老师们 照明散热量是不是就是电气的照明功率密度计算公式

快速计算LED发热量 改善LED散热
> 快速计算LED发热量 改善LED散热
快速计算LED发热量 改善LED散热
  计算LED设备产生的热量时,准确的计算方法及精确的数据可以帮助设计师们轻松设计出满足预期要求、散热片相关成本更低的灯具和照明器。而目前常用的功率转换效率的方法存在不少缺陷,本文将介绍一种简单且能快速计算出的LED发热量的新方法。本文引用地址:  时至今日,白色LED的热分析仍旧是一门未完成的科学。大多数LED灯具和照明器制造商只能依赖于不充分、不准确或模糊的数据来确定LED设备在相关应用领域的性能,这往往可能导致其散热片设计过度工程化。  目前业内通常使用功率转换效率(WPE)方法来计算LED转换为光辐射所需的功率,以及LED实际所产生的热量。WPE的缺陷在于,同一产品类别中各个 LED设备之间得出的结果差异甚大,使得灯具和照明器制造商很难对LED产品进行比较。而且,WPE通常也与操作环境有很大关系。我们将介绍一种简单明了、基于辐射发光效率(LER)的量计算方法。最先进、荧光转换型白色LED的LER一般都保持恒定,因此照明器设计商可利用此公式来快速估计 LED设备所产生的热量。  LED与散热  在热模拟实验中,LED有时会被模拟成简单的电阻式加热器,所有将进入LED的电功率假定会转换成热量并反过来从照明器发散出去。但这一假设存在一个问题,那就是太过保守:高亮度荧光转换型白色LED一般会将30%的传入电功率转换为光,而宝蓝色LED的转换功率可大大超过50%。因此,高亮度所需的总功率通常低于进入LED的总电功率。  若这一降低的发热容量被不适当地纳入热模拟中,预期的照明器内部温度将过高,因而将需要采用更复杂、成本更高的散热片设计。这对于那些需要从小型PCB板和散热片发散特定热量(5W-10W)的应用尤其重要,例如改造型的LED灯泡。要评估灯具或照明器的累计热性能,设计商必须合理考虑传入电功率将分别转换为光和热的比例有多少。  如今LED行业常用的WPE方法被定义为LED总辐射功率与传入LED总电功率的比率。由于WPE取决于LED的标称通量和电压,且是实际驱动电流及连接温度的强函数,因此在同一个产品类别的不同LED设备之间得出结果差异较大。因而对于特定的LED产品类别而言,很难针对不同的驱动器条件、通量和电压 BIN组合定义一个典型的WPE值。  辐射发光效率  对比之下,进行LED应用的热评估时使用辐射发光效率(LER)比WPE更具信服力,前者可以量化光源的可见光发光效率。更具体地讲,LER被定义为光源的总适应光通量(流明)除以其总辐射功率(瓦特)。LED的LER值可以直接从辐射光谱功率分布(通常印于设备的数据表上)获取,且与WPE不同的是,LER值不因标称通量和电压或实际驱动电流和连接温度而产生明显变化。已知LER值的情况下,就可以通过以下公式计算出LED的总发热量:  其中,菱形符号表示LER值,If表示驱动电流,Vf表示操作条件下的正向压,Φv表示操作条件下的总发光通量。例如,对于一个典型LER值为 300lm/Wrad的荧光转换型白色LED,假设其驱动电流为1000mA,发光通量为300lm,正向压为2.9V,那么根据上文公式就可以算出其总发热量为1.9W。  当前荧光转换型白色LED生产工艺所取得的进步使同一产品类别LED的精确色点控制成为可能,因此LER值更为一致。事实上,例如飞利浦流明 (PhilipsLumileds)等制造商推出的最新照明级LED(3阶MacAdam椭圆)已可实现极佳的颜色控制。这允许制造商定义一个针对特定 CCT、可代表同一产品类别所有LED的典型LER值。  飞利浦现在已经开始在“LED系统计算器”中使用LER值,这样使得LED系统设计商可以通过这一工具找到用于其最终照明应用的关键性能指标,包括系统发热量及发光量。这样一来,就可以帮助设计商更轻松地设计出满足预期要求、散热片相关成本更低的灯具和照明器。此外,利用LER值可以更容易对不同制造商的同一类别LED进行比较,提高了透明度并简化了LED规范流程。
分享给小伙伴们:
我来说两句……
最新技术贴
微信公众号二
微信公众号一|0微博Qzone微信LED照明产品的散热技术分析(详解)&&&&&&& LED 照明应用趋势及散热问题由于固态光源(Solid State Lighting)技术不断进步,使近年来LED 的发光效率提升,逐渐能取代传统光源,目前发光效率已追过白炽灯及卤素灯而持续向上成长,如图1所示。而一些公司更已开发出效率突破100lm/W 的LED 元件,这也使得LED 的照明应用越来越广,不但已开始应用于室内及户外照明、手机背光模组及汽车方向灯等,更看好在高瓦数的投射灯及路灯等强光照明、大尺寸背光模组以及汽车头灯等的应用。由于拥有省电、环保及寿命长等优点,更使未来以LED 光源为主流的趋势越趋明显。图1&&& LED 发光效率趋势比较&&&&&&& 为了让LED 发更亮的光而需要输入更高的功率,然而目前高功率LED 的光电转换效率(Wall-Plug-E WPE)值仍然有限,一般仅有约15~25% 的输入功率成为光,其馀则会转换成热能。由于LED晶片面积很小(~1mm2),因此使高功率LED单位面积的发热量(发热密度)非常高,甚至较一般的 IC 元件更为严重,也使得LED 晶片的接面温度(Junction Temperature)大为提升,容易造成过热问题。过高的晶片接面温度会使LED 的发光亮度降低,其中以红光的衰减最为明显。也会造成LED 的波长偏移而影响演色性,更会造成LED 可靠度的大幅降低,如图2所示,因此散热技术已成为目前LED 技术发展的瓶颈。图2&&& 元件寿命和晶片温度的关系&&&&&&&& 因此散热设计的挑战较大,必须从晶片层级、封装层级、PCB 层级到系统模组层级,都要非常重视散热设计,并寻求最佳的散热方桉。对于LED 照明产品而言,由于系统端的散热限制较大,因此其它层级的散热需求就更明显。&&&&&&& 对于LED 热传问题,最基本的分析方法就是利用热阻网路进行分析。也就是将LED 由晶片热源到环境温度的主要散热路径建构热阻网路,如图3所示,然后分析各热阻值的特性及大小,如此可以推算理想状况时的晶片温度,并针对热阻网路各部分下对策以降低热阻值。需注意的是,图3是就Chip Level 、Package Level 、Board Level 及System Level 组成的热阻网路。实际分析时可依据系统结构组成更详细的热阻网路,例如考虑Die Attach 材料及Solder 等介面材料之热阻,或是散热模组结构之热阻值。图3&&& LED 散热路径及热阻网路&&&&&&& Chip Level 、Package Level 和PCB Level 的散热设计&&&&&&& 由于LED 晶片的Sapphire 基板导热特性较差,会造成图3之热阻值Rjs 过高,因此改善方式必须用高导热的材料如铜取代Sapphire ,或是采用覆晶方式将基板移开热传路径,以降低热阻值。&&&&&&& 目前在晶片到封装层级性能较佳的散热设计,包括共融合金基板及覆晶形式等设计,使热更容易从晶片传到封装中。而增加晶片尺寸以降低发热密度也是可行的方向。在封装散热设计技术上,利用高导热金属(Al, Cu..)的散热座,如图4所示,及高导热陶瓷基板(AlN, SiC...)等设计则可将晶片的热迅速扩散,有效降低封装热阻值Rsc 。在PCB 层级的散热设计上,和传统PCB 不同的地方主要是由于LED 发热密度太大,传统FR4+ 铜箔层的散热能力有限,因此需要藉由较厚的金属层以降低扩散热阻(Spreading Resistance),此种结构称为MCPCB (Metal Core PCB)。&&&&&&& MCPCB的基本结构如图5所示,包括较厚的金属层、介电层及铜箔层。可将封装的热进一步扩散并迅速传到系统模组的散热元件,以缩小热阻值 Rcb。图4&&& 高功率LED 之封装结构及Heat Slug 结构&图5&&& MCPCB 结构图&&&&&&& 为了降低元件热阻值,目前一些设计採用Chip-on-board 的设计,直接将LED 晶片设计在MCPCB 上,而减少封装材料及Solder 界面材料的热阻值,因此提升散热效果,目前许多公司的产品也採用此种设计方式(Lamina Inc., Citizen Inc., OSRAM Inc, Avago Technologies...)。然而,此种设计增加了光学设计的困难及造成製程可靠度问题,设计上较为複杂。&&&&&&&&&&&&&&& 散热模组的散热设计&&&&&&&& 图6是一种LED 灯具的结构及其较完整的热阻网路相对关系图,透过热阻网路的建构及计算,可以了解模组各部份的散热情形,以进行温度计算评估或是散热对策设计。LED 模组的散热设计在PackageLevel 及Board Level 以传导为主,因此如何缩短散热路径、提升热传导率以及传热面积是主要重点,而在System Level 则是以对流及辐射方式为主,由于LED 寿命高及低成本的要求,因此不需风扇被动形式的自然对流,是成本最低及可靠度最高的散热方式,而以各阶层的热阻值在热阻网路所佔的比例来看,由于自然对流散热能力有限,因此由散热模组散到空气中的热阻一般都佔了较重的比例。图6&&& LED 灯具之热阻网路&&&&&&& 和电子产品不同的是,一般电子产品系统有通风口,因此PCB 可透过对流及辐射传热到空气,而LED 照明产品许多是密闭的,因此限制了元件的散热能力。由于散热模组带走热的能力和散热设计方式有很大关係,如何提升与空气接触面积、提升对流係数或是增加辐射热传效果是主要设计方向。在照明应用时,由于一些机构如接头甚至外型等须符合传统灯具规格(如MR16),以及重量的要求,因此更进一步限制了散热结构的设计,造成散热的挑战,也使在散热设计时需要更为注意最佳化的设计。&&&&&&&& 新散热技术的应用&&&&&&& 一些新的技术也开始应用于LED 照明,如利用合成式喷流(Synthetic Jet)原理製作的PAR-38 LED Lamp。和风扇不同的是此设计利用膜片震盪,压缩空气通过喷嘴,利用一次喷流造成的负压推动中心喷流而增加流体流速,散热效能较传统风扇散热方式高。由于不需风扇,因此可靠度提升,而噪音也小。利用日冕放电(Corona Discharge)原理製作的电流力帮浦(Electro-aerodynamic Pumping)为动力的固态风扇,利用带电离子的迅速移动产生对流,具有高风量的优点,同时功耗降低及提升可靠度,如图十八所示。工研院电光所利用热电元件作为LED 元件散热应用并实际整合于LED 模组封装,利用固态的热电冷却原理(Peltier Effect)降低LED 晶片温度,结果显示热电元件可大幅降低元件热阻值,并提升发光亮度,如图7所示。图7&&& 整合热电元件之LED 散热设计图8&&& 固态风扇&&&&&&&&此外也研究利用压电风扇等散热技术,进行高功率LED 散热设计。而高散热能力的微流道散热能力可达500W,而微喷流的设计散热能力也可达200W 以上,其应用在未来值得重视。除了应用新的散热技术,新的散热材料也开始应用于LED 照明散热,例如可射出成型的高导热塑胶,热传导率可达20W/mK ,可应用于灯具的外壳。而高导热碳纤维、奈米碳管及类鑽石等高导热材料也开始应用于LED 散热,使得LED 照明产品的散热设计越来越多元化。&&&&&&&&& LED 照明产品的散热设计非常重要,关係到产品的品质及寿命。透过热阻网路可迅速分析散热能力及需求并寻求散热对策,由于高功率LED 发热密度很大,必须从Chip Level、Package Level、Board Level到System Level 各层级进行散热设计,降低热阻,才能得到最佳的散热效果。目前国际上各大LED 晶片及封装厂商都致力于发展发光效率更高的产品,透过提升光的量子效率等方式提升光电转换效率,以降低晶片发热量,希望能在2012 年前将发光效率提升至150lm/W ,而发热比例降低到25% ,将可使散热的瓶颈大为降低,也可使被动形式的散热设计更能应用于各种高功率LED 产品。但这毕竟非一蹴可及,仍具有相当的困难度。为了使LED 产品的发展及应用更为快速,相关的散热技术仍需同步发展。由于人类对于生活品质的需求不断提升,就如同IC 产品对于散热的需求一直存在,散热设计在各种高功率LED的产品设计中仍将佔有重要的地位。&&&&&&& 节能减排热潮下 如何提升LED道路照明可靠性&&&&&&& &LED道路照明应用在各地政策推动下建设的如火如荼,LED作为绿色照明产品应用于路灯照明,也是地方培育以低碳排放为特征的新的经济增长点,拉动经济社会发展的新&引擎&。但由于产品品种多、技术难度大、各家企业的技术水平差异和评价方式不一等原因,导致部分地区也有不成功的案例,为此中国半导体照明网编辑连线了鑫源盛科技股份有限公司技术总监管新宁Ph.D.就LED道路照明的可靠性问题,作了了解,希望对业内有所启迪。&&& &&&  管新宁先生对失败案例有自己的看法,他认为:&近年来在全球环保潮流之下,LED照明产业迅速兴起,有许多科技公司投入此新兴产业,但由于LED照明信赖性能标准未能实时订定、妥为规范,导致个别产品无法通过考验、严重光衰收场,主要原因是无设计理论性研究为检视支柱,因而造成使用业主疑虑,也因此推迟产业发展时机。为此LED照明解决方案供货商鑫源盛科技(Thermalking),提供了高性能LED路灯多项组件至灯具系统的各项重要技术指针规格数据,供业界参考。& &&& &&&  LED芯片与封装组件发光效率关键技术指针部分,首要之LED芯片与封装组件关键技术,欧美、日厂商均已量产突破发光效率100~120lm/W以上,超越传统最高效率的HID光源(发光效率90~110lm/W),解决目前LED灯具总体光效不足≧45lm/W问题,满足道路照明寿命长、光衰低,符合国际标准平均照度,达25~40Lux规格与节能30~60%需求。 &&& &&&  LED发光效率、温升与寿命规格关键技术指针部分,检视CREE或Osram LED等业者所公布的数据,其芯片PN结工作温度Tj<75~85℃,方能确保高于85%出光效率下工作寿命达5万小时,且芯片PN结至本身导热片(Tjs)温升为&DT=6~15℃之间,另外LED光效率与工作温度成反比性能特性,每升高10℃,就会导致光衰3~6%并且寿命减半的严重后果,与一般宣传LED可工作于100~125℃寿命可达10万小时以上的论点,却忽略在此条件下已造成光效率折损25~30%的观念相去甚远。&&&&&  LED路灯系统热传散热环境温度关键技术指针部分,此类灯具系统工作温度不得高于85-10=75℃;台湾LED道路灯具规范CNS15233规定,耐久性试验环境温度为50℃,因此路灯散热系统温升必须小于&DT≦25℃。以鑫源盛科技150W LED路灯为例,热传散热系统温升测试低达&DT≦13℃,计算其热阻值Tr=0.08℃/W,而多数业界厂商设计系统温升测试&DT≒30~40℃,计算其热阻值Tr=0.2~0.26℃/W;以相同条件下鑫源盛科技的产品较其它厂商产品寿命将增长2倍且亮度增加15%以上。另外以鑫源盛科技350W LED灯具测试,其散热系统温升仍能达成&DT=15℃,热阻值Tr=0.04℃/W。 &&& &&&  LED路灯系统热传散热关键技术部份,电子机器设备热传、散热方法有适用于小功率自然散热方法,目前如MR16/PAR30由1~70W产品,系统温升已高达30~40℃。若超过100W仍使用自然散热方法,就如同目前市面上大部分产品,必须使用大量铝合金材料增加导热量和超大的热交换面积,体积重量动辄2、30Kg,非但增加灯具成本更增添了灯杆灯具安全悬挂的风险。自然散热的定律为使用越重越大面积的金属材料来降低温度,效果越好,但仅铝合金材料成本即增加60~200元新台币/公斤,若干厂商号称使用热管或回路热管即可达到散热效果,这仅仅解决了热传导,不论是热管或者是回路热管都只有热传导的功能并没有散热的功能,若要达到良好散热必须使用相对瓦数的有效散热面积也就是必须增加大面积的金属材料来做热交换;否则必须改用工业级高信赖性冷气机空调、计算机CPU等高阶大功率产品所使用之主动强制散热方法,高效率、军规的小风扇寿命保证7万小时,并具备IP65防水防尘等级,再加上热导管与散热铝鳍片等适当的原件与合理的机构设计,经过测试灯具系统温升可低达&DT≦12~15℃,与自然散热方法比较降温达25℃,寿命将增加2倍且光效率亮度增加10~15%以上。 &&& &&&  LED路灯系统可靠性、耐久性 环境适应性能测试指标部分,一般LED灯具产品设计均未考虑到落尘防护系统,室外道路用灯具必需完全防止砂尘暴、胶质悬浮物、重力落尘堆积于散热结构,以避免导致LED过热烧毁之问题。若散热结构朝向天面导致落尘堆积,热累积无法发散,将可能产生LED光衰及烧毁状况。要解决以上问题,可设计采用散热结构朝向地面来因应。其它抗盐雾测试等等,鑫源盛科技现有产品经户外测试时间2万小时后,光衰<10%、状况良好。主干道路照明光学设计亦可达到世界标准,即10公尺高灯杆必须平均照亮横幅40公尺的长型路面,解决高难度光学镜片设计,达到高宽比1:4之要求。另外核心灯芯技术模块亦达到了轻巧化,不需依赖灯壳做为散热体,因此灯体外型设计可任意变化形状,达成各城市美观特色。&&& &&&  做为一个高科技节能照明产业的从业人员必须认清,良好的灯具散热包含热传导、均温性、热交换等复杂的热传学传统基础硬理论为依归,并非坊间所称LED灯是冷光不发热,又有以高贵的奈米科技或航天科技等单一原件或特殊材料寻求解决。终端客户雾里看花之际,必须正视LED路灯的性能必须要有科学的数据、理论做支撑、完善的系统设计方法为方针、良好的制程为基础,最后在以第三公正单位的检测报告为依据,这样才不会一再发生光衰退货阻碍产业发展的恶性循环,台湾鑫源盛科技愿意与全世界同业共同分享多年来的研究成果以及专利技术,其中包含了强制散热、向下散热、液态散热等发明专利与数十项新型专利,共同携手照亮全世界。收藏360本文为OFweek公众号作者发布,不代表OFweek立场。如有侵权或其他问题,请联系举报。+关注
相关公众号
想了解LED产业?这里都有!致力于量子点材料制备、器件封装、照明产品研发米优光电专业从事高品质LED封装器件与LED应用产品研发销售汉创是一家专业从事全彩LED显示屏研发、生产、销售一体的企业分享高科技产业发展趋势及前沿技术。投诉文章问题&营销广告重复、旧闻格式问题低俗标题夸张与事实不符疑似抄袭我有话要说确定取消取消
用户登录&请输入用户名请输入密码登 录使用一下账号直接登录户外照明散热:合适才是王道
& & & &户外照明散热:合适才是王道
随着以LED路灯为代表的大功率户外LED应用范围越来越广泛,散热问题也越来越突出。在某些领域甚至成为行业发展的障碍。能环保方面有着突出的优势,特别是在路灯、庭院灯、高杆灯、景观灯等多种以大功率LED为光源的照明灯具节电效果尤为明显。随着我国经济快速增长,在能源日益紧张的情况下提高照明产品的能效十分有必要,其中LED路灯就是重要的节能应用。
在LED路灯快速替换传统路灯的同时也暴露出了一些问题:由散热不良引发的漏电等现象层出不穷。散热能力直接影响LED的实际发光效率和寿命,所以优秀的散热设计是必须考虑的重点。其实我觉得要解决户外大功率LED照明灯具的散热问题,首先要从散热材料入手,选对材料才能更好发挥散热器的功能。
户外照明工作环境比较复杂,受温度、紫外线、湿度、雨雪风霜、沙尘、化学气体等自然条件的影响,因此散热器的材料要具有一些特性:耐高低温、耐老化、防水等。户外大功率LED照明用散热器主流还是使用铜或者铝合金等金属材料。自然界中金属的导热性是最好的,尤其是铜、铝的综合性价比最好。但是考虑到铝的延展性和加工性能更好,我们的大功率散热器都是采用铝合金。
LED路灯等户外大功率照明灯具的重量主要由散热装置的重量所决定。随着功率的增大,散热器尺寸和重量也都需要相应增加,就会对芯片和支架提出更高的要求。因此,重量的减轻就显得尤为必要。除了塑料,使用陶瓷也可以减轻灯具的重量,但是陶瓷及塑包陶瓷等其他材料主要还是在室内照明上有用到。由于陶瓷本身比较脆,机械加工性能也不高,所以一般都是用在10W以下的LED上。像LED路灯、LED景观灯等户外大功率照明很少有用到,现有技术、工艺都还不支持大功率LED使用陶瓷件。对一个功能散热制件来讲,单讲导热率还不行。尤其是对散热要求比较高的大功率LED的辐射及对流等散热方式才是至关重要的。
散热方式是关键,随著LED科技的急速发展,市场上许多产品越来越趋向小型化,特别是大功率LED产品的小型化。以大功率LED路灯为例,单位面积上的使用功率越来越大,所产生的热量亦随之增大;为确保灯具能可靠地运行,必须将产品瞬间产生的热量及时排走,防止因热量累加(LED结温一般为125℃)而影响产品的实际使用寿命。通过对各种散热材料的性能对比及LED热量分布的分析,可以看出解决LED解决 LED散热问题的关键不是寻找高热导率的材料,而是改变 LED 的散热结构或者散热方式。从热力学的角度看,热传递的方式分为辐射、对流、传导,其中热传导最快。因此在设计大功率LED的散热时一般都是参考普通IT散热的镶嵌热管(热柱)与外部散热片相结合,在具体操作上各厂家又根据自身掌握的技术开发多种形式。而采用主动散热的风扇由于条件限制,基本上被摒弃。
产品重要,整体服务水平更加重要。我们现在所生产出售的灯具已不单单只卖给客户散热器,还会配合客户的需求,向其提供整体解决方案。只有整体的散热解决方案才能帮助客户节省大量的时间和成本。
责任编辑:
声明:本文由入驻搜狐号的作者撰写,除搜狐官方账号外,观点仅代表作者本人,不代表搜狐立场。
今日搜狐热点扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
下载作业帮安装包
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
照明20w/平方米是什么意思照明散热量和灯具功率什么关系?
作业帮用户
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
这是很粗略的算法 应该算具体照度 ,住宅那样整体照度应该在100勒克斯(lx)的情况,而即使是90勒克斯(lx)也不会对生活带来很大的影响.但有时我们由于情况特殊或场地条件所限,而不能采用照明软件模拟计算时,在计算地板、桌面、作业台面平均照度可以用下列基本公式进行,略估算出灯具:照度(勒克斯lx)=光通量(流明lm)/面积(平方米m2)
要计算照明的是逐时冷负荷,题上就给了一个照明散热量每平方20W
为您推荐:
其他类似问题
就是1平方米的地方用20瓦~10平方就200瓦
20w照明一平方
这个是散热量,它和灯具功率有什么关系
扫描下载二维码

我要回帖

更多关于 照明功率密度值 的文章

 

随机推荐