Crispr-cas9基因敲除 -sgRNA为什么只识别PAM位点,不去识别其它位点呢?

CRISPR-P v2.0
CRISPR-P 2.0: an improved CRISPR/Cas9 tool for genome editing in plants
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is an acronym for DNA loci that contain multiple, short, direct repetitions of base sequences. Each repetition contains a series of base pairs followed by the same or a similar series in reverse and then by 30 or so base pairs known as "spacer DNA". CRISPRs are found in the genomes of approximately 40% of sequenced bacteria and 90% of sequenced archaea. CRISPRs are often associated with cas genes which code for proteins that perform various functions related to CRISPRs. The CRISPR-Cas system functions as a prokaryotic immune system, in that it confers resistance to exogenous genetic elements such as plasmids and phages and provides a form of acquired immunity. CRISPR spacers recognize and silence exogenous genetic elements in a manner analogous to RNAi in eukaryotic organisms.
Recent Advances in Genome Editing Using CRISPR/Cas9 (modified from ).
CRISPR-P 2.0 design tool based on we previously work of
, which is one of the most popular tools for sgRNA design in plants. As CRISPR/Cas9 technology has evolved rapidly in the past two years, an updated platform, CRISPR-P 2.0 provides web service for computer-aided design of highly efficient sgRNA with minimal off-target effects. It has functions as follow:
It supports sgRNA design for 49 plant genomes. SgRNAs for 49 plant species with the latest version of genome and annotation are provided.
Scoring system of sgRNA for on-target efficiency and off-target potential are improved. CRISPR-P 2.0 uses a modified scoring system to rate the off-targeting potential and on-targeting efficiency of sgRNAs for Streptococcus pyogenes Cas9 which is the widest used CRISPR-Cas9 system. The scoring system in CRISPR-P 2.0 is based on the up-to-date knowledge about SpCas9 genome editing.
It Supports various CRISPR-Cas systems. It supports to design guide sequences for various CRISPR-Cas systems like Cpf1
and various Cas9 endonucleases.
A comprehensive analysis of the guide sequence is provided, including: GC content, restriction endonuclease site, microhomology sequence flanking the targeting site (microhomology score), and the secondary structure of sgRNA.
Identification of sgRNA from custom sequences is also provided. If user’s genome/sequence is not listed in the selectable genomes, it allows users to upload custom sequences and identify sgRNAs.
Visit the old version of
1. Yang Lei, Li Lu, Hai-Yang Liu, Sen L, Feng Xing, Ling-Ling Chen*. CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant, ): . .
2. Yuduan Ding, Hong Li, Ling-Ling Chen*, Kabin Xie*. Recent advances in genome editing using CRISPR/Cas9. Front Plant Sci., 3..
3. Hao Liu, Yuduan Ding, Yanqing Zhou, Wenqi Jin, Kabin Xie*, Ling-Ling Chen*. CRISPR-P 2.0: an improved CRISPR/Cas9 tool for genome editing in plants. Mol Plant, ): 530-532.CRISPR/Cas9指南 - 简书
CRISPR/Cas9指南
[注] 本指南翻译自 ,如有不妥之处,请指出以改进,谢谢!
另:如果希望转载本文,请注明出处,谢谢
CRISPR/Cas9总概
成簇规律间隔的短回文重复序列(Clustered Regularly Interspaced Short Palindromic Repeats,即CRISPR)II型系统是细菌免疫系统,现已被改造用于基因工程。在CRISPR/Cas9广泛应用之前,像锌指核酸酶(ZFNs)或转录激活因子类效应核酸酶(TALENs)等基因工程技术,都需要使用定制的DNA结合蛋白核酸酶,这需要科学家为每个基因靶标设计和生产新的核酸酶对(nuclease-pair)。(相比而言,)CRISPR主要因其简单性和适应性,已迅速成为基因工程中最受欢迎的方法之一。
CRISPR/Cas9总概
CRISPR包括两个部分:一个向导RNA(gRNA)和一个非特异性CRISPR结合核酸内切酶(CRISPR-associated endonumclease即Cas9)。向导RNA是一个短的合成RNA,由一段结合Cas9必需的scaffold序列和特定的约20nt的空载(spacer)或靶向(targeting)序列(靶位点)组成,其中靶向序列决定了用于修饰的基因靶标。因此我们只需改变gRNA上的靶向序列即可改变Cas9的基因靶标。CRISPR最初用于敲除各种细胞类型或生物体的靶向基因,但对Cas9酶的改造已经将CRISPR的应用扩展到选择性激活或抑制靶向基因或纯化特定的DNA区域,甚至可以和荧光显微结合用于展现活细胞中的DNA。而且,产生gRNAs的便捷促使CRISPR成为了最具扩展性的基因编辑技术之一,近来已被应用于基因组水平的筛查。
这篇指南将提供CRISPR/Cas9生物学方面的概览,介绍CRISPR的不同应用,帮助诸位在各自领域上开展CRISPR/Cas9的研究。
使用CRISPR/Cas9进行敲除
通过靶向基因特异的gRNA和核酸内切酶Cas9的共表达,CRSIPR/Cas9可用于产生敲除细胞或敲除动物。** 基因靶位点可以是任何满足以下两点条件的约20nt的DNA序列:**
该序列在基因组中是特异存在的。
靶位点紧邻着PAM(Protospacer Adjacent Motif)区并位于PAM区上游。
PAM序列是结合靶标必不可少的,具体序列取决于Cas9的种类(酿脓链球菌Cas9 5’NGG3’)。我们将关注酿脓链球菌Cas9,因其目前广泛使用于基因工程。一旦表达,Cas9蛋白和gRNA将形成一个核糖体蛋白复合物,这个复合物是通过gRNA的scaffold区域和Cas9上表面暴露带正电荷的沟糟相互作用形成的。Cas9与gRNA的结合后构象发生了改变,分子由无活性的非DNA结合构象转变为有活性的DNA结合构象。更重要的是gRNA上的靶位点序列仍未和靶标DNA发生相互作用。Cas9-gRNA复合体将任意地结合基因组上的PAM序列,但是只有gRNA靶位点序列与靶标DNA配对时,Cas9才能进行切割(这段靶标DNA)。一旦Cas9-gRNA复合物结合到一段认定的DNA靶标,在gRNA靶向序列3’端的“种子”序列开始使靶标DNA退火。如果种子序列与靶标DNA序列配对,gRNA将持续的沿3’到5’端方向使靶标DNA退火。
使用CRISPR/Cas9进行敲除
只有当gRNA靶位点序列与靶基因有足够的同源性存在时,Cas9才会作用切割靶基因。拉链式的退火机制可能解释了为什么靶标上3’端种子序列上的错配会完全破坏对靶标的切割,而5’端的错配有可能会对靶标进行切割。Cas9核酸酶有两个功能性内切酶区:RuvC和HNH。当Cas9与靶基因位点结合时发生了第二次构象变化,核酸酶功能区对靶标DNA的反向链进行定位切割。Cas9介导的DNA切割最后结果是目标DNA(PAM序列上游约3~4nt)的双链断裂(double strand break,DSB)。
双链断裂后由以下两种常规的修复途径进行修复:
有效但易错的非同源末端连接途径(NHEJ)
低效但高保真的同源性修复途径(HDR)
NHEJ修复途径是最活跃的修复机制,能快速的修复双链断裂,但通常会在双链断裂位点产生小的插入缺失。NHEJ介导的双链断裂修复的随机性具有重要的实用意义,因为Cas9和gRNA在细胞群体中的表达,将产生多种不同的突变。大多数情况下,NHEJ引起的靶标DNA上的小InDels,会导致阅读框内的氨基酸插入缺失,或者移码突变引起的目标基因上ORF提前终止。理想情况下,在靶标基因内形成功能缺失性的突变。然而,对特定的突变细胞表型的敲除能力最终取决于残存的基因功能的剂量。
用Cas9的切口酶提高特异性
当gRNAs设计准确时,CRISPR/Cas9具有很高的特异性,但是特异性依然是一个主要的关注点,特别是当CRISPR应用于临床时。CRISPR系统的特异性主要取决于gRNA靶向序列特异性如何,即基因靶标相比于基因组其余部分的情况。理想状态下,gRNA靶向序列与靶标DNA具有高度同源,而与基因组上其它位置没有同源性。(但)现实是,在基因组上,会有另外的位点与指定的gRNA靶向序列部分同源。这些位点被称为“脱靶”,你在设计gRNA时需要考虑到这些位点。
用Cas9的切口酶提高特异性
为了优化gRNA的设计,CRISPR的特异性可以通过改造Cas9自身来得到提升。如先前讨论那样,Cas9通过两个核酸酶功能区域,RuvC和HNH,的结合活性来形成双链断裂。每个核酸酶结构域上精确的氨基酸残基是已知的,这些残基序列对内切酶的活性至关重要(在酿脓链球菌Cas9中D10A对HNH和H840A对RuvC),Cas9酶的修正版已生成,它仅包含一个催化活性功能域(称为“Cas9 nickase”)。Cas9切口酶依然基于gRNA的特异性来结合DNA,但切口酶仅能切开DNA的一条链,形成一个切口“nick”,或使单链断开,而不是双链断裂。使用完好的互补链作为模板,DNA上的切口迅速地被HDR途径(同源性修复途径)修复。因此需要使用两个切口酶来切割靶标DNA的两条链以形成双链断裂(这种通常被称为“double nick”或者“dual nickase”CRISPR系统)。这种需求迅猛地增加了靶特异性,因为这和在足够近的范围内双链断裂产生的两个脱靶的nicks的方式截然不同。因此,如果特异性或者减少脱靶的影响是考虑的关键因素,那么就采用双切口酶方法来产生两个nick引起的双链断裂。为了获得高特异性的基因编辑,切口酶系统也可以联合HDR(同源性修复途径)介导的基因编辑一起使用。
使用HDR进行精确的改造
NHEJ介导的双链断裂修复不够完美,通常会导致基因ORF阅读框的中断,HDR能用于产生特异性的核苷酸改变(这也是人们所说的基因“编辑”),这种改变小到单核苷酸改变大到大片段插入(例如,添加一个荧光基团或者tag)。
为了利用HDR进行基因编辑,一段DNA”修复模板”序列需要和gRNA+Cas9蛋白/Cas9n蛋白一同转入研究者感兴趣的细胞中。修复模板必须包含所需编辑位点以及紧邻靶标的上下游同源序列(称作左右同源臂)。每条同源臂的长度以及结合位点取决于想要进行的改变的大小。修复模板可以是一个单链寡核苷酸/双链寡核苷酸/双链DNA质粒,这因不同的应用而不同。值得一提的是,修复模板在基因组DNA不能带有PAM序列,否则修复模板将成为Cas9切割的合适目标。例如,PAM序列可以进行突变处理,以至于不再出现,但是基因编码区不受影响(也即,沉默突变)
使用HDR进行精确的改造
即使在表达Cas9、gRNA和外源性修复模板的细胞中,HDR效率通常也比较低(低于修饰等位基因的10%)。因此,一些实验室人为地尝试加强HDR,有的是在HDR起作用时同步化细胞周期,有的是通过化学的或遗传学的抑制基因来参与NHEJ。HDR的低效性有许多重要的实用意义。首先,因为Cas9的切割效率相对较高,而HDR效率相对较低,一部分Cas9引导的双链断裂被NHEJ修复。也就是说,最后细胞群体中会包含一些野生型等位基因,NHEJ修复的等位基因,和/或一些所需的HDR编辑等位基因。因此,需要通过实验来验证所需的编辑是否存在,如必要的话,对所需编辑的克隆进行分离。
趣味复习周之生化篇 本文由中医仲景协会整理,如需要原文件请联系QQ 蛋白质的结构及功能 第一节 氨基酸与多肽 一、氨基酸的结构与分类 (一)氨基酸的一般结构式 氨基酸是组成人体蛋白质的基本单位,共有20种,除甘氨酸外均属L-a-氨基酸。氨基酸的一般结构式...
编者按: 日,美国专利与商标局宣布启动抵触审查程序(Interference proceeding),重新审核CRISPR/Cas9技术的专利。 三天后的1月14日,《Cell》杂志一篇关于CRISPR的综述,让美国科学界对麻省理工学院博德研究所的Eric...
癌症,一种慢性的基因病。 简介 在癌症研究中,每个癌症样品呈现在研究人员眼前的已经是一个发生了改变的基因组,其中包含着独特且难以预测的诸多点突变、序列的插入缺失、易位、融合以及其他畸变。并且,这些发生的变异中,许多往往都是之前所未观察到的(Novel mutations),...
吃过晚饭,本来约好过去的同事去散步,不巧,下起了小雨,散步会取消。于是,我和孩子到附近的聚能书城看书,一个小时的阅览,雨还是下个不停,但书店可能要关门了,于是我们赶紧结账,牵着女儿的手冲进雨中回家。跑了一小段,感觉后面有人在追我们,好像雨小了,回头一看,原来是一个年轻的姑娘...
玫瑰,一个驴友,单独旅游时收获的闺蜜。说自己终于要离开她的小小城市了,我不知道她是去寻找人们口中的自我还是诗歌或者远方,但终于,她走了,在和我唠叨了一年之后。 1. 我们都不知道自己想要什么。玫瑰硕士毕业,最初,父母因为只有她这个独苗,要死要活地哭着让她回来工作。家,在一个...
突然好像去海边走走,去看看蓝色天空,去闻闻海水的味道。 这是某天晚上在床上睡不早的时候,产生的一些想法,夹着着内心深处最想要的渴望。 我想说,我来了,你还在吗? (你们什么时候放假?) (18号吧。) (放多久啊?) (半个月吧。) (那也不错了。) (你现在没事情做吗?)...
文 / 属猫的Momo 在当今这个社会上,重男轻女的现象还是很严重的。而且作为女性,在事业上的发展局限性往往比男生要大很多。 清华大学医学院教授、科学家颜宁在《开讲啦》演讲,题目是:不要叫我女科学家。 节目开始,首先撒贝宁在开场的嘉宾介绍中,就提到了这一期节目的嘉宾是位科学...
几天前的一个晚上,好友发来一条微信:“能告诉我找老公的标准是什么吗?我现在好纠结啊。” 我一看,有点懵圈了,这么大的一个社会问题,好友竟然来问我这么一个没有多少感情经验的已婚“少女”。但既然好友这么相信我,我可不能辜负她的信任。所以假装淡定的回复了一句:“可以啊。” 接着,...当前位置:
&CRISPR/Cas9技术原理简介
CRISPR/Cas9技术原理简介
作者 z妲妲
CRISPR/Cas9技术原理简介
& &最近几年基因编辑技术异常火爆,CRISPR/Cas9技术面世以后,弥补了传统基因编辑技术的诸多不足,使得基因的“任意编辑”变得越来越容易。也因此,CRISPR/Cas9技术当仁不让的成为基因编辑技术的“王牌”,大有一副取而代之的势头。所以这里就给大家简单介绍一下CRISPR/Cas9的技术原理!
一、CRISPR/Cas9系统的构成
& &CRISPR(clustered,regularly interspaced,short palindromic repeats)是一种来自细菌降解入侵的病毒DNA或其他外源DNA的免疫机制。在细菌及古细菌中,CRISPR系统共分成3类,其中Ⅰ类和Ⅲ类需要多种CRISPR相关蛋白(Cas蛋白)共同发挥作用,而Ⅱ类系统只需要一种Cas蛋白即可,这为其能够广泛应用提供了便利条件。目前,来自Streptococcus pyogenes的CRISPR/Cas9系统应用最为广泛。
Cas9蛋白(含有两个核酸酶结构域,可以分别切割DNA两条单链。Cas9首先与crRNA及tracrRNA结合成复合物,然后通过PAM序列结合并侵入DNA,形成RNA-DNA复合结构,进而对目的DNA双链进行切割,使DNA双链断裂。
& &研究人员为了将CRISPR/Cas9技术发展为高效的基因打靶工具,又进行了优化和改造。Cong, L.等人[1]在不影响系统效率的情况下,将crRNA和tracrRNA融合为一条RNA。通过这种简化,CRISPR/Cas9系统现仅包括两个元素:Cas9蛋白和sgRNA(single guide RNA)。因此现在人们将CRISPR/Cas9技术也称为Cas9/sgRNA技术。
二、CRISPR/Cas9技术的基因编辑机制
& &CRISPR/Cas9通过对预设的DNA位点进行切割,造成DNA双链断裂(DSB, double strand break)。这种DNA的损伤可以启动细胞内的修复机制,主要包括两种途径:
& &一是低保真性的非同源末端连接途径(NHEJ,Non-homologous end joining),此修复机制非常容易发生错误,导致修复后发生碱基的缺失或插入(Indel),从而造成移码突变,最终达到基因敲除的目的。NHEJ是细胞内主要的DNA断裂损伤修复机制。利用靶向核酸酶可以在受精卵水平高效的实现移码突变,从而制备基因敲除模式动物。CRISPR/Cas9技术的出现,使得无需再使用相应物种的ES细胞系就可以制备基因敲除模式生物,且已成功应用于小鼠[5]、大鼠[6]、猪[7]、灵长类[8]、果蝇[9]等等。
& &第二种DNA断裂修复途径为同源介导的修复(HR, homology-directedrepair),这种基于同源重组的修复机制保真性高,但是发生概率低。在提供外源修复模板的情况下,靶向核酸酶对DNA的切割可以将同源重组发生的概率提高约1000倍[10]。利用这种机制可以实现基因组的精确编辑,如:条件性基因敲除、基因敲进、基因替换、点突变等等。
& &CRISPR/Cas9技术以自己操作的便捷性,高效的基因编辑能力获得青睐,成为当下科研工作者的新宠儿。各大实验室纷纷加入开发CARISPR/Cas9技术的行列中,媒体也将之评为21世纪最有影响的十大技术之一。让我们跟随CRISPR/Cas9技术的脚步一起加强科研基础的建设,推动生物科研的进步!
( 2 )、 3%H 2 O 2 室温孵育 5-10 分钟,以消除内源性过氧化物酶的活性。
( 3 )、蒸馏水冲洗, PBS 浸泡 5 分钟 x2 (如需抗原修复,可在此步后进行)。
( 4 )、 5-10% 正常山羊血清( PBS 稀释)封闭,室温孵育 10 分钟,倾去血清,勿洗。滴加 一抗 工作液, 37 ℃ 孵育 1-2 小时或 4 ℃ 过夜。
( 5 )、 PBS 冲洗, 5 分钟 x3 次。
( 6 )、滴加适量 生物素标记二抗 工作液, 37 ℃ 孵育 10-30 分钟。
( 7 )、 PBS 冲洗, 5 分钟 x3 次。
( 8 )、滴加适量的 辣根酶或碱性磷酸酶标记的链霉卵白素 工作液, 37 ℃ 孵育 10-30 分钟。
( 9 )、 PBS 冲洗, 5 分钟 x3 次。
( 10 )、显色剂显色 3-15 分钟( DAB 或 NBT/BCIP )
( 11 )、自来水充分冲洗,复染,脱水,透明,封片。
三. 冰冻切片免疫组化染色步骤:
& &冰冻切片 4-8um ,室温放置 30 分钟后,入 4 ℃丙酮固定 10分钟,PBS洗,5分钟x3,用过氧化氢孵育5-10分钟,消除内源性过氧化物酶的活性。以下同石蜡切片免疫组化
转折的很突兀啊
这帖子是啥情况
啥啊,标题党
24小时热帖
下载小木虫APP
与700万科研达人随时交流 上传我的文档
 上传文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
正在努力加载中...
crispr-cas9
下载积分:3000
内容提示:crispr-cas9
文档格式:PPT|
浏览次数:5|
上传日期: 21:44:05|
文档星级:
全文阅读已结束,如果下载本文需要使用
 3000 积分
下载此文档
该用户还上传了这些文档
crispr-cas9
关注微信公众号

我要回帖

更多关于 cas9基因敲除 的文章

 

随机推荐