小学数学直线式编排圆与直线问题,求解析谢谢

2015年高考数学理真题分类汇编:专题08 直线与圆 Word版含解析_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
2015年高考数学理真题分类汇编:专题08 直线与圆 Word版含解析
总评分4.2|
浏览量116759
用知识赚钱
阅读已结束,下载文档到电脑
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,方便使用
还剩3页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢2016年九年级数学上24.2点和圆、直线和圆的位置关系(1)同步试卷(人教新版有答案和解释)
您现在的位置:&&>>&&>>&&>>&&>>&&>>&正文
2016年九年级数学上24.2点和圆、直线和圆的位置关系(1)同步试卷(人教新版有答案和解释)
作者:佚名 资料来源:网络 点击数: &&&
2016年九年级数学上24.2点和圆、直线和圆的位置关系(1)同步试卷(人教新版有答案和解释)
本资料为WORD文档,请点击下载地址下载
文章来源莲山课 件 w w w.5y K J.Co m 2016年人教新版九年级数学上册同步试卷:24.2 点和圆、直线和圆的位置关系(1)一、选择题(共12小题)1.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为(  )&A.40°&B.50°&C.65°&D.75°2.如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为(  )&A.18πcm&B.16πcm&C.20πcm&D.24πcm3.如图,圆O与正方形ABCD的两边AB、AD相切,且DE与圆O相切于E点.若圆O的半径为5,且AB=11,则DE的长度为何?(  )&A.5&B.6&C. &D. 4.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为(  )&A.4&B. &C.6&D. 5.如图所示,O是线段AB上的一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于(  )&A.50°&B.40°&C.60°&D.70°6.如图,在平面直角坐标系中,点A、B均在函数y= (k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切.若点B的坐标为(1,6),⊙A的半径是⊙B的半径的2倍,则点A的坐标为(  )&A.(2,2)&B.(2,3)&C.(3,2)&D.(4, )7.如图,已知正方形ABCD,点E是边AB的中点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连接OM、ON、BM、BN.记△MNO、△AOM、△DMN的面积分别为S1、S2、S3,则下列结论不一定成立的是(  )&A.S1>S2+S3&B.△AOM∽△DMN&C.∠MBN=45°&D.MN=AM+CN8.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为(  )&A.2.5&B.1.6&C.1.5&D.19.如图,AB、AC是⊙O的两条弦,∠BAC=25°,过点C的切线与OB的延长线交于点D,则∠D的度数为(  )&A.25°&B.30°&C.35°&D.40°10.如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是(  )&A.&& &B. &C.&& &D.&& 11.如图,G为△ABC的重心.若圆G分别与AC、BC相切,且与AB相交于两点,则关于△ABC三边长的大小关系,下列何者正确?(  )&A.BC<AC&B.BC>AC&C.AB<AC&D.AB>AC12.如图,AB是半圆O的直径,C是半圆O上一点,OQ⊥BC于点Q,过点B作半圆O的切线,交OQ的延长线于点P,PA交半圆O于R,则下列等式中正确的是(  )&A.& = &B.& = &C.& = &D.& =  二、填空题(共11小题)13.如图,在⊙O中,过直径AB延长线上的点C作⊙O的一条切线,切点为D.若AC=7,AB=4,则sinC的值为      .&14.如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=      度.&15.如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若 的长为 ,则图中阴影部分的面积为      .&16.如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE= AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF= :2.当边AD或BC所在的直线与⊙O相切时,AB的长是      .&17.如图,在菱形ABCD中,AB=2 ,∠C=120°,以点C为圆心的 与AB,AD分别相切于点G,H,与BC,CD分别相交于点E,F.若用扇形CEF作一个圆锥的侧面,则这个圆锥的高是      .&18.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(xy)的最大值是      .&19.如图,AB是⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,切点为C,连接AC,BC,作∠APC的平分线交AC于点D.下列结论正确的是      (写出所有正确结论的序号)①△CPD∽△DPA;②若∠A=30°,则PC= BC;③若∠CPA=30°,则PB=OB;④无论点P在AB延长线上的位置如何变化,∠CDP为定值.&20.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为      .&21.如图,在直角梯形ABCD中,∠ABC=90°,上底AD为 ,以对角线BD为直径的⊙O与CD切于点D,与BC交于点E,且∠ABD为30°.则图中阴影部分的面积为      (不取近似值).&22.如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若∠ABC=30°,则AM=      .&23.一走廊拐角的横截面积如图所示,已知AB⊥BC,AB∥DE,BC∥FG,且两组平行墙壁间的走廊宽度都是1m, 的圆心为O,半径为1m,且∠EOF=90°,DE、FG分别与⊙O相切于E、F两点.若水平放置的木棒MN的两个端点M、N分别在AB和BC上,且MN与⊙O相切于点P,P是 的中点,则木棒MN的长度为      m.& 三、解答题(共7小题)24.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE的外接圆的半径.&25.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.&26.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若tan∠ABC= ,BE=7 ,求线段PC的长.&27.如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.&28.如图,AB为⊙O的直径,以AB为直角边作Rt△ABC,∠CAB=90°,斜边BC与⊙O交于点D,过点D作⊙O的切线DE交AC于点E,DG⊥AB于点F,交⊙O于点G.(1)求证:E是AC的中点;(2)若AE=3,cos∠ACB= ,求弦DG的长.&29. 如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,BD∥AC.(1)图中∠OCD=      °,理由是      ;(2)⊙O的半径为3,AC=4,求OD的长.&30.如图,AB,BC,CD分别与⊙O相切于E,F,G.且AB∥CD.BO=6cm,CO=8cm.(1)求证:BO⊥CO;(2)求BE和CG的长.& &2016年人教新版九年级数学上册同步试卷:24.2 点和圆、直线和圆的位置关系(1)参考答案与试题解析 一、选择题(共12小题)1.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为(  )&A.40°&B.50°&C.65°&D.75°【考点】切线的性质.【专题】数形结合.【分析】根据切线的性质可判断∠OBA=90°,再由∠BAO=40°可得出∠O=50°,在等腰△OBC中求出∠OCB即可.【解答】解:∵AB是⊙O的切线,B为切点,∴OB⊥AB,即∠OBA=90°,∵∠BAO=40°,∴∠O=50°,∵OB=OC(都是半径),∴∠OCB= (180°∠O)=65°.故选C.【点评】本题考查了切线的性质,解答本题的关键在判断出∠OBA为直角,△OBC是等腰三角形,难度一般. 2. 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为(  )&A.18πcm&B.16πcm&C.20πcm&D.24πcm【考点】切线的性质;勾股定理.【分析】如图,连接OA,根据切线的性质证得△AOP是直角三角形,由勾股定理求得OA的长度,然后利用圆的周长公式来求⊙O的周长.【解答】解:如图,连接OA.&∵PA是⊙O的切线,∴OA⊥AP,即∠OAP=90°.又∵PO=26cm,PA=24cm,∴根据勾股定理,得OA= = =10cm,∴⊙O的周长为:2π•OA=2π×10=20π(cm).故选C.【点评】本题考查了切线的性质和勾股定理.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题. 3.如图,圆O与正方形ABCD的两边AB、AD相切,且DE与圆O相切于E点.若圆O的半径为5,且AB=11,则DE的长度为何?(  )&A.5&B.6&C. &D. 【考点】切线的性质;正方形的性质.【分析】求出正方形ANOM,求出AM长和AD长,根据DE=DM求出即可.【解答】解: 连接OM、ON,∵四边形ABCD是正方形,∴AD=AB=11,∠A=90°,∵圆O与正方形ABCD的两边AB、AD相切,∴∠OMA=∠ONA=90°=∠A,∵OM=ON,∴四边形ANOM是正方形,∴AM=OM=5,∵AD和DE与圆O相切,圆O的半径为5,∴AM=5,DM=DE,∴DE=115=6,故选B.【点评】本题考查了正方形的性质和判定,切线的性质,切线长定理等知识点的应用,关键是求出AM长和得出DE=DM. 4.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为(  )&A.4&B. &C.6&D. 【考点】切线的性质;等边三角形的性质;含30度角的直角三角形;勾股定理;圆周角定理.【专题】计算题;压轴题.【分析】连接OD,由DF为圆的切线,利用切线的性质得到OD垂直于DF,根据三角形ABC为等边三角形,利用等边三角形的性质得到三条边相等,三内角相等,都为60°,由OD=OC,得到三角形OCD为等边三角形,进而得到OD平行与AB,由O为BC的中点,得到D为AC的中点,在直角三角形ADF中,利用30°所对的直角边等于斜边的一半求出AD的长,进而求出AC的长,即为AB的长,由ABAF求出FB的长,在直角三角形FBG中,利用30°所对的直角边等于斜边的一半求出BG的长,再利用勾股定理即可求出FG的长.【解答】解:连接OD,∵DF为圆O的切线,∴OD⊥DF,∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵OD=OC,∴△OCD为等边三角形,∴∠CDO=∠A=60°,∠ABC=∠DOC=60°,∴OD∥AB,∴DF⊥AB,在Rt△AFD中,∠ADF=30°,AF=2,∴AD=4,即AC=8,∴FB=ABAF=82=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3 .故选:B&【点评】此题考查了切线的性质,等边三角形的性质,含30°直角三角形的性质,勾股定理,熟练掌握切线的性质是解本题的关键. 5.如图所示,O是线段AB上的一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于(  )&A.50°&B.40°&C.60°&D.70°【考点】切线的性质;圆周角定理.【分析】连接OC,由CE为圆O的切线,根据切线的性质得到OC垂直于CE,即三角形OCE为直角三角形,再由同弧所对的圆心角等于所对圆周角的2倍,由圆周角∠CDB的度数,求出圆心角∠COB的度数,在直角三角形OCE中,利用直角三角形的两锐角互余,即可求出∠E的度数.【解答】解:连接OC,如图所示:∵圆心角∠BOC与圆周角∠CDB都对弧BC,∴∠BOC=2∠CDB,又∠CDB=20°,∴∠BOC=40°,又∵CE为圆O的切线,∴OC⊥CE,即∠OCE=90°,则∠E=90°40°=50°.故选A.&【点评】此题考查了切线的性质,圆周角定理,以及直角三角形的性质,遇到直线与圆相切,连接圆心与切点,利用切线的性质得垂直,根据直角三角形的性质来解决问题.熟练掌握性质及定理是解本题的关键. 6.如图,在平面直角坐标系中,点A、B均在函数y= (k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切.若点B的坐标为(1,6),⊙A的半径是⊙B的半径的2倍,则点A的坐标为(  )&A.(2,2)&B.(2,3)&C.(3,2)&D.(4, )【考点】切线的性质;反比例函数图象上点的坐标特征.【专题】数形结合.【分析】把B的坐标为(1,6)代入反比例函数解析式,根据⊙B与y轴相切,即可求得⊙B的半径,则⊙A的半径即可求得,即得到B的纵坐标,代入函数解析式即可求得横坐标.【解答】解:把B的坐标为(1,6)代入反比例函数解析式得:k=6,则函数的解析式是:y= ,∵B的坐标为(1,6),⊙B与y轴相切,∴⊙B的半径是1,则⊙A是2,把y=2代入y= 得:x=3,则A的坐标是(3,2).故选:C.【点评】本题考查了待定系数法求函数的解析式,以及斜线的性质,圆的切线垂直于经过切点的半径. 7.如图,已知正方形ABCD,点E是边AB的中点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连接OM、ON、BM、BN.记△MNO、△AOM、△DMN的面积分别为S1、S2、S3,则下列结论不一定成立的是(  )&A.S1>S2+S3&B.△AOM∽△DMN&C.∠MBN=45°&D.MN=AM+CN【考点】切线的性质;正方形的性质;相似三角形的判定与性质.【分析】(1)如图作MP∥AO交ON于点P,当AM=MD时,求得S1=S2+S3,(2)利用MN是⊙O的切线,四边形ABCD为正方形,求得△AOM∽△DMN.(3)作BP⊥MN于点P,利用Rt△MAB≌Rt△MPB和Rt△BPN≌Rt△BCN来证明C,D成立.【解答】解:(1)如图,作MP∥AO交ON于点P,&∵点O是线段AE上的一个动点,当AM=MD时,S梯形ONDA= (OA+DN)•ADS△MNO=S△MOP+S△MPN= MP•AM+ MP•MD= MP•AD,∵ (OA+DN)=MP,∴S△MNO= S梯形ONDA,∴S1=S2+S3,∴不一定有S1>S2+S3,(2)∵MN是⊙O的切线,∴OM⊥MN,又∵四边形ABCD为正方形,∴∠A=∠D=90°,∠AMO+∠DMN=90°,∠AMO+∠AOM=90°,∴∠AOM=∠DMN,在△AMO和△DMN中,&,∴△AOM∽△DMN.故B成立;(3)如图,作BP⊥MN于点P,&∵MN,BC是⊙O的切线,∴∠PMB= ∠MOB,∠CBM= ∠MOB,∵AD∥BC,∴∠CBM=∠AMB,∴∠AMB=∠PMB,在Rt△MAB和Rt△MPB中,&∴Rt△MAB≌Rt△MPB(AAS)∴AM=MP,∠ABM=∠MBP,BP=AB=BC,在Rt△BPN和Rt△BCN中,&∴Rt△BPN≌Rt△BCN(HL)∴PN=CN,∠PBN=∠CBN,∴∠MBN=∠MBP+∠PBN,MN=MP+PN=AM+CN.故C,D成立,综上所述,A不一定成立,故选:A.【点评】本题主要考查了圆的切线及全等三角形的判定和性质,关键是作出辅助线利用三角形全等证明. 8.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为(  )&A.2.5&B.1.6&C.1.5&D.1【考点】切线的性质;相似三角形的判定与性质.【专题】几何图形问题.【分析】连接OD、OE,先设AD=x,再证明四边形ODCE是矩形,可得出OD=CE,OE=CD,从而得出CD=CE=4x,BE=6(4x),可证明△AOD∽OBE,再由比例式得出AD的长即可.【解答】解:连接OD、OE,设AD=x,∵半圆分别与AC、BC相切,∴∠CDO=∠CEO=90°,∵∠C=90°,∴四边形ODCE是矩形,∴OD=CE,OE=CD,又∵OD=OE,∴CD=CE=4x,BE=6(4x)=x+2,∵∠AOD+∠A=90°,∠AOD+∠BOE=90°,∴∠A=∠BOE,∴△AOD∽OBE,∴ = ,∴ = ,解得x=1.6,故选:B.&【点评】本题考查了切线的性质.相似三角形的性质与判定,运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形,证明三角形相似解决有关问题. 9.如图,AB、AC是⊙O的两条弦,∠BAC=25°,过点C的切线与OB的延长线交于点D,则∠D的度数为(  )&A.25°&B.30°&C.35°&D.40°【考点】切线的性质.【专题】几何图形问题.【分析】连接OC,根据切线的性质求出∠OCD=90°,再由圆周角定理求出∠COD的度数,根据三角形内角和定理即可得出结论.【解答】解:连接OC,∵CD是⊙O的切线,点C是切点,∴∠OCD=90°.∵∠BAC=25°,∴∠COD=50°,∴∠D=180°90°50°=40°.故选:D.&【点评】本题考查的是切线的性质,熟知圆的切线垂直于经过切点的半径是解答此题的关键. 10.如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是(  )&A.&& &B. &C.&& &D.&& 【考点】切线的性质;相似三角形的判定与性质;锐角三角函数的定义.【专题】几何图形问题;压轴题.【分析】(1)连接OA、OB、OP,延长BO交PA的延长线于点F.利用切线求得CA=CE,DB=DE,PA=PB再得出PA=PB= .利用Rt△BFP∽RT△OAF得出AF= FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可.【解答】解:连接OA、OB、OP,延长BO交PA的延长线于点F.&∵PA,PB切⊙O于A、B两点,CD切⊙O于点E∴∠OAF=∠PBF=90°,CA=CE,DB=DE,PA=PB,∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,∴PA=PB= .在Rt△PBF和Rt△OAF中,&,∴Rt△PBF∽Rt△OAF.∴ = = = ,∴AF= FB,在Rt△FBP中,∵PF2PB2=FB2∴(PA+AF)2PB2=FB2∴( r+ BF)2( )2=BF2,解得BF= r,∴tan∠APB= = = ,故选:B.【点评】本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是切线与相似三角形相结合,找准线段及角的关系. 11.如图,G为△ABC的重心.若圆G分别与AC、BC相切,且与AB相交于两点,则关于△ABC三边长的大小关系,下列何者正确?(  )&A.BC<AC&B.BC>AC&C.AB<AC&D.AB>AC【考点】切线的性质;三角形的重心.【分析】G为△ABC的重心,则△ABG面积=△BCG面积=△ACG面积,根据三角形的面积公式即可判断.【解答】解:∵G为△ABC的重心,∴△ABG面积=△BCG面积=△ACG面积,又∵GHa=GHb>GHc,∴BC=AC<AB.故选:D.&【点评】本题考查了三角形的重心的性质以及三角形的面积公式,理解重心的性质是关键. 12.如图,AB是半圆O的直径,C是半圆O上一点,OQ⊥BC于点Q,过点B作半圆O的切线,交OQ的延长线于点P,PA交半圆O于R,则下列等式中正确的是(  )&A.& = &B.& = &C.& = &D.& = 【考点】切线的性质;平行线的判定与性质;三角形中位线定理;垂径定理;相似三角形的判定与性质.【专题】探究型.【分析】(1)连接AQ,易证△OQB∽△OBP,得到 ,也就有 ,可得△OAQ∽OPA,从而有∠OAQ=∠APO.易证∠CAP=∠APO,从而有∠CAP=∠OAQ,则有∠CAQ=∠BAP,从而可证△ACQ∽△ABP,可得 ,所以A正确.(2)由△OBP∽△OQB得 ,即 ,由AQ≠OP得 ,故C不正确.(3)连接OR,易得 = ,& =2,得到 ,故B不正确.(4)由 及AC=2OQ,AB=2OB,OB=OR可得 ,由AB≠AP得 ,故D不正确.【解答】解:(1)连接AQ,如图1,∵BP与半圆O切于点B,AB是半圆O的直径,∴∠ABP=∠ACB=90°.∵OQ⊥BC,∴∠OQB=90°.∴∠OQB=∠OBP=90°.又∵∠BOQ=∠POB,∴△OQB∽△OBP.∴ .∵OA=OB,∴ .又∵∠AOQ=∠POA,∴△OAQ∽△OPA.∴∠OAQ=∠APO.∵∠OQB=∠ACB=90°,∴AC∥OP.∴∠CAP=∠APO.∴∠CAP=∠OAQ.∴∠CAQ=∠BAP.∵∠ACQ=∠ABP=90°,∴△ACQ∽△ABP.∴ .故A正确.(2)如图1,∵△OBP∽△OQB,∴ .∴ .∵AQ≠OP,∴ .故C不正确.(3)连接OR,如图2所示.∵OQ⊥BC,∴BQ=CQ.∵AO=BO,∴OQ= AC.∵OR= AB.∴ = ,& =2.∴ ≠ .∴ .故B不正确.(4)如图2,∵ ,且AC=2OQ,AB=2OB,OB=OR,∴ .∵AB≠AP,∴ .故D不正确.故选:A.&&【点评】本题考查了切线的性质,相似三角形的判定与性质、平行线的判定与性质、垂径定理、三角形的中位线等知识,综合性较强,有一定的难度. 二、填空题(共11小题)13.如图,在⊙O中,过直径AB延长线上的点C作⊙O的一条切线,切点为D.若AC=7,AB=4,则sinC的值为   .&【考点】切线的性质;锐角三角函数的定义.【分析】连接OD,根据切线的性质可得∠ODC=90°,可得sin∠C= 即可求解.【解答】解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∵AC=7,AB=4,∴半径OA=2,则OC=ACAO=72=5,∴sinC= = .故答案为: .&【点评】本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题. 14.如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C= 40 度.&【考点】切线的性质;圆周角定理.【专题】计算题.【分析】连接OD,由CD为圆O的切线,利用切线的性质得到OD垂直于CD,根据OA=OD,利用等边对等角得到∠A=∠ODA,求出∠ODA的度数,再由∠COD为△AOD外角,求出∠COD度数,即可确定出∠C的度数.【解答】解:连接OD,∵CD与圆O相切,∴OD⊥DC,∵OA=OD,∴∠A=∠ODA=25°,∵∠COD为△AOD的外角,∴∠COD=50°,∴∠C=90°50°=40°.故答案为:40&【点评】此题考查了切线的性质,等腰三角形的性质,以及外角性质,熟练掌握切线的性质是解本题的关键. 15.如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若 的长为 ,则图中阴影部分的面积为   .&【考点】切线的性质;平行四边形的性质;弧长的计算;扇形面积的计算.【专题】几何图形问题.【分析】求图中阴影部分的面积,就要从图中分析阴影部分的面积是由哪几部分组成的.很显然图中阴影部分的面积=△ACD的面积扇形ACE的面积,然后按各图形的面积公式计算即可.【解答】解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠FAD=∠B=45°,∵ 的长为 ,∴ ,解得:r=2,∴S阴影=S△ACDS扇形ACE= .故答案为: .&【点评】本题主要考查了扇形的面积计算方法,不规则图形的面积通常转化为规则图形的面积的和差. 16.如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE= AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF= :2.当边AD或BC所在的直线与⊙O相切时,AB的长是 12或4 .&【考点】切线的性质;矩形的性质.【专题】几何图形问题;压轴题.【分析】过点G作GN⊥AB,垂足为N,可得EN=NF,由EG:EF= :2,得:EG:EN= :1,依据勾股定理即可求得AB的长度.【解答】解:边AB所在的直线不会与⊙O相切;边BC所在的直线与⊙O相切时,如图,过点G作GN⊥AB,垂足为N,∴EN=NF,又∵EG:EF= :2,∴EG:EN= :1,又∵GN=AD=8,∴设EN=x,则 ,根据勾股定理得:&,解得:x=4,GE= ,设⊙O的半径为r,由OE2=EN2+ON2得:r2=16+(8r)2,∴r=5.∴OK=NB=5,∴EB=9,又AE= AB,∴AB=12.同理,当边AD所在的直线与⊙O相切时,连接OH,∴OH=AN=5,∴AE=1.又AE= AB,∴AB=4.故答案为:12或4.&&【点评】本题考查了切线的性质以及勾股定理和垂径定理的综合应用,解答本题的关键在于做好辅助线,利用勾股定理求出对应圆的半径. 17.如图,在菱形ABCD中,AB=2 ,∠C=120°,以点C为圆心的 与AB,AD分别相切于点G,H,与BC,CD分别相交于点E,F.若用扇形CEF作一个圆锥的侧面,则这个圆锥的高是 2  .&【考点】切线的性质;菱形的性质;圆锥的计算.【分析】先连接CG,设CG=R,由勾股定理求得扇形的半径即圆锥的母线长,根据弧长公式l= ,再由2π•r= ,求出底面半径r,则根据勾股定理即可求得圆锥的高.【解答】解:如图:连接CG,∵∠C=120°,∴∠B=60°,∵AB与 相切,∴CG⊥AB,在直角△CBG中,CG=BC•sin60°=2 × =3,即圆锥的母线长是3,设圆锥底面的半径为r,则:2πr= ,∴r=1.则圆锥的高是:& =2 .故答案为:2 .&【点评】本题考查的是圆锥的计算,先利用直角三角形求出扇形的半径,运用弧长公式计算出弧长,然后根据底面圆的周长等于扇形的弧长求出底面圆的半径. 18.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(xy)的最大值是 2 .&【考点】切线的性质.【专题】几何图形问题;压轴题.【分析】作直径AC,连接CP,得出△APC∽△PBA,利用 = ,得出y= x2,所以xy=x x2= x2+x= (x4)2+2,当x=4时,xy有最大值是2.【解答】解:如图,作直径AC,连接CP,&∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴ ,∵PA=x,PB=y,半径为4,∴ = ,∴y= x2,∴xy=x x2= x2+x= (x4)2+2,当x=4时,xy有最大值是2,故答案为:2.【点评】此题考查了切线的性质,平行线的性质,相似三角形的判定与性质,以及二次函数的性质,熟练掌握性质及定理是解本题的关键. 19.如图,AB是⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,切点为C,连接AC,BC,作∠APC的平分线交AC于点D.下列结论正确的是 ②③④ (写出所有正确结论的序号)①△CPD∽△DPA;②若∠A=30°,则PC= BC;③若∠CPA=30°,则PB=OB;④无论点P在AB延长线上的位置如何变化,∠CDP为定值.&【考点】切线的性质;三角形的角平分线、中线和高;三角形的外角性质;相似三角形的判定与性质.【专题】几何综合题.【分析】①只有一组对应边相等,所以错误;②根据切线的性质可得∠PCB=∠A=30°,在直角三角形ABC中∠ABC=60°得出OB=BC,∠BPC=30°,解直角三角形可得PB= OC= BC;③根据切线的性质和三角形的外角的性质即可求得∠A=∠PCB=30°,∠ABC=60°,进而求得PB=BC=OB;④连接OC,根据题意,可知OC⊥PC,∠CPD+∠DPA+∠A+∠ACO=90°,可推出∠DPA+∠A=45°,即∠CDP=45°.【解答】解:①∵∠CPD=∠DPA,∠CDP=∠DAP+∠DPA≠∠DAP≠∠PDA,∴△CPD∽△DPA错误;
②连接OC,∵AB是直径,∠A=30°∴∠ABC=60°,∴OB=OC=BC,∵PC是切线,∴∠PCB=∠A=30°,∠OCP=90°,∴∠APC=30°,∴在RT△POC中,cot∠APC=cot30°= = ,∴PC= BC,正确;
③∵∠ABC=∠APC+∠PCB,∠PCB=∠A,∴∠ABC=∠APC+∠A,∵∠ABC+∠A=90°,∴∠APC+2∠A=90°,∵∠APC=30°,∴∠A=∠PCB=30°,∴PB=BC,∠ABC=60°,∴OB=BC=OC,∴PB=OB;正确;
④解:如图,连接OC,∵OC=OA,PD平分∠APC,∴∠CPD=∠DPA,∠A=∠ACO,∵PC为⊙O的切线,∴OC⊥PC,∵∠CPO+∠COP=90°,∴(∠CPD+∠DPA)+(∠A+∠ACO)=90°,∴∠DPA+∠A=45°,即∠CDP=45°;正确;故答案为:②③④;&【点评】本题主要考查切线的性质、等边三角形的性质、角平分线的性质、外角的性质,解题的关键在于作好辅助线构建直角三角形和等腰三角形. 20.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为  a .&【考点】切线的性质;切割线定理;相似三角形的性质.【专题】压轴题.【分析】连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a0.5a=0.5a,再由切割线定理可得BF2=BH•BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD=BC+BD,即可求出答案.【解答】解:如图,连接OE、OF,∵由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°,∴OECF是正方形,∵由△ABC的面积可知 ×AC×BC= ×AC×OE+ ×BC×OF,∴OE=OF= a=EC=CF,BF=BCCF=0.5a,GH=2OE=a,∵由切割线定理可得BF2=BH•BG,∴ a2=BH(BH+a),∴BH= a或BH= a(舍去),∵OE∥DB,OE=OH,∴△OEH∽△BDH,∴ = ,∴BH=BD,CD=BC+BD=a+ a= a.故答案为:& a.&【点评】考查了切线的性质,本题需仔细分析题意,结合图形,利用相似三角形的性质及切线的性质即可解决问题. 21.如图,在直角梯形ABCD中,∠ABC=90°,上底AD为 ,以对角线BD为直径的⊙O与CD切于点D,与BC交于点E,且∠ABD为30°.则图中阴影部分的面积为  π (不取近似值).&【考点】切线的性质;直角梯形;扇形面积的计算.【专题】几何图形问题.【分析】连接OE,根据∠ABC=90°,AD= ,∠ABD为30°,可得出AB与BD,可证明△OBE为等边三角形,即可得出∠C=30°.阴影部分的面积为直角梯形ABCD的面积三角形ABD的面积三角形OBE的面积扇形ODE的面积.【解答】解:连接OE,过点O作OF⊥BE于点F.&∵∠ABC=90°,AD= ,∠ABD为30°,∴BD=2 ,∴AB=3,∵OB=OE,∠DBC=60°,OF⊥BE,∴OF= ,∵CD为⊙O的切线,∴∠BDC=90°,∴∠C=30°,∴BC=4 ,S阴影=S梯形ABCDS△ABDS△OBES扇形ODE=
π= π.故答案为: π.【点评】本题考查了切线的性质、直角梯形以及扇形面积的计算,要熟悉扇形的面积公式. 22.如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若∠ABC=30°,则AM=   .&【考点】切线的性质.【专题】计算题.【分析】连接OM,OC,由OB=OC,且∠ABC的度数求出∠BCO的度数,利用外角性质求出∠AOC度数,利用切线长定理得到MA=MC,利用HL得到三角形AOM与三角形COM全等,利用全等三角形对应角相等得到OM为角平分线,求出∠AOM为30°,在直角三角形AOM中,利用锐角三角函数定义即可求出AM的长.【解答】解:连接OM,OC,∵OB=OC,且∠ABC=30°,∴∠BCO=∠ABC=30°,∵∠AOC为△BOC的外角,∴∠AOC=2∠ABC=60°,∵MA,MC分别为圆O的切线,∴MA=MC,且∠MAO=∠MCO=90°,在Rt△AOM和Rt△COM中,&,∴Rt△AOM≌Rt△COM(HL),∴∠AOM=∠COM= ∠AOC=30°,在Rt△AOM中,OA= AB=1,∠AOM=30°,∴tan30°= ,即 = ,解得:AM= .故答案为: .&【点评】此题考查了切线的性质,锐角三角函数定义,外角性质,以及等腰三角形的性质,熟练掌握切线的性质是解本题的关键. 23.一走廊拐角的横截面积如图所示,已知AB⊥BC,AB∥DE,BC∥FG,且两组平行墙壁间的走廊宽度都是1m, 的圆心为O,半径为1m,且∠EOF=90°,DE、FG分别与⊙O相切于E、F两点.若水平放置的木棒MN的两个端点M、N分别在AB和BC上,且MN与⊙O相切于点P,P是 的中点,则木棒MN的长度为 (4 2) m.&【考点】切线的性质;全等三角形的判定与性质;勾股定理的应用;正方形的判定与性质.【专题】几何图形问题.【分析】连接OB,延长OF,OE分别交BC于H,交AB于K,证得四边形BKOH是正方形,然后证得OB经过点P,根据勾股定理求得OB的长,因为半径OP=1,所以BP=2 1,然后求得△BPM≌△BPN得出P是MN的中点,最后根据直角三角形斜边上的中线等于斜边的一半即可求得.【解答】解:连接OB,延长OF,OE分别交BC于H,交AB于K,∵DE、FG分别与⊙O相切于E、F两点,∴OE⊥ED,OF⊥FG,∵AB∥DE,BC∥FG,∴OK⊥AB,OH⊥BC,∵∠EOF=90°,∴四边形BKOH是矩形,∵两组平行墙壁间的走廊宽度都是1m,⊙O半径为1m,∴OK=OH=2,∴矩形BKOH是正方形,∴∠BOK=∠BOH=45°,∵P是 的中点,∴OB经过P点,在正方形BKOH中,边长=2,∴OB=2 ,∵OP=1,∴BP=2 1,∵p是MN与⊙O的切点,∴OB⊥MN,∵OB是正方形BKOH的对角线,∴∠OBK=∠OBH=45°,在△BPM与△BPN中&∴△BPM≌△BPN(ASA)∴MP=NP,∴MN=2BP,∵BP=2 1,∴MN=2(2 1)=4 2,故答案为:4 2&【点评】本题考查了圆的切线的性质,正方形的判定和性质,全等三角形的判定和性质以及勾股定理的应用,O、P、B三点共线是本题的关键. 三、解答题(共7小题)24.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE的外接圆的半径.&【考点】切线的性质;勾股定理;圆周角定理;相似三角形的判定与性质.【专题】几何综合题.【分析】(1)连接OC,由∠ABC+∠BAC=90°及CM是⊙O的切线得出∠ACM+∠ACO=90°,再利用∠BAC=∠ACO,得出结论,(2)连接OC,得出△AEC是直角三角形,△AEC的外接圆的直径是AC,利用△ABC∽△CDE,求出AC,【解答】(1)证明:如图,连接OC,&∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,又∵CM是⊙O的切线,∴OC⊥CM,∴∠ACM+∠ACO=90°,∵CO=AO,∴∠BAC=∠ACO,∴∠ACM=∠ABC;(2)解:∵BC=CD,∠ACB=90°,∴∠OAC=∠CAD,∵OA=OC,∴∠OAC=∠OCA,∴∠OCA=∠CAD,∴OC∥AD,又∵OC⊥CE,∴AD⊥CE,∴△AEC是直角三角形,∴△AEC的外接圆的直径是AC,又∵∠ABC+∠BAC=90°,∠ACM+∠ECD=90°,∴△ABC∽△CDE,∴ = ,⊙O的半径为3,∴AB=6,∴ = ,∴BC2=12,∴BC=2 ,∴AC= =2 ,∴△AEC的外接圆的半径为AC的一半,故△ACE的外接圆的半径为: .【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.解题的关键是找准角的关系. 25.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.&【考点】切线的性质.【专题】几何综合题.【分析】(1)连接OD,可以证得DE⊥OD,然后证明OD∥AC即可证明DE⊥AC;(2)利用△DAE∽△CDE,求出DE与CE的比值即可.【解答】(1)证明:连接OD,∵D是BC的中点,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE是⊙O的切线,∴OD⊥DE,∴DE⊥AC;
(2)解法1:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵DE⊥AC,∴∠ADC=∠DEC=∠AED=90°,∴∠ADE=∠DCE在△ADE和△CDE中,&∴△CDE∽△DAE,∴ ,设tan∠ACB=x,CE=a,则DE=ax,AC=3ax,AE=3axa,∴ ,整理得:x23x+1=0,解得:x= ,∴tan∠ACB= 或 .(可以看出△ABC分别为锐角、钝角三角形两种情况)解法2:连OD,过点O作AC的垂线,垂足为F,&∴OF2+AF2=OA2,∵AC=AF+FE+CE,且AC=AB=3DE,OB=OD=EF,∴ ,∴ = 或 ,∴tan∠ACB= 或 .&【点评】本题主要考查了切线的性质的综合应用,解答本题的关键在于如何利用三角形相似求出线段DE与CE的比值. 26.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若tan∠ABC= ,BE=7 ,求线段PC的长.&【考点】切线的性质;等腰三角形的判定;勾股定理;圆周角定理;相似三角形的判定与性质.【专题】证明题.【分析】(1)由PD切⊙O于点C,AD与过点C的切线垂直,易证得OC∥AD,继而证得AC平分∠DAB;(2)可得∠PFC=∠PCF,即可证得PC=PF,即△PCF是等腰三角形;(3)首先连接AE,易得AE=BE,即可求得AB的长,继而可证得△PAC∽△PCB,又由tan∠ABC= ,BE=7 ,即可求得答案.【解答】解:(1)∵PD切⊙O于点C,∴OC⊥PD.又∵AD⊥PD,∴OC∥AD.∴∠ACO=∠DAC.又∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.
(2)∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF,∴△PCF是等腰三角形.
(3)连接AE.∵CE平分∠ACB,∴ = ,∴ .∵AB为⊙O的直径,∴∠AEB=90°.在Rt△ABE中, .∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴ .又∵tan∠ABC= ,∴ ,∴ .设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6 (k=0不合题意,舍去).∴PC=4k=4×6=24.&【点评】此题考查了切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 27.如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.&【考点】切线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据AB,CD是直径,可得出∠ADB=∠CBD=90°,再根据HL定理得出Rt△ABD≌Rt△CDB;(2)由BE是切线,得AB⊥BE,根据∠DBE=37°,得∠BAD,由OA=OD,得出∠ADC的度数.【解答】(1)证明:∵AB,CD是直径,∴∠ADB=∠CBD=90°,在Rt△ABD和Rt△CDB中,&,∴Rt△ABD≌Rt△CDB(HL);
(2)解:∵BE是切线,∴AB⊥BE,∴∠ABE=90°,∵∠DBE=37°,∴∠ABD=53°,∵OA=OD,∴∠BAD=∠ODA=90°53°=37°,∴∠ADC的度数为37°.【点评】本题考查了切线的性质以及全等三角形的判定和性质,是基础题,难度不大. 28.如图,AB为⊙O的直径,以AB为直角边作Rt△ABC,∠CAB=90°,斜边BC与⊙O交于点D,过点D作⊙O的切线DE交AC于点E,DG⊥AB于点F,交⊙O于点G.(1)求证:E是AC的中点;(2)若AE=3,cos∠ACB= ,求弦DG的长.&【考点】切线的性质;勾股定理;解直角三角形.【专题】几何综合题.【分析】(1)连AD,由AB为直径,根据圆周角定理得推论得到∠ADB=90°,从而有∠C+∠EAD=90°,∠EDA+∠CDE=90°,而∠CAB=90°,根据切线的判定定理得到AC是⊙O的切线,而DE与⊙O相切,根据切线长定理得ED=EA,则∠EDA=∠EAD,利用等角的余角相等可得到∠C=∠CDE,则ED=EC,即可得到EA=EC;(2)由(1)可得AC=2AE=6,结合cos∠ACB= 推知sin∠ACB= ,然后利用圆周角定理、垂径定理,解直角三角形即可求得DG的长度.【解答】(1)证明:连AD,如图∵AB为⊙O的直径,∠CAB=90°,∴AC是⊙O的切线,又∵DE与⊙O相切,∴ED=EA,∴∠EAD=∠EDA,而∠C=90°∠EAD,∠CDE=90°∠EDA,∴∠C=∠CDE,∴ED=EC,∴EA=EC,即E为AC的中点;
(2)解:由(1)知,E为AC的中点,则AC=2AE=6.∵cos∠ACB= ,设AC=2x,BC=3x,根据勾股定理,得AB= =(3x)2(2x)2= x,∴sin∠ACB= .连接AD,则∠ADC=90°,∴∠ACB+∠CAD=90°,∵∠CAD+∠DAF=90°,∴∠DAF=∠ACB,在Rt△ACD中,AD=AC•sin∠ACB=6× = .在Rt△ADF中,DF=AD•sin∠DAF=AD•sin∠ACB= × = ,∴DG=2DF= .&【点评】本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题. 29.如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,BD∥AC.(1)图中∠OCD= 90 °,理由是 圆的切线垂直于经过切点的半径 ;(2)⊙O的半径为3,AC=4,求OD的长.&【考点】切线的性质;相似三角形的判定与性质.【专题】几何综合题.【分析】(1)根据切线的性质定理,即可解答;(2)首先证明△ABC∽△CDB,利用相似三角形的对应边的比相等即可求的CD长度,由勾股定理可求得OD长度.【解答】解:(1)∵CD与⊙O相切,∴OC⊥CD,(圆的切线垂直于经过切点的半径)∴∠OCD=90°;故答案是:90,圆的切线垂直于经过切点的半径;
(2)连接BC.∵BD∥AC,∴∠ACB=∠OCD=90°,∴在直角△ABC中,BC= = =2 ,∠A+∠ABC=90°,∵OC=OB,∴∠BCO=∠ABC,∴∠A+∠BCO=90°,又∵∠OCD=90°,即∠BCO+∠BCD=90°,∴∠BCD=∠A,又∵∠CBD=∠ACB,∴△ABC∽△CDB,∴ = ,∴ = ,解得:CD=3 .由勾股定理可知,OD= = =3 &【点评】本题考查了切线的性质定理以及相似三角形的判定与性质,证明两个三角形相似是本题的关键. 30.如图,AB,BC,CD分别与⊙O相切于E,F,G.且AB∥CD.BO=6cm,CO=8cm.(1)求证:BO⊥CO;(2)求BE和CG的长.&【考点】切线的性质;勾股定理;切线长定理;相似三角形的判定与性质.【专题】几何图形问题.【分析】(1)由AB∥CD得出∠ABC+∠BCD=180°,根据切线长定理得出OB、OC平分∠EBF和∠BCG,也就得出了∠OBC+∠OCB= (∠ABC+∠DCB)= ×180°=90°.从而证得∠BOC是个直角,从而得出BO⊥CO;(2)根据勾股定理求得AB=10cm,根据Rt△BOF∽Rt△BCO得出BF=3.6cm,根据切线长定理得出BE=BF=3.6cm,CG=CF,从而求得BE和CG的长.【解答】(1)证明:∵AB∥CD,∴∠ABC+∠BCD=180°,∵AB、BC、CD分别与⊙O相切于E、F、G,∴BO平分∠ABC,CO平分∠DCB,∴∠OBC= ,∠OCB= ,∴∠OBC+∠OCB= (∠ABC+∠DCB)= ×180°=90°,∴∠BOC=90°,∴BO⊥CO.
(2)解:连接OF,则OF⊥BC,∴Rt△BOF∽Rt△BCO,∴ = ,∵在Rt△BOC中,BO=6cm,CO=8cm,∴BC= =10cm,∴ = ,∴BF=3.6cm,∵AB、BC、CD分别与⊙O相切,∴BE=BF=3.6cm,CG=CF,∵CF=BCBF=103.6=6.4cm.∴CG=CF=6.4cm.&【点评】本题主要考查了切线长定理、勾股定理、相似三角形的综合运用,正确理解切线长定理是解决本题的关键所在,虽然涉及的考点较多,但难度一般.  文章来源莲山课 件 w w w.5y K J.Co m
没有相关试题上一个试题: 下一个试题:
? ? ? ? ? ? ? ? ? ?

我要回帖

更多关于 数学直线方程ppt 的文章

 

随机推荐