要求,使用认证过的灵敏的薄膜电阻阻值;
  & 比较偏置湿度85 / 85 测试结果与40 / 93测试结果;
  & 引入70℃ /90% RH和90℃ /40% RH这两个中间测试状态;
  & 延长测试或暴露时间到 4000小时 (10000小时);
  & 使用两种不同的电绝缘漆;
  & 在每个变体上施加两种电压/负载(从额定电压的10%到30%,利用偏置湿度测试,按照标准车用元器件的要求进行认证);
  & 比较偏置测试和HAST 130(高加速应力测试:130℃和85%RH偏置湿度测试,相同的批次和电气状态)的结果。
  很重要的一点是,两种漆都按照85 / 85(也就是说我们只按照行业标准对可用的样品进行了基本的研究)的行业要求经过了完整的认证和发布。另一个重点是必须从最灵敏的阻值范围内选取样品。图3显示了薄膜电子设计的临界边缘,可做借鉴。
  图3: 不同阻值的电阻层厚度
  方形电阻R□的整个阻值范围使有三种合金(I,II和III)决定的。合金II采用的是CrNiX(X代表第三种元素)。1 &O~100&O之间的R□是通过改变2&m到30nm的电阻层厚度来实现的。在氧化和腐蚀同时发生时,电阻层的改变会引发不同的效应。较厚的电阻层会出现表面或颗粒边界效应。相反,我们必须面对在薄电阻层上出现的体积效应,这种效应可以影响整个层的厚度。在氧化的情况下,所有电阻材料都会受到影响。在腐蚀的情况下,这会导致电阻层的彻底破坏。为了做试验,我们挑选了这类敏感的样品,保证样品会出现最坏的情况(电阻类型有MINI-MELF, MMA0204,最大阻值为180 k&O,R□大约是800 &O)。
  各个测量点是从20个测试样品的单一结果得到的。为了实现统计覆盖到全部事件(最坏情况)的98%,每个测试点的参数值的概率分布都进行了估值。
  4.测试结果和主要发现
  两种不同电绝缘漆和两个不同偏置电压的测试结果见图4。我们找到了两个明显的降级机理,可以区分老化(40 / 93, 70 / 90)和破坏性的腐蚀状态(85 / 85)。
  图4: 在测试环境中暴露4000小时后的测试结果 (40 / 93, 70 / 90, 85 / 85)
  在这个阶段,还不能根据85 / 85测试数据做比较或预测。因此,为了使用可比较的数据,我们在0.07%到0.1%再到0.2%的&DR / R低漂移水平上,提出了对所有阻值漂移进行标准化的方法。通过定义一个既明显但又几乎不会造成破坏的可接受且在标准要求内的漂移水平,我们就可以比较全部测试数据,另外还可以加上HAST 130的测试结果。标准化参数漂移的结果(在我们这个例子是&DR / R)与相应的暴露时间参见图5。暴露时间的标准化的各个测量点要么是直接推导出来的,或是经过我们不同的湿度测试,从120个独立的&DR / R漂移测量结果推算出来的。
  图5: 在非破坏性的&DR / R 水平上对测试结果进行标准化
  每个参数的漂移从方方面进行了彻底的定义:幅度,系统/材料的关系,在规范内可接受的值,估计的元器件预期寿命。
  对于180 k&O的薄膜电阻,我们定义并选取&DR / R of & 0.2 %(我们估计:只有颗粒边缘的氧化会改变电导率,在材料层上也没有体积效应)。
  经转换后的第1种漆和第2种漆的测试数据见图6(在这个阶段,预估的RH设定值稍微有点差别,但没有关联)。尤其是在较低的温度下,漆的变化很明显。曲线可能匹配指数函数,但匹配度不是很好,尤其是第1种漆。
  图 6: 比较两种漆的测试结果
如今,物联网浪潮已然席卷至汽车电子产业,发动机控制系统、底盘控制系统和车身电子控制系统已模型初显,安全...
ADAS市场或破千亿
国产汽车雷达将爆发
抢占智能汽车制高点
为自动驾驶保驾护航
电动汽车面临的挑战
薄膜电阻相关文章
薄膜电阻相关下载
测试技术相关文章
测试技术相关下载
Vishay相关文章
Vishay相关下载
魏少军认为,设计业超过封测业成为集成电路产业最大的部分,与制造业和封测业不同的是,设计业的统计当中只包含了本土企业的统计数据,共计1644亿人...
聚辰半导体市场部市场总监李强指出,“聚辰我们大概做了近10年一直是有两条产品线,一条是EEPROM,并在此基础上拓展了Lens Driver产品;另一条是智能卡产...
创新实用技术专题
版权所有 & 深圳华强聚丰电子科技有限公司
电信与信息服务业务经营许可证:粤B2-电阻式湿度传感器介绍/电阻式湿度传感器
  电阻式湿度传感器是利用湿敏元件的电气特性(如电阻值),随湿度的变化而变化的原理进行湿度测量的传感器,湿敏元件一般是在绝缘物上浸渍吸湿性物质,或者通过蒸发、涂覆等工艺制各一层金属、半导体、高分子薄膜和粉末状颗粒而制作的,在湿敏元件的吸湿和脱湿过程中,水分子分解出的离子H+的传导状态发生变化,从而使元件的电阻值随湿度而变化。
  电阻式湿度传感器应当最适用于湿度控制领域,其代表产品氯化锂湿度传感器具有稳定性、耐温性和使用寿命长多项重要的优点,氯化锂湿敏传感器已有了五十年以上的生产和研究的历史,有着多种多样的产品型式和制作方法,都应用了氯化锂感湿液具备的各种优点尤其是稳定性最强,
  氯化锂湿敏器件属于电解质材料,在众多的感湿材料之中,首先被人们所注意并应用于制造湿敏器件,氯化锂电解质感湿液依据随着溶液浓度的增加而下降。电解质溶解于水中降低水面上的水蒸气压的原理而实现感湿。
  氯化锂感湿基片的结构为选用传感器的衬底,在上方制作一对金属电极,涂覆一层电解质溶液感湿膜,氯化锂是典型的离子晶体,属于非亲合型电解质,氯化锂溶液中,Li+对极性水分子的吸引力极强,离子水分程度最高。氯化锂感湿膜由氯化锂和聚乙烯醇混合制作,湿敏元件测湿量程较窄,一般氯化锂器件的测量范围在20%RH左右,在测量较宽的湿度范围时,常采用多片组合的方法,在不同的湿区内相同的间隔具有相同的感湿区线,多片组合用线化电阻连接,组合完整的湿度测量器件。
  单片氯化锂湿敏器件的感湿特征量电阻,与环境相对湿度(RH)和环境温度(t)之间,呈现指数函数关系 ,公式可表示为R=Roexpα(Φ-Φ0)-Rtexpβ(t-t0) Ro为起始电阻,α为湿度常数,Rt为起始电阻,β为温度常数。
  氯化锂湿敏器件的衬底结构分柱状和梳妆,以氯化锂聚乙烯醇涂覆为主要成份的感湿液和制作金质电极是氯化锂湿敏器件的三个组成部分。多年来产品制作不断改进提高,产品性能不断得到改善,氯化锂感湿传感器其特有的长期稳定性是其它感湿材料不可替代的,也是湿度传感器最重要的性能。在产品制作过程中,经过感湿混合液的配制和工艺上的严格控制是保持和发挥这一特性的关健。
&|&相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。
此词条还可添加&
编辑次数:3次
参与编辑人数:3位
最近更新时间: 06:06:28
认领可获得以下专属权利:
贡献光荣榜 上传我的文档
 下载
 收藏
大学生,医学专业,因为课间很多自己的资料希望分享
 下载此文档
正在努力加载中...
半导体传感器.
下载积分:2000
内容提示:半导体传感器.
文档格式:PPT|
浏览次数:1|
上传日期: 10:02:47|
文档星级:
全文阅读已结束,如果下载本文需要使用
 2000 积分
下载此文档
该用户还上传了这些文档
半导体传感器.
官方公共微信您是不是在找:
买家还在看:
当前位置:
1000毫升半导体湿度调节机(图)
detail3e达人选购¥5000.00¥18.00¥999.00¥2300.00¥1000.00
detail3e周边优质供应商广东省深圳市中国江苏省无锡市浙江省温州市
同参数产品
水箱容量:
同参数产品
额定功率:
同参数产品
同参数产品
慧聪网厂家宁波市鹏杰电器有限公司为您提供1000毫升半导体湿度调节机(图)的详细产品价格、产品图片等产品介绍信息,您可以直接联系厂家获取1000毫升半导体湿度调节机(图)的具体资料,联系时请说明是在慧聪网看到的。
detail3e相关商品推荐¥5000.00¥18.00¥999.00¥2300.00¥1000.00¥12500.00¥¥5000.00热门商品推荐 ¥5000.00 ¥18.00 ¥999.00 ¥2300.00 ¥1000.00 ¥12500.00 ¥ ¥5000.00
detail3e店内热门商品面议面议面议面议
detail3e光伏转换器相关资源光伏转换器相关热门专题更多&热门商机最新商机
提示:您在慧聪网上采购商品属于商业贸易行为。以上所展示的信息由卖家自行提供,内容的真实性、准确性和合法性由发布卖家负责,请意识到互联网交易中的风险是客观存在的。推荐使用,保障您的交易安全!
所在地:浙江省&&
联系人:陆一松 & 先生
574 ******
150 ******
请供应商联系我
手机号不能为空
姓名不能为空
请供应商联系我
您对该公司的咨询信息已成功提交请注意接听供应商电话。
detail3e关于调节机
您采购的产品:
请输入采购产品
您的手机号码:
请输入手机号码
*采购产品:
请输入采购产品
*采购数量:
请输入采购数量
*采购截止日期:
请输入正确的手机号码
请输入验证码
*短信验证码:
<input id="valid_Code1" maxlength="6" placeholder="请输入验证码" name="VALIDCODE" class="codeInput" onkeyup="this.value=this.value.replace(/\D/g,'')" onkeypress="if(event.keyCode
57) event.returnValue =" type="text">
免费获取验证码
为了安全,请输入验证码,我们将优先处理您的需求!
请输入验证码
发送成功!
慧聪已收到您的需求,我们会尽快通知卖家联系您,同时会派出采购专员1对1为您提供服务,请您耐心等待!
150 ******
联系人:陆一松&销售部 销售经理
公司名称:宁波市鹏杰电器有限公司
备注:点击关注按钮后才可自动收到卖家电话
请输入正确的手机号码
请输入验证码
*短信验证码:
免费获取验证码
为了安全,请输入验证码,我们将优先处理您的需求!
请输入验证码
按字母分类 :

我要回帖

更多关于 半导体热敏电阻 的文章

 

随机推荐