如何编写一段程序,用以验证一个随机过程孙应飞百度云是否为高斯

北大随机过程课件:第 5 章 第 1 讲 高斯随机变量_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
北大随机过程课件:第 5 章 第 1 讲 高斯随机变量
&&随机过程
阅读已结束,下载文档到电脑
想免费下载更多文档?
定制HR最喜欢的简历
下载文档到电脑,方便使用
还剩11页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢君,已阅读到文档的结尾了呢~~
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
通信原理随机过程
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口苹果/安卓/wp
积分 67, 距离下一级还需 18 积分
道具: 彩虹炫, 涂鸦板, 雷达卡, 热点灯, 金钱卡, 显身卡下一级可获得
权限: 自定义头衔
购买后可立即获得
权限: 隐身
道具: 金钱卡, 彩虹炫, 雷达卡, 热点灯, 涂鸦板
本帖最后由 hylpy1 于
14:00 编辑
一、& && && && &预备知识:概率论随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。1、&&概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体样本空间所构成的集合族。符号解释: sup表示上确界, inf表示下确界。本帖隐藏的内容2、&&数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。其中由于概率分布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便用于随机变量的N阶矩计算,同时唯一的决定概率分布。3、&&独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。条件期望中,最重要的是理解并记忆E(X) = E[E(X|Y)] = intergral(E(X|Y=y))dFY(y)。
二、& && && && &随机过程基本概念和类型随机过程是概率空间上的一族随机变量。因为研究随机过程主要是研究其统计规律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。同样,随机过程的有限维分布也通过某些数值特征来描述。1、&&平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数r(t1,t2)=r(0,t-s)均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差t-s有关,r(t) = r(-t)记为宽平稳随机过程。因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。2、&&独立增量过程:若X[Tn]– X[T(n-1)]对任意n均相互独立,则称X(t)是独立增量过程。若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。3、&&随机过程的分类不是绝对的。例如,泊松过程既具有独立增量又有平稳增量,既是连续时间的马尔科夫链,又是一类特殊的更新过程。参数为lambda的泊松过程减去其均值函数同时还是一个鞅。
三、& && && && &泊松过程计数过程{N(t), t&=0}是参数为λ的泊松过程(λ& 0),具有平稳独立增量性。而其任意时间长度t发生的次数服从均值为λ* t的泊松分布,即E[N(t)]= λ* t。1、&&与泊松过程有关的若干分布:Xn表示第n次与第n-1次事件发生的时间间隔,定义Tn表示第n次事件发生的时刻,规定T0= 0。其中,Xn服从参数为λ的指数分布,且相互独立。泊松过程在任何时候都是重新开始。Tn服从参数为n和λ的Γ分布
四、& && && && &更新过程更新过程{N(t),t&=0}中Xn仍保持独立同分布性,但分布任意,不再局限于指数分布。更新过程中事件发生一次叫做一次更新,此时Xn就是第n-1次和第n次更新相距的时间,Tn是第n次更新发生的时刻,而N(t)就是t时刻之前发生的总的更新次数。由强大数定理可知,无穷多次更新只可能在无限长的时间内发生。因此,有限长时间内最多只能发生有限次更新。1、&&更新函数:更新理论中大部分内容都是有关E[N(t)]的性质。以M(t)记为E[N(t)],称为更新函数。此时,M(t)是关于t的函数而不是随机变量。2、&&更新方程:若H(t),F(t)为已知,且当t&0时,H(t)与F(t)均为0,同时当H(t)在任何区间上有界时,称具有如下形式的方程K(t) = H(t) + intergral(K(t-s)*dF(s))的方程称为更新方程。当H(t)为有界函数时,更新方程存在唯一的有限区间内的有界的解K(t) = H(t) + intergral(H(t-s)*dM(s))。3、&&更新定理:Feller初等定理、Blackwell更新定理、关键更新定理。其中Blackwell定理指出,在远离原点的某长度为a的区间内,更新次数的期望是a/u,u = E(Xn)。同时,Smith关键更新定理与Blackwell定理等价。
五、& && && && &马尔科夫链马尔科夫链中的转移概率为条件概率,同时给定过去的状态X0,…,Xn-1和现在的状态Xn,将来的状态Xn+1的条件分布与过去的状态独立,只依赖于现在的状态。其中,Pij = P{Xn+1=j | Xn=i}为马尔科夫链的一步转移概率,它代表处于状态i的过程下一步转移到状态j的概率。当转移概率Pij只与状态i,j有关而与n无关时,称为时齐马尔科夫链,同时当状态有限时,称为有限链。转移概率矩阵中概率非负,同时随机矩阵中每一行的元素和为1。记Pij(n)为n步转移概率,它指系统从状态i经过n步后转移到状态j的概率,而对中间n-1步转移经过的状态无要求。对n步转移概率和转移矩阵,有C-K方程公式。1.& && &状态的分类和性质:如果状态i经过n步转移后到达j的概率大于0,称状态i可达状态j。若同时状态j可达状态i,则称i与j互通,两两互通的状态有传递性。我们将互通的各个状态归为一类,自己和自己互通,当一个马尔科夫链中只有一类时称为不可约类,否则则是可约类。如果状态i可以经过n步回到i状态,则将所有n的最大公约数记为状态i的周期,即d(i),如果d&1,则称i是周期的,如果d=1则为非周期,空集时为无穷大。同属于一类的两状态周期相同。记状态i出发经n步后首次到达j的概率为Fij(n),则所有可能n的概率Fij(n)加起来的和记为Fij。若Fij=1,i为常返状态,Fij&1,i为非常返状态或瞬时状态。对于常返状态i,记Ui为从i第一次回到i的期望步长,若Ui有限,称i为正常返状态,若趋于无穷大,则为零常返状态。若正常返状态i同时还是非周期的,则称之为遍历状态。若遍历状态且Fii(1)=1,则称为吸收状态,此时Ui=1。对于同属于一类的状态i,j,他们同为常返状态或非常返状态,并且当他们是常返状态时,又同为正常返状态或零常返状态。状态i至j的n步转移概率与首达概率间存在一定关系。同时若i与j互通且i为常返状态,则Fji = 1。2.& && &极限定理及平稳分布:马尔科夫链的极限情况即状态i经过无穷多步转移后到达i的概率是多少。有结论,若状态i是周期为d的常返状态,则Pii(nd) = d/Ui,即经过无穷多步后回到i的概率为常数,上述定理对Pij也有效。同时,不可约的有限马尔科夫链是正常返的。若对于马尔科夫链Pj = P(Xn = j) = sum(Pi*Pij),则概率分布Pj为平稳分布。因为此时,对于任意Xn均有相同的分布。同时,对于遍历的马尔科夫链,极限分布就是平稳分布并且还是唯一的平稳分布。极限分布即为很长时间后,无论最开始状态如何,最终达到某一状态的概率。若对于遍历的马尔科夫链,该概率是稳定的趋于常数。3.& && &连续时间马尔科夫链、Kolmogorov微分方程
六、& && && && &鞅鞅的定义是从条件期望出发,如果每次赌博的输赢机会是均等的,并且赌博策略依赖于前面的赌博结果,赌博是“公平的”。因此,任何赌博者都不可能通过改变赌博策略将公平的赌博变成有利于的赌博。如果将“鞅”描述的是“公平”的赌博,下鞅和上鞅分别描述了“有利”赌博与“不利”赌博。随机过程{Sn, n&=0}称为Fn=sigma{X0,X1,…,Xn}适应的,如果对任意n&=0,Sn是Fn可测的,即Sn可以表示为X0,X1,X2,…,Xn的函数1.& && &鞅的停时定理:任意随机函数T是关于{Xn,n&=0}的停时,即{T=n}应由n时刻及其之前的信息完全确定,而不需要也无法借助将来的情况,同时T必须是一个停时。同时,{T&=n}和{T&=n}也由n时刻及其之前的信息完全确定。若T和S是两个停时,则T+S,min{T,S}和max{T,S}也是停时。则在一直Fn完全信息的前提下,有界停时的期望赌本与初始赌本相同。特别的,当完全信息未知时,有界停时的期望赌本与初始赌本的期望相同。2.& && &鞅的一致可积性:如果对任意ε&0,存在δ&0,使得对任意A,当P(A)&δ时,有E(|Xn|Ia) &ε对任意n成立。一致可积条件一般较难验证,因此存在两个一致可积的充分条件。3.& && &鞅的收敛定理:在很一般的情况下,鞅{Mn}会收敛到一个随机变量。即对于{Mn, n&=0}是关于{Xn, n&=0}的鞅,并且存在常数C有限,使得E(|Mn|)&C对任意n成立,则当n趋近于无穷大时,{Mn}收敛到一个随机变量Mx。只有当Mn一致可积时,才有E(Mx)=E(M0)。4.& && &连续鞅:停时定理,收敛定理。
七、& && && && &布朗运动若B(0)=0,{B(t),t&=0}有平稳独立增量,对每个t&0,B(t)服从正态分布N(0, t)称之为标准布朗运动。布朗运动的二次变差[B,B](t) = t。布朗运动是满足以下三点性质的随即过程,即对于B(t)-B(s) ~ N(0,t-s),B(t)-B(s)服从均值为0,方差为t-s的正态分布。当s=0时,B(t)-B(0)~N(0,t)。并且,对任意0&=s&t,B(t)-B(s)独立于过程的过去状态B(u),0&=u&=s。同时,B(t)(t&=0)是t的连续函数。由于布朗运动在有限维分布是空间平移不变的空间齐次性,只需研究始于0的布朗运动即可。1.& && &高斯过程:有限维分布是多元正态分布的随机过程。布朗运动是一种特殊的高斯过程,即B(t)的任何有限维分布都是正态的。2.& && &{B(t)}是鞅,{B(t)^2 - t}是鞅:即如果连续鞅{X(t)}使得{X(t)^2 - t}也是鞅,则{X(t)}是布朗运动。3.& && &布朗运动{B(t)}具有马尔科夫性,容易得到B(t+s)在给定条件Ft=sigma(B(0),B(1),…,B(t))下的分布与在给定条件B(t)下的分布是一致的。同时由布朗运动具有时齐性,即分布不随时间的平移而变化可知,布朗运动的所有有限维分布都是时齐的。4.& && &布朗运动的最大值变量及反正弦率:即求始于y点的布朗运动在区间(a,b)中至少有一个零点的概率为布朗运动的反正弦率。5.& && &几何布朗运动X(t) = exp{B(t)}为几何布朗运动。在金融市场中,人们经常假定股票价格是按照几何布朗运动而发生变化。
八、& && && && &随机积分1.& && &布朗运动的积分,Ito积分过程,Ito公式,随机微分方程2.& && &Black-Scholes模型
支持楼主:、
购买后,论坛将把您花费的资金全部奖励给楼主,以表示您对TA发好贴的支持
载入中......
观点有启发
总评分:&经验 + 230&
论坛币 + 90&
学术水平 + 12&
热心指数 + 10&
信用等级 + 8&
本帖被以下文库推荐
& |主题: 467, 订阅: 52
& |主题: 181, 订阅: 55
论坛扫地人员
刚刚学到遍历性
,总结的不错
crystal8832 发表于
刚刚学到遍历性马尔科夫看书看晕了,楼主表示上学时连概率统计都没学过!
honghudu 发表于
,总结的不错好多符号都不标准,只是自己觉得方便的记法,下次改正
表示考试满分的同学其实还是只懂概率论的知识,上课听不懂,考试很水
安安岳 发表于
表示考试满分的同学其实还是只懂概率论的知识,上课听不懂,考试很水所以,现在得想办法把看过的东西怎么用起来
zjm 发表于
所以,现在得想办法把看过的东西怎么用起来额,我是不会用啊,太难了,只知道有这个东西存在
二级伯乐勋章
二级伯乐勋章
一级伯乐勋章
一级伯乐勋章
初级热心勋章
初级热心勋章
初级学术勋章
初级学术勋章
中级热心勋章
中级热心勋章
初级信用勋章
初级信用勋章
中级学术勋章
中级学术勋章
中级信用勋章
中级信用勋章
高级热心勋章
高级热心勋章
高级学术勋章
高级学术勋章
高级信用勋章
高级信用勋章
特级热心勋章
高级热心勋章
特级学术勋章
特级学术勋章
特级信用勋章
高级信用勋章
&nbsp&nbsp|
&nbsp&nbsp|
&nbsp&nbsp|
&nbsp&nbsp|
&nbsp&nbsp|
&nbsp&nbsp|
如有投资本站或合作意向,请联系(010-);
邮箱:service@pinggu.org
投诉或不良信息处理:(010-)
论坛法律顾问:王进律师 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
随机过程习题解析-北邮版
下载积分:0
内容提示:随机过程习题解析-北邮版
文档格式:PDF|
浏览次数:311|
上传日期: 16:56:21|
文档星级:
全文阅读已结束,此文档不支持下载
该用户还上传了这些文档
随机过程习题解析-北邮版
关注微信公众号随机过程笔记
我的图书馆
随机过程笔记
&许铁&混沌巡洋& 第一部分:为什么要研究随机过程?& 人类认识世界的历史,就是一认识和描绘各种运动的历史,从宏观的天体运动到分子的运动,到人心理的运动-我们通称为变化,就是一个东西随时间的改变。
人们最成功的描绘运动的模型是牛顿的天体运动,确定性是牛顿体系最大的特征。给定位置和速度,运动轨迹即确定。但是20实际后的科学却失去了牛顿美丽的确定性光环。
因为当人们试图描绘一些真实世界,充满复杂而未知因素的运动时候,人们发现不确定的因素(通常称之为噪音)对事物的变化至关重要,而牛顿的方法几乎难以应用。而我们所能够给出的最好的对事物变化的东西,是一套叫概率论的东西。而与之相应的产生的一个全新的研究运动的方法-随机过程, 对不确定性下的运动进行精细的数学描述。
我们周边充满了各种各样的数据,所谓大数据时代,这些数据最基本的特点就是含有巨量的噪音, 而随机过程就是从这些噪音里提取信息的武器。
* 其实我们生活中也处处充满“噪音”。比如说我们每天发邮件,经常有一些人时回时不回。那些不回的人到底是忘了还是真的不想回,我们却不知道。一个书呆子统计学家会告诉你,你无法从一次的行为评判他,而要看他一贯的表现。
第一个随机过程方法的伟大胜利是爱因斯坦的布朗运动。一些小花粉在水里,受到水分子不停碰撞,而呈现随机的运动(花粉颗粒由于很小比较容易受到水分子热扰动的影响) 。 研究这些花粉的微小运动似乎有点天然呆,我们却从中找到了分子世界重要的信息。而花粉那无序与多变的轨道,也为我们提供了随机运动的范式(随机游走)。
计算机生成的十个粒子的布朗运动轨迹
如果给随机过程打个比方,它就像是一个充满交叉小径的花园。你站在现在的点上,看未来的变化,未来有千万种变化的方式, 每一种可能又不断分叉变化出其它可能。& 第二部分: 描述随机过程的武器
& 随机过程怎么研究?几样神器是不可缺少的。
1. 概率空间:&面对不可确定的未来,无非有两件事需要关心,一个是有哪些可以实现的可能,一个是每种可能的大小, 前者定义一个事件空间(态空间), 后者定义一个数-概率。& 关键这些信息从哪里来呢? 我们如何知道要发生什么? 又如何知道多多大可能发生? -- 历史。
概率论的思维基点其实是: 日光之下并无新事。& 我们对未来的预测来源于对过于的经验积累, 而沟通过去经验与未来预测的工具就是概率。所谓一件事发生可能性大小,就是一件事在历史中发生的频率。
当然很多情况下概率也可以通过已知理论用演绎法推得,但是最根本的,还是由经验确定的概率。&概率,我们中学数学都学过它是一个事件出现的频率,但它的含义其实很深很深。因为一个事件出现的频率来自于历史,而概率却用于对未来的预测,因此,概率包含的一个基本假设就是未来和过去的一致性-你要用概率,你所研究的对象要有可重复性。这其实假设了概率所研究的事件具有的某种稳定性,一旦这些一个过程是一个随时间剧烈变化的过程,概率几乎就不能应用。所以这里只能说概率是一种近似,他对于研究那些比较简单的物理过程,如投掷硬币,才完全有效。&所以, 所谓概率空间,只能是一种近似,他是人类现有知识的总和, 我们用它描述已知的未知, 但是却从来无法描述未知的未知-被我们称作黑天鹅的事件,因为真正的未来,永远无法只有已知的可能性(感兴趣的请参看本人旧文-高斯与天鹅)。在大多数时候,我们还是日光之下并无新事,因此,概论的威力依然不可小觑。& 有关概率空间的思维,可以立刻灭掉一些看似烧脑实际脑残的题目:& 假设你在进行一个游戏节目。现给三扇门供你选择:一扇门后面是一辆轿车,另两扇门后面什么都没有。你的目的当然是要想得到比较值钱的轿车,但你却并不能看到门后面的真实情况。主持人先让你作第一次选择。在你选择了一扇门后, 知道其余两扇门后面是什么的主持人,打开了另一扇门给你看,而且,当然,那里什么都没有。现在主持人告诉你,你还有一次选择的机会。那么,请你考虑一下,你是坚持第一次的选择不变,还是改变第一次的选择,更有可能得到轿车?
回答这个问题的关键即事件空间,在主持人打开门之前,事件空间即车的位置有三种可能,你有1/3 的可能拿到车。当主持人选择打开门的时候, 它实际上帮你做了一个选择,那就是告你某个车库没有车,这时候事件空间发生了变化,因为你的已知变了。如果说以前的事件空间是或者你选择的车库有车(1/3), 或者另外两个车库中的某一个有车(各1/3)。现在的情况呢?被打开的车库有车的概率变为0, 因此你选择的车库没车的情况下车的位置已经变成确定的了,概率为2/3。而原来你车库有车的选项却不受到这一事件的影响(依然1/3概率), 所以你当然要选择换车库。&这个例子第一个说明的道理是概率是主观的,来自于你头脑中的信息。&回过头看, 主持人的举动增加了你对两个车库的信息, 而车是不变的,所以你要根据新的信息调整概率空间。&* 此实例是好的思维方法的力量的典范,如果你没有这个事件空间的角度, 恐怕要做无数的试验了。& 条件概率: 现实生活中的一般都以条件概率的形式出现,即给定一定的已知条件,信息我们会得到什么样的概率。对这一大类问题可以引出整个贝叶斯分析理论,将在后续篇章中介绍。
& 2. 随机变量 :&你投掷筛子,得到6个结果,每种结果有1/6 的可能。你把态空间的种种可能性都用数字表达出来,用一套用轻度装逼的数学语言描述, 就是随机变量。 这个东西包含所有输出的可能性以及相应的概率,这些可能性(态空间)和概率的对应关系我们称之为分布函数。如果态空间是连续的,我们就得到连续的分布函数形式。
图: 一个二维高斯分布
分布函数:
随机变量已经包含了两个随机过程研究的核心武器:态空间和分布函数。分布函数是提取随机过程内有用信息的第一手段。分布函数-是在大量数据中提取信息的入口。
随机变量的实现:随机变量可以看做一个实验,你在实验之前,结果是不确定的,你所有的是一团可能性。 当你做完实验,却得到一个唯一的结果,只是预先不可知。
期望: 对一个随机变量,已知其分布函数,可以定义一个期望。这个东西由每个结果的取值和它的可能性共同决定,表达未来结果的加权平均值。 实际中我们可以用实验的方法确定这个数字,就是所谓蒙特卡洛方法,不停的投筛子然后做个统计,你所得到的结果的平均就是期望。(平均值和期望的区别就是第一个来自已有的数据的平均,第二是对根据已有的平均对未来的预测。)&关于期望包含着一种投资世界里的基本思维方式,就是对收益的幅值和风险(概率)一起考虑。经常有一些时候一些出现机会极少而收益特别大的可能性决定了期望,如果你的心脏足够强大,就应该充分考虑这些高风险高收益的可能。
相关性: 对于两个随机变量,你可以定义一个相关性covariance,描述一个随机变量随另一个而变化的趋势。这个函数特别有用,它是现实生活中我们说两个事物相关性的精确表达。
& 理解这个算式特别简单,这个量就是x和y波动乘积的期望,当两个变量是此消彼长,则为负,共生共荣则为正,若两个过程不相关,则为0.
方差: 上述关系当x=y我们得到方差,方差就是自己和自己的关联函数,当随机变量比较接近正态分布时候它可以描绘波动性的大小。
对于N个随机变量,任意两个随机变量可得到一个covariance,而这样一组covariance构成大名鼎鼎的covariance matrix.
测量分布函数的武器-蒙特卡洛方法:
搞定一个分布函数,笨办法也是最有用的方法就是蒙特卡洛方法。 一般筛子情况下,筛子有6各面, 每个面出现的概率有1/6,但是万一筛子被做过手脚呢? 所以最好的方法还是所谓蒙特卡洛抽样,不停的玩,知道你认为你可以稳定得到每次可能性出现的频率。 所谓笨办法确是最常用的,尤其是随着高速计算机的普及。一些重大的工程, 涉及太多复杂不好确定因素时候,我们就让计算机模拟,设计一系列的蒙特卡洛抽样来求得一些结果。&* 此名来自Monte Carlo 摩纳哥的赌场, 其实赌场里也可以产生一些最厉害的数学思想。&& 抽样:&在计算机里研究牵扯随机变量的过程最基本的方法就是抽样,抽样就是已知分布函数取得一个随机的结果的过程。我们要在计算机里模拟一个随机过程都是通过抽样来实现的。抽样的成功与否决定这些计算机模拟(simulation)能在多少程度逼近真实。计算机的抽样都是基于最简单的随机数生成器产生的,产生概率均等的均与分布(Uniform distribution)。但是这些“随机数”实际是早已设定好的,因此更准备的被称作“伪随机数”。而对于更加复杂的分布函数的抽样, 则有如层出不穷的算法解决它,比如大名鼎鼎的Markov Chain Monte Carlo (MCMC)方法,将在之后的章节介绍。
第三部分: 什么是随机过程
确定性过程研究一个量随时间确定的变化,而随机过程描述的是一个量随时间可能的变化,在这个过程里,每一个时刻变化的方向都是不确定的,或者说随机过程就是由一系列随机变量组成,每一个时刻系统的状态都由一个随机变量表述,而整个过程则构成态空间的一个轨迹(随机过程的实现)。& 一个随机过程最终实现,会得到一组随时间变化的数值(态空间里的轨迹),实践中我们都是从数据结果中推测一个随机过程的性质的。& 刚说过概率是建立在可重复性上,是一个理想模型,而建立在此上的随机过程就更是一个理想化的模型,它暗含的是历史可无限重复,然后你把他们收集在一起看一看。我在一开头的说的充满分叉小径的花园是一种比喻,但说的也是你需要站在平时时空(每一个时空包含一种历史的可能性)的角度来看一个随机过程的全貌。 & 我们立刻发现这是一个超级复杂的问题,因为一个随机过程具有无限多可能性。试想象一个最简单的随机过程,这个过程由N步组成,每一步都有两个选择(0,1),那么可能的路径就有2的N次方个,这个随机过程就要由2^N-1个概率来描述(概率只和为一减掉一个维度),用数学物理的语言就是极高维度的问题。& * 离散的时间序列是清晰表述随机过程的入门方式,虽然更一般的表述是时间是连续的& 因此,能否研究一个随机过程的关键就是减少问题的维度-这也是物理的核心思想。
一下讲一下达到这个目的发明的神器:
马尔科夫过程(Markov Processes)
马尔科夫过程,是随机过程中的精华部分,其地位犹如牛顿定律在力学的地位。
对于最一般的随机过程,是无限复杂的,幸好,在我们日常生活中,很多随机过程符合或近似更简单的模型。其中目前一种最有效的框架成为马尔科夫过程. 所谓马尔科夫过程,即随机过程的每一步的结果最多只与上一步有关,而与其它无关。 好比你不停撒筛子,你每一次的结果不会影响未来的成绩。
马尔可夫链(Markov chain): makov过程用数学语言表述就是马尔科夫链,就像一台熊熊驶过的火车,前一个车厢(上一步)拉着后一个(下一步),向前运行。
如果一个过程是markov过程,这个过程就得到了神简化,你只需要知道第n步是如何与第n-1步相关的,一般由一组条件概率表述,就可以求得整个过程。一个巨大的随机过程,其内核仅仅是这样一组条件概率,而知道了这组条件概率,就可以衍生整个过程。
图: 一个典型的markov过程, 每一个的结果只与上一步相关,我们只需要一组条件概率(箭头)来描述,每个条件概率告你如果态空间中的某一个事件发生,那么从这一点出发, 下一个事件发生的概率。& 我们不妨多想一下,如果第n步和第n-1步的关系不是随机的,而是确定的,那我们得到了什么?我们联想到牛顿力学,牛顿力学也是此刻的状态决定下一刻的变化,其本质也是链式法则,通过此刻与此刻最邻近的未来的关系,衍生出整个宇宙的过去和未来, 其灵魂同样是降维。或者说markov就是随机过程里的牛顿法则。
Markov是不是真的是一个历史无关的过程? No! 虽然第N+1步只与第N步有关,但是第N步又包含第N-1步,所以通过链式法则,历史的信息还是可以传递到现在的。& 经典表述: &马尔科夫链的核心条件概率表达式就是这台火车链接不同车厢的链条。 如果这个条件概率关系不随时间变化,我们就得到经典的稳态马尔科夫链。它有一个良好的性质,就是当这个过程启动一段时间就会进入统计稳态,稳态的分布函数与历史路径无关。&一个简单的例子: 关于生育偏好是否影响男女比例的问题。&我们知道过去的人喜欢生男孩,往往生女孩子就不停生,直到生到一个男生为止,因此就造成很多一大堆姐姐只有一个弟弟的家庭。我接触过的一些特别聪明的人都会认为这样的行为会影响男女比例。大部分人觉得会造成女孩比例多,少数人认为会增加男孩比例。 实际呢? 一言以蔽之: 不变。
为什么? 生育问题是典型的稳态马尔科夫过程,下一次生育不受上一次生育的影响。 根据马氏过程的特性,你知道历史无需考虑历史路径, 最终的平衡概率只取决于每一步的概率。所以无论你怎么玩,不论是你拼命想生男孩还是女孩,都无法影响人口比例。&但是有一招却是有影响的,就是打胎。 为什么? 答案依然很简单,你改变了每一步的概率。&这就是马尔科夫过程的威力和魅力,可惜人生却不是马尔科夫过程, 因为每一步都高度依赖于过去n步,因此人生是高度历史路径依赖的。&关于马尔科夫过程的进一步理解及几个经典的随机过程范式将在下文讲解
馆藏&19927
TA的最新馆藏[转]&[转]&[转]&[转]&[转]&[转]&
喜欢该文的人也喜欢

我要回帖

更多关于 随机过程 公开课 的文章

 

随机推荐