碳纤维能用于火箭和火箭是航天器吗?

原标题:碳纤维的十六个主要应鼡领域及近期技术进展

摘要:对近年碳纤维在导弹、空间平台和运载火箭航空器,先进舰船轨道交通车辆,电动汽车卡车,风电叶爿燃料电池,电力电缆压力容器,铀浓缩超高速离心机特种管筒,公共基础设施医疗和工业设备,体育休闲产品以及时尚生活鼡具等十六个主要领域的应用及其近期技术进展进行了较为全面的综述。

关键词:碳纤维碳纤维增强树脂,应用

作者介绍:周宏男,1963姩生教授级高级工程师,长期致力于对位芳纶基单兵作战防护装备技术研究工作以及国产高性能纤维技术发展战略研究。

碳纤维是最偅要的无机高性能纤维这点是由其材料本性、产业技术复杂性、应用领域重要性和市场规模性等因素决定的,其首个市场化应用是1972年市售的碳纤维增强树脂钓鱼竿此后,碳纤维应用快速向以航空火箭是航天器吗主结构材料为代表的高端化发展碳纤维最主要的应用形式昰作为树脂材料的增强体,所形成的碳纤维增强树脂(CFRP)具有优异的综合性能其在导弹、空间平台和运载火箭,航空器先进舰船,轨噵交通车辆电动汽车,卡车风电叶片,燃料电池电力电缆,压力容器铀浓缩超高速离心机,特种管筒公共基础设施,医疗和工業设备体育休闲产品,以及时尚生活用具等十六个领域有着实际和潜在的应用。下文将对上述领域中碳纤维的应用及其近期的技术进展加以综述

CFRP作为导弹、空间平台和运载火箭的关键材料

碳纤维是现代宇航工业的物质基础,具有不可替代性CFRP被广泛应用于导弹武器、涳间平台和运载火箭等航天领域。在导弹武器应用方面CFRP主要用于制造弹体整流罩、复合支架、仪器舱、诱饵舱和发射筒等主次承力结构蔀件(图1);在空间平台应用方面,CFRP可确保结构变形小、承载力好、抗辐射、耐老化和空间环境耐受性良好主要用于制造卫星和空间站嘚承力筒、蜂窝面板、基板、相机镜筒和抛物面天线等结构部件(图2);在运载火箭应用方面,CFRP主要用于制造箭体整流罩、仪器舱、壳体、级间段、发动机喉衬和喷管等部件(图3)目前,CFRP在火箭是航天器吗上的应用已日臻成熟其是实现火箭是航天器吗轻量化、小型化和高性能化不可或缺的关键材料。

图1 CFRP在导弹武器上的应用示例

图2 CFRP在卫星和空间站上的应用示例

图3 CFRP在运载火箭上的应用示例

CFRP作为航空器的结构材料

在大型先进飞机中CFRP被广泛用作主承力结构材料。且在近期研制成功的新型飞艇中CFRP也被用做结构材料。

20世纪70年代中期的石油危机是碳纤维应用于飞机制造的直接原因为缓解能源危机,当时的美国政府启动了“飞机节能计划(AircraftEnergy Efficiency Program)”现代飞机机身采用钢、铝、钛等金屬和复合材料制成。为节约燃油和提高运营效益减轻机身质量一直是飞机设计制造技术中的核心挑战之一。而CFRP在飞机机身制造上的成熟應用为减轻飞机机身质量提供了最有效的途径例如,以金属材料为主制成的波音767飞机(CFRP用量仅占3%)机身质量为60 t而将CFRP用量提升到50%时,新型波音767飞机机身质量下降到48 t仅此就极大地提升了该型飞机的能源和环境效益。

正在研制的波音777X型飞机(图4)和最新投产的波音787型飞机機身复合材料的用量都达到了50%[5]。波音777X型飞机是波音公司以波音777飞机为基型正在开发的一种大型双引擎客机,计划首架飞机于2020年交付投入運营波音777X飞机的主翼由CFRP制成,其翼展长约72m(235英尺)是目前客机中翼展最长的机型之一。翼展越长升力越大,因此波音777X的单座燃油消耗和运营成本都非常有竞争力。此外CFRP机翼不仅强度高、柔性好,且末端可折叠这样多数机场都能满足其宽翼展的停机需求。波音787飞機的主翼和机身等主承力结构都采用日本东丽公司(Toray Industries, Inc.)TORAYCA?品牌的碳纤维预浸料制造。2005年11月东丽公司与美国波音公司签署了一项为期10年的協议,为波音787梦想号(Boeing 787 Dreamliner)飞机提供碳纤维预浸料2015年11月9日,东丽公司宣布与美国波音公司达成综合协议将为波音公司生产的787和777X两型飞机提供价值约110亿美元的碳纤维预浸料。波音公司计划提高787飞机的月产量将从2015年的10架提高到2016年的12架、2020年的14架;同时,大型模块的比率也将提高这将极大地促进对CFRP的需求。为保证波音787飞机月产量达12架后的材料供应位于美国华盛顿州塔科马市(Tacoma,Washington)的东丽复合材料(美国)公司[Toray Composites(America),Inc.]已于2016年1月完成了扩产;同时日本东丽公司决定投资约4.7亿美元,在其收购的斯帕坦堡县(Spartanburg County,South Carolina)厂区内建设包含原丝、碳纤维和预浸料在内嘚一体化生产线设计年产能为2 000 t,这是东丽公司首次在美国建设一体化的碳纤维生产线以用于研发波音777X飞机和满足月产14架波音787飞机的需求。

图4 CFRP在大型客机机身及承力结构中的应用

10)”大型飞艇完成了其处女航(图5)这架飞艇是一种轻于空气的火箭是航天器吗,被设计用來执行侦察、监视、通信、货物与救援物资的运输以及乘客交通等。该飞艇采用日本可乐丽(Kuraray)公司生产的聚芳酯(Vectran)织物作蒙皮蒙皮内充满了带压氦气;其形状结构材料采用CFRP,最大化地减轻了飞艇自身质量无人值守的情况下,该飞艇一次可最长在空中漂浮5天

图5 英國最新研制的“空中之恋10号(Airlander 10)”大型飞艇

CFRP作为先进舰船船体结构

CFRP对提高舰船的结构、能耗和机动性能等非常明显。

瑞典在船艇制造技术方面有着传统优势其夹层复合材料技术居世界一流水平,较早便采用CFRP技术研制军用舰船2000年6月下水的瑞典海军维斯比号护卫舰(Stealth Visby)是世堺第一艘在舰体结构中采用CFRP的海军舰艇(图6)。该舰长73.0 m、宽10.4 m、吃水深度2.4 m、排水量600 t;舰体采用CFRP夹层结构具有高强度、高硬度、低质量、耐沖击、低雷达和磁场信号,以及吸收电磁波等优异性能

图6 CFRP在舰船船体结构中的应用

由于成本原因,虽船舶中大量使用CFRP还有待时日但其巳实际用于制造民用新概念船艇和军用舰船关键部件。2010年德国Kockums公司为瑞典探险家制造了一条几乎全部采用CFRP的新概念太阳能探险船——TuANor PlanetSolar。該船长31.0 m、宽15.0 m以太阳能为动力。2010年9月27日瑞典探险家Raphael Domjan驾驶该船出海,开始环球探险航行(图7)

图7 CFRP在新概念船艇中的应用

CFRP还已用于舰船推進器叶片、一体化桅杆和先进水面舰艇上层建筑的制造。

低噪声、安静运行是军用舰船领域的一项核心技术是舰船(特别是潜艇)性能嘚关键指标。因为螺旋桨高速运转时其桨叶片上会产生时灭的空泡,导致桨叶剥蚀并伴有强烈的振动和噪声。CFRP叶片不仅更轻、更薄還可改善空泡性能、降低振动和水下特性、减少燃油消耗。图8(a)为以色列Deadliest号潜艇所用螺旋桨;图8(b)为日本中岛推进器有限责任公司(Nakashima PropellerCo., Ltd.)研制生产的CFRP大型货轮螺旋桨它已于2014年5月安装在太鼓丸号(Taiko Maru)化学品货轮上。图9为英国罗伊斯罗尔斯公司(Rolls-Royce plc)为班尼蒂(Benetti)游艇生产的CFRP材质的推进器系统

图8 CFRP用于制造潜艇和货轮推进器系统的螺旋桨桨叶

图9 CFRP用于制造游艇的推进器系统

此外,隐身也是评价军用舰船先进性水岼的一项重要指标提高隐身性能必须减小舰船体的雷达反射截面,并降低其光学特性在过去,舰船上层建筑上都竖立着多根挂满各种鞭状和条状的天线桅杆它们极大地阻碍了舰船在探测设备中的隐身能力。1995年美军开始研究一体式桅杆系统,其将各种天线设计成平面形或球形阵列并集成于采用能反射电波的复合材料制成的一体式桅杆系统中,可防风雨和盐雾的侵害且更进一步的是,美军下一代作戰舰艇的整个上层建筑都采用复合材料制造2016年10月15日,美国海军举行了其首艘朱姆沃尔特级驱逐舰(Zumwalt-classdestroyer)的入列仪式该舰是美国海军的下┅代主战舰艇,其集成了当今最尖端的海军舰船技术舰体造型、电驱动力、指挥控制、情报通信、隐身防护、侦测导航、火力配置等性能均具超越性。特别值得注意的是该舰上层建筑及内嵌天线系统由美国雷神公司(Raytheon)负责设计制造,采用了一体化模块式复合材料结构(Integrated CompositeDeckhouse and Assembly简称IDHA),质量轻、强度高、耐锈蚀、透波性好具有极佳的隐身性能,被发现概率低于10%(图10)

图10 朱姆沃尔特级驱逐舰及施工中的复匼材料上层建筑

CFRP作为轨道交通车辆的车体结构

轻量化是减少列车运行能耗的一项关键技术。金属制造的轨道列车虽车体强度高,但质量夶、能耗高以C20FICAS不锈钢地铁列车为例,其每千米能耗约为3.6×107 J(即10 kWh)运行15 万km约消耗540 000 GJ能量;如质量能减少30%,则可节能27,000×30%=8,100 GJ73

CFRP是新一代高速轨道列车車体选材的重点,它不仅可使轨道列车车体轻量化还可以改进高速运行性能、降低能耗、减轻环境污染、增强安全性[11]。当前CFRP在轨道车輛领域的应用趋势:从车箱内饰、车内设备等非承载结构零件向车体、构架等承载构件扩展;从裙板、导流罩等零部件向顶盖、司机室、整车车体等大型结构发展;以金属与复合材料混杂结构为主,CFRP用量大幅提高

图11列出了1节地铁列车中间车辆各部分的质量比例,其中车身質量约占36%、车载设备约占29%、内部装饰约占16%[10]73 由于车载设备几乎没有减重空间,因此车身和内部装饰就成为了轻量化的重点对象。2000年法國国营铁路公司(SNCF)采用碳纤维复合材料研制出双层 TGV型挂车;韩国铁道科学研究院(KRRI)以此为基础,研制出运行速度为180 km/h 的TTX型摆式列车车体其采用不锈钢增强骨架,侧墙体和顶盖采用铝蜂窝夹芯蒙皮采用CFRP构成的三明治结构,车体外壳总质量比铝合金结构降低了40%且车体强喥、疲劳强度、防火安全性、动态特性等性能良好,并于2010年投入商业化运营(图12)

图11 地铁列车中间车辆各部分的质量比例

图12 TTX型摆式列车車体

2011年,韩国铁道科学研究院(KRRI)研制出CFRP地铁转向架构架质量为 635 kg,比钢质构架的质量减少约30%日本铁道综合技术研究所(JRTI)与东日本客運铁道公司(East Japan RailwayCompany)联合研制的CFRP高速列车车顶,使每节车箱减轻300~500 kg2014 年9月,日本川崎重工(Kawasaki)研制的 CFRP 构架边梁其质量比金属梁减少约40%。

CFRP作为电動汽车的车体结构

英国材料系统实验室关于材料对汽车轻量化和降低生产成本的研究表明汽车质量每减轻10%,油耗可降低6%现有材料中,CFRP嘚轻量化效果最好;加之汽车设计和复合材料技术的快速发展。这些都使得CFRP在汽车制造领域的应用速度远远超出人们的预期

BMW公司BMWi型车嘚推出引领了这一潮流。2008年BMW公司在慕尼黑召开会议,目的是让城市交通技术发生彻底的变革其建立了一个“i计划(Project i)”的智库,唯一嘚任务就是“忘掉以前所做的一切重新思考一切”。2009年该智库形成了一个全新的节能概念——“BMW有效动力愿景(BMW Vision EfficientDynamics)”,奠定了BMW公司后續研究的思想基础它要求对车身和驱动系统进行专门的设计,以达到全新的节能性而此前的想法都是将已有的节能技术集成到既有的模板中。2011年BMW公司确立了“天生电动(Born Electric)技术”,创立了BMWi品牌其让人们在日常驾驶出行中用上了全电动能源;同年,第一款全电动BMWi3概念車实现技术演示2012年,兼具高能效和更优异运动跑车性能的BMWi8概念车推出其采用CFRP、铝和钛等轻质材料,实现了突破意义的减重;同年全噺BMW i3电驱动系统(eDrive Propulsion System)推出,实现了零排放2013年,BMW i3实现量产2014年,BMW i8实现量产2016年,BMW公司在美国拉斯维加斯消费电子展上推出BMW i 未来互动愿景(BMW i Vision FutureInteraction)概念车(图13);同时推出BMWi3(94Ah)型新车该车整车质量仅1 245kg,一次充电续航里程可达200 km且百公里加速时间7.3 s,灵活性独特

图13 BMW i 未来互动愿景概念車

其中,BMW i3采用“LifeDrive”模块化车身架构设计由乘员座舱(Life)模块和底盘驱动(Drive)模块两部分组成。乘员座舱模块又称生命模块(图14)其构荿驾乘人员的乘用空间,采用CFRP制成的生命模块质量轻、安全性非常高,且乘用感宽敞、均称底盘驱动模块又称eDrive驱动系统,其结构由铝匼金制成集成了电机(最大功率125 kW,最大扭矩250 N·m)、电池和燃油发动机等动力部件

图14 BMW i3车体上部的生命模块

CarbonFibers)公司合作,历经10多年研发開始生产自己所需的碳纤维。其BMWi3型车中生命模块的制造工艺:将碳纤维织成织物后浸润于专用树脂中制成预浸料;将预浸料热定型成刚性车身零件;采用专门开发的技术,将车身零件全自动地黏合成完整的车身部件(图15)所得CFRP车身具备极高的抗压强度,能承受更快的加速度整车的敏捷性和路感都非常好。

图15 CFRP车体制造工艺(BMW公司)

CFRP作为新概念货运卡车的车体结构

世界零售业巨头沃尔玛(Walmart)公司在28个国家嘚63个区域拥有11 500家门店其在美国拥有1支由近6 000辆货车组成的卡车车队,它们会将产品送至遍布于美国的数千家门店该车队为保持持续的生存能力和效率,一直以“行驶里程更少运输量更多”为目标,依靠提高司机驾驶技术、采用先进牵引挂车、改进过程与系统筹划等措施实现2007—2015年间车队行驶超480万km,运送集装箱数超8亿运输效率较2005年提高84.2%。

其中牵引挂车的性能对实现“多拉少跑”的目标关系重大,故沃爾玛公司投入巨资开展“沃尔玛先进车辆体验(The Walmart AdvancedVehicle Experience)”的新概念卡车研究计划已研制的新概念卡车集成了空气动力学、微型涡轮混合动力驅动系统、电气化、先进控制系统,以及CFRP车体等前沿技术主要技术创新:先进的空气动力学设计,整体造型优雅气动性能较现行的Model 386型鉲车提高20%;微型涡轮混合电力驱动系统清洁、高效、节油;司机座位设计于驾驶室中央,具有180°的视野;电子仪表盘可提供定制化的量程和性能数据 ;滑动型车门和折叠型台阶提高了安全和安保性能;空间宽敞的驾驶室设有带折叠床的可伸缩卧室牵引挂车的整个车身采用CFRP淛成,顶部和侧墙均采用16.2 m(53英尺)长的单块板材其优异的力学性能可确保车体的结构强度;采用先进黏结剂黏合,最大限度地减少了铆釘数量;凸鼻形的造型设计可在充分保证载货容量的前提下有效提高气动性能;低剖面LED灯光更节能、耐用(图16)。

图16 沃尔玛公司研制的噺概念卡车

目前该计划已完成84%的任务量,但仍有许多创新性技术有待继续研发可以预见,沃尔玛公司的新概念卡车对推进卡车技术的進步和拓展碳纤维的应用有非常大的作用。

CFRP作为风电叶片的增强结构

风能是最具成本优势的可再生能源风能发电在近10年来已取得飞速發展。截至2016年5月全球风电装机容量已近4 270亿MW(表1)。并据预测2020年前,新增风电装机能力将按25%的年增长率递增;到2020年风力发电量将占世堺总发电量的11.81%。

为提高风力发电机的风能转换效率增大单机容量和减轻单位千瓦质量是关键。20世纪90年代初期风电机组单机容量仅为500 kW,洏如今单机容量10 MW的海上风力发电机组都已产品化。风电叶片是风电机组中有效捕获风能的关键部件叶片长度 随风电机组单机容量的提高而不断增长。根据顶旋理论为获得更大的发电能力,风力发电机需安装更大的叶片1990年,叶轮直径(Rotor MW及以上能力的风力发电机存有争議但主流观点是需要发展的。西门子风电(Siemens Wind Power)公司首席技术官认为:面积与体积的关系的科学定律将最终限制叶轮直径的不断增长但目前还未达到极限,制造10 MW风力发电机在技术上是可行的;且从运营效益上看降低每兆瓦时的运营成本,必须提高风力发电机的容量(图17)

图17 叶片直径的增长过程

叶轮直径的增加对叶片的质量及抗拉强力提出了更轻、更高的要求。CFRP是制造大型叶片的关键材料其可弥补玻璃纤维复合材料(GFRP)的性能不足。但长期以来出于成本因素,CFRP在叶片制造中只被用于樑帽、叶根、叶尖和蒙皮等关键部位近年,随着碳纤维价格稳中有降加之叶片长度进一步加长,CFRP的应用部位增加用量也有较大提升。2014年中材科技风电叶片股份有限公司成功研制出國内最长的6 MW风机叶片,该叶片全长77.7 m、质量28 t其中主梁由5 t的国产CFRP制成。如采用GFRP设计则该叶片质量将约达36 t(图18)。

图18 6 MW风机叶片加工与试验现場(中材科技风电叶片股份有限公司研制)

碳纤维纸作为燃料电池的电极气体扩散材料

燃料电池是指不经过燃烧直接将化学能转化为电能的一种装置。燃料电池在等温条件下工作其利用电化学反应,将储存在燃料和氧化剂中的化学能直接转化为电能是一种备受瞩目的清洁能源技术,转化效率非常高(除10%的能量以废热形式浪费外其余的90%都转化成了可利用的热能和电能)且环境友好;而相较之下,使用煤、天然气和石油等化石燃料发电时60%的能量以废热的形式浪费,还有7%的电能浪费在传输和分配过程中只有约33%的电能可以真正用到用电設备上(图19)。

图19 燃料电池与化石燃料发电利用率的比较

各类燃料电池中质子交换膜燃料电池(PEMFC)的功率密度大、能量转换率高、低温啟动性最好,且体积小、便携性好是理想的汽车用电源。质子交换膜燃料电池由阴极、电解质和阳极这3个主要部分组成其工作原理:

(1)阴极将液氢分子电离。液氢流入阴极时阴极上的催化剂层将液氢分子电离成质子(氢离子)和电子。

(2)氢离子通过电解质位于Φ央区域的电解质允许质子通过到达阳极。

(3)电子通过外部电路由于电子不能通过电解质,只能通过外部电路故而形成了电流。

(4)阳极将液氧电离液氧通过阳极时,阳极上的催化剂层将液氧分子电离成氧离子和电子并与氢离子结合生成纯水和热;阳极接受电离所产生的电子(图20)。可将多个质子交换膜燃料电池连接起来组成燃料电池组可提高电能的输出量。

图20 燃料电池工作机理

美国联合技术(United Technologies)公司是全球军民用燃料电池产品技术的领先企业联合技术动力(UTC Power)公司原是United Technologies公司的一个业务部门,其产品广泛用于火箭是航天器吗、潜艇、建筑、公交巴士和家用汽车等领域20世纪90年代早期,UTC Power公司便已制造出大型固定式燃料电池电站并投入商业化运行。此后10多年UTC Power公司都在致力于公交巴士和家用汽车用燃料电池技术的研发。2005年12月UTC Power公司研制的燃料电池在混合动力公交车上投入使用,由千棕榈阳光车噵运输(SunLine Transit)公司在美国加利福尼亚州的千棕榈镇(Thousand PalmsCA)投入商业试运营。

2008年以来由于突破了成本和寿命等技术瓶颈,燃料电池的商业化應用取得实质性进展美国巴拉德动力公司(Ballard Power SystemsInc.)研制生产的FCveloCity?型燃料电池,是专为公交巴士和轻轨研制的第七代可扩展式模块化燃料电池,使用该燃料电池可组成30~200 kW的电源。2015年6月上市的85 kW级的FCveloCity?型燃料电池,主要用于电动公交巴士(图21和图22)

图22 巴拉德动力公司生产的模块化燃料电池的应用示例

碳纤维纸作为一种高性能复合材料,是制造燃料电池质子交换膜电极中气体扩散层必不可少的多孔扩散材料(图23)气體扩散层(GDL)构成气体从流动槽扩散到催化剂层的通道,是燃料电池的心脏是膜电极组(MEA)中非常重要的支撑材料,其主要功能是作为連接膜电极组和石墨板的桥梁气体扩散层可帮助催化剂层外部生成的副产品——水尽快流走,避免积水造成溢流;还可帮助在膜的表面保持一定水份确保膜的导电率;燃料电池运行过程中,帮助维持热传导;此外提供足够的力学强度,在吸水扩展时保持膜电极组的结構稳定性(表2)

图23 燃料电池用碳纤纸、碳纤布和碳纤板(CE-Tech公司)

表2 CE-Tech公司生产的燃料电池用部分碳纤维纸牌号及性能指标

在质子交换膜燃料电池和直接甲醇燃料电池中,同时使用碳纤维纸和碳纤维布作为气体扩散层的综合效果更好每辆燃料电池电动汽车约需消耗碳纤维纸100 m2(即8 kg)。

在2016年9月23-26日召开的全球铁路装备交易会上法国阿尔斯通(Alstom)公司发布了其最新研制的全球首辆液氢燃料电池电动火车。该车属阿爾斯通公司Coradia iLint系列的区域型列车是根据2014年与德国下萨克森州(German Landers ofLower Saxony)、北莱茵威斯特伐利亚州(North Hesse)的公共交通部门签订的一项内部意向而研发嘚新一代零排放燃料电池动力火车。最新发布的液氢燃料电池电动火车全部采用成熟技术研制车顶装有氢燃料电池,乘客舱底部装有锂電池、变流器和电动机它将开辟燃料电池更大的应用市场空间,促进碳纤维纸技术的进一步发展(图24)

图24 全球首创的氢燃料电池动力吙车(法国阿尔斯通公司)

CFRP作为电力电缆的芯材

电能是生产生活必需的一种常备能源。电能在从发电厂输送至用电场所的过程中存在着嚴重的线损问题。线损即指输电、变电、配电等电力输送环节产生的电能耗损

增大架空线中传输的电流会造成电缆发热。若此时电缆材質耐热性能差则电缆的承载力会下降,进而产生弧垂而弧垂既是一个重要的线损源,也是限制架空线提高传输容量的主要因素

钢芯鋁导线中的增强钢芯受热即产生弧垂,超过70℃时弧垂会使电缆严重下垂更有可能与邻近物体接触导致短路,甚至落至地面危及人员生命於安全由弧垂引发的短路会使邻近的架空线和变压器瞬间过载,引起灾难性故障自承式铝绞线虽能允许短暂的、较高的运行温度(150℃),但也无法避免弧垂的产生

复合材料芯材铝导线(ACCC)以复合材料芯材替代金属芯材,为解决架空线弧垂问题开辟了更有效的技术途径2002年,基于ACCC专利技术全球供配电设备技术领先企业——美国CTC公司(CTC Global)展开了产品的研发,以期将其投入使用当时的开发目标是,在不對现有架空线承载塔架做任何变动且不增加现行导线质量或直径的前提下开发CFRP芯材来承载铝导线,以降低热弧垂、增大塔架距离、承载哽大电流、减少线损、提高供电网络可靠性等2005年,该公司首次推出商业化的ACCC导线产品其研制生产的CFRP芯铝导线的强度是同等质量钢芯铝導线的2倍、传输的电流容量是其他芯材铝导线的2倍、线损较其他芯材铝导线降低了25%~40%,其高容、高效和低弧垂等性能远远超越了其他材质芯材铝导线

图25为相同直径铝导线的截面对比,其中钢芯的直径明显大于CFRP芯的直径,这使得CFRP芯铝导线可多容纳28%的铝导线从而增大了电流嘚通过能力。

图25 钢芯铝导线和CFRP芯铝导线的截面对比

CFRP作为压力容器的缠绕增强材料

高压容器主要用于航空火箭是航天器吗、舰船、车辆等运載工具所需气态或液态燃料的储存以及消防员、潜水员用正压式空气呼吸器的储气。为了能在有限空间内尽可能多地存储气体需对气體进行加压,因此需提高容器的承压能力,对容器进行增强以确保安全。

20世纪40年代美国开始武器系统用复合材料增强高压容器的研究。1946年美国研制出纤维缠绕压力容器;20世纪60年代,又在北极星和土星等型号的固体火箭发动机壳体上采用纤维缠绕技术实现了结构的輕质高强。1975年美国开始研制轻质复合材料高压气瓶,采用S-玻纤/环氧、对位芳纶/环氧缠绕技术制造复合材料增强压力容器。

后来科学镓们纷纷研制出由玻纤、碳化硅纤维、氧化铝纤维、硼纤维、碳纤维、芳纶和PBO纤维等增强的多种先进复合材料(表3)。其中对位芳纶曾夶量用于各种航空火箭是航天器吗用压力容器的缠绕增强,后逐渐被碳纤维所取代[30]37,[31]4720世纪70年代,纤维缠绕金属内衬轻质压力容器被大量用於火箭是航天器吗和武器的动力系统中;20世纪80年代碳纤维增强无缝铝合金内衬复合压力容器出现,其使压力容器的制造费用更低、质量哽轻、可靠性更高复合材料增强压力容器具有破裂前先泄漏的疲劳失效模式,提高了安全性因此,全缠绕复合材料高压容器已在卫星、运载火箭和导弹等火箭是航天器吗中广泛使用阿波罗(Appolo)登月飞船曾使用的钛合金球形氦气瓶,其容积92L、爆破压力≥47MPa、质量26.8kg;而标准航空航天用钢内衬复合氦气瓶质量20.4kg铝内衬复合氦气瓶质量11.4kg,无内衬复合气瓶质量仅为6.8kg(相较于钛合金球形氦气瓶质量减少了75%)

高性能纖维(表3)是全缠绕纤维增强复合压力容器的主要增强体。通过对高性能纤维的含量、张力、缠绕轨迹等进行设计和控制可充分发挥高性能纤维的性能,确保复合压力容器性能均一、稳定爆破压力离散差小。车用高压Ш型氢气瓶(金属内胆全缠绕)的材料成本中,近70%为增强纤维其余约30%为内胆和其他材料。

20世纪30年代意大利率先将天然气用做汽车燃料。早期车用气均使用钢质气瓶其厚重问题始终限制著钢质气瓶的扩大应用。20世纪80年代初玻璃纤维环向增强铝(或钢)内胆的复合气瓶诞生。由于环向增强复合气瓶的轴向强度欠佳故其金属内胆依然较厚。为解决此问题同时对环向和轴向进行增强的全缠绕纤维增强复合气瓶应运而生,其金属内胆的厚度大幅减薄质量顯著减小。20世纪90年代以塑料作为内胆的复合气瓶出现。新能源汽车领域高压气瓶的应用主要是燃料电池动力汽车用高压储氢气瓶,其壓力已到达70

图26 燃料电池电动汽车用CFRP增强液氢储罐

CFRP作为铀浓缩超高速离心机的高速转子材料

民用核电反应堆燃料组件中二氧化铀的铀235含量为4.0%~5.0%而在制造核弹所需的核燃料中,铀235含量至少要在90.0%以上

天然铀矿石的主要成分是铀238,其中铀235仅占0.7%工业上,常采用气体扩散法进行铀浓縮尽管该方法投资大、耗能高,但却是目前唯一可行的方法铀235和铀238的六氟化铀气态化合物,两者质量相差不到百分之一加压分离时,这不到百分之一的质量差会促使铀235的六氟化铀气态化合物能以稍快的速度通过多孔隔膜每通过1次多孔隔膜,铀235的含量就会稍有增加泹增量十分微小。因此为获得纯铀235 ,需让六氟化铀气体数千次地通过多孔隔膜工业加工就是让六氟化铀气体反复地通过级联的多台离惢机,实现对铀235的浓缩(图27)

图27 铀浓缩气体离心机的工作原理及现场图

铀浓缩气体离心机技术是核燃料生产的关键,是衡量核技术水平嘚重要标志铀浓缩气体离心机具有高真空、高转速、强腐蚀、高马赫数、长寿命、不可维修等特点,其研制涉及机械、电气、力学、材料学、空气动力学、流体力学、计算机应用等多学科的理论和技术难度非常大[32]。离心机中转子的转速与气体分离效率直接相关转子转速越高,气体分离效率也越高因此,确保转子转速在60000r/min以上是铀浓缩气体离心机最基本的性能要求。而这么高的转速便对转子的材质提絀了非常苛刻的要求金属材质的转子根本无法达到如此高的转速,因为它无法跨越共振频率金属材质的转子一旦达到共振频率便会碎裂;而CFRP制成的转子则不存在这一问题,其可耐受更高的转速因此,早在20世纪80年代CFRP就已被用于制造铀浓缩气体离心机的高速转子。且随著CFRP技术的进步CFRP制成的转子可耐受更高的转速,铀浓缩效率大幅提升

鉴于CFRP高速转子在铀浓缩生产中的重要作用,西方国家一直对非核国镓禁运气体离心机用CFRP高速转子1992年11月9日,美国《核燃料》杂志报道欧洲铀浓缩公司(Urenco)的股东——奥格斯堡-纽伦堡机器制造公司(MaschinenfabrikAugsburg-Nurnberg AG)的湔员工Kar1 HeinzSchaap,与妻子共同经营了一家名为Ro-Shc的公司这对夫妻通过Ro-Shc公司向伊拉克出售了至少20个CFRP离心机转子。1992年11月2日奥格斯堡(Augsburg)联邦检察官向Kar1 HeinzSchaap發出了逮捕令。此事进一步印证了CFRP在铀浓缩气体离心机技术中的重要性。

CFRP作为特种管筒的增强材料

与压力容器长时间持续耐压不同枪管、炮管、液压作动筒等特种管筒需在较长时间内高频次地承受和释放高压。由碳纤维缠绕或预浸料包覆增强的此类特殊用途的承压管筒在减轻自身质量、改进散热、提高精度、延长寿命等方面效果非常明显。

美国普鲁夫实验公司(PROOF Research)是一家总部位于美国蒙大拿州的科技企业该公司研发了一款CFRP增强枪管。其将先进复合材料技术与热-机械设计原理相融合并采用了航空专用碳纤维和航天高温树脂,研制出噺一代运动用和军用枪馆与钢质枪管相比,CFRP增强枪管自身质量最高可减小64%射击精度可达比赛级要求。此外该公司研制的CFRP增强枪管在設计与制造工艺上适应了碳纤维的纵向(即沿枪管长度方向)热扩散率特性,能更有效地通过枪管壁散热极大地提高热扩散效率,且枪管能快速冷却并可在持续开火状态下更长时间地保持射击精确度,是被美国军队唯一验证过的CFRP增强枪管(图28)

CFRP技术在枪管上的成功应鼡很快推广到对各式炮管的增强。同时利用CFRP增强的特种液压作动筒也已面市。

CFRP作为公共基础设施建设用的关键材料

桥梁是重要的交通基礎设施在建设跨江河、跨海峡的大型交通通道中,需修建很多大跨度的桥梁悬索桥是超大跨度桥梁的最终解决方案。

但跨径增大会使嘚悬索桥钢质主缆的强度利用率、经济性和抗风稳定性急剧降低目前,在大跨度悬索桥中高强钢丝主缆自身质量占上部结构恒载的比唎已达30%以上,主缆应力中活载所占比例减小如,跨度1991 m的日本明石海峡大桥钢质主缆应力中活载所占比例仅约为8%。

此外跨径增大还会降低桥梁的气动稳定性。有研究表明从气动稳定性角度考虑,2000m的跨径是加劲梁断面和缆索系统悬索桥的跨径极限而改善结构抗风性能需解决好提高结构整体刚度、控制结构振动特性和改善断面气动特性等3个问题。大跨度悬索桥的结构刚度取决于主缆的力学性能CFRP的力学特性使得其成为了大跨度悬索桥主缆的优选材料。利用悬索桥非线性有限元专用软件BNLAS研究主跨3500m的CFRP主缆悬索桥模型的静力学和动力学性能朂优结构体系,得出:CFRP主缆自身质量应力百分比大幅降低活载应力百分比提高到13%(钢主缆为7%),结构的竖弯、横弯及扭转基频大幅提高;CFRP主缆安全系数的增加将提高结构的竖向和扭转刚度;增大CFRP主缆的弹性模量可大幅减小活载竖向挠度提高竖弯和扭转基频。

总之CFRP主缆鈳明显提升大跨径悬索桥的整体性能(图29)。

图29 湖南矮寨特大跨度悬索桥钢质主缆

此外建筑与民用工程领域是最早将碳纤维用于结构增強的。通过在桥梁等建筑物上铺覆碳纤维织物可提高水泥结构体的耐用性,以及水泥结构建筑物的抗震性能(图30)

图30 CFRP在建筑与民用工程中的补强应用

未来,CFRP很可能成为名副其实的建筑材料世界各国都在加快技术开发,使CFRP能直接用作建筑结构材料如,利用CFRP的导电性制莋建筑用电磁防护材料;在CFRP中嵌入传感器制作智能建筑材料利用传感器传送的数据实时掌握建筑物结构可能受到的损害。

CFRP在医疗器械和笁业设备领域的应用

在医疗器械领域利用其X射线全透射性,其被用于制造X光检查仪用移动平台;利用CFRP优异的机械性能其被用于制造骨科用和器官移植用等医疗器械,以及制造假肢、矫形器等康复产品(图31)

图31 CFRP在医疗器械中的应用示例

由短切碳纤维与质量分数占10%~60%的尼龙戓聚碳酸酯模塑成型的CFRP部件,质量轻、厚度薄、抗静电、抗电磁在电子信息产品如笔记本电脑、液晶投影仪、照相机、光学镜头和大型液晶显示板等中应用广泛。加之CFRP具有优异的抗撕裂性能还可用于制造轴承、辊轴、管材等产品,其强度与钢质产品相同但质量可大幅降低(图32)。

图32 CFRP在工业设备部件中的应用示例

CFRP在体育休闲用品领域的应用

体育休闲用品是CFRP最早进入市场化的应用领域随着性价比的提高,这一领域已形成了对CFRP的稳定需求滑雪板、滑雪手杖、冰球杆、网球拍和自行车等,是CFRP在体育休闲用品中的典型应用(图33)

图33 CFRP在体育休闲用品中的应用示例

碳纤维作为时尚元素材料

碳纤维本身具有的黑亮色泽,以及其机织物和缠绕物构成的纹理、走向和质感为时尚设計师们提供了丰富的想象空间和造型元素。目前使用碳纤维制成的服装饰品有鞋、帽、腰带、首饰、钱包(夹)、眼镜架等,旅行用品囿行李箱等居家用具有桌、椅、浴缸等(图34)。所有这些制品都展示出了碳纤维高冷、坚韧、骄傲和优雅的时尚特质它们既是日用品,又是艺术品给人们的生活增添了极致奢华的技术和艺术享受。

图34 碳纤维作为时尚元素材料的应用实例

综上可见碳纤维在众多领域有著广泛的应用。应用市场的不断细分还将推动碳纤维技术的差别化发展将有更多、更好的碳纤维制品被制造出,以促进社会绿色发展、滿足人们多样化的生活需求

致谢:感谢中材科技风电叶片股份有限公司陈淳副总经理提供公司制造风电叶片的现场照片;感谢“十二五”国家重点科技专项(高性能纤维及复合材料专项)专家组各位同仁的赐教;感谢各位参考文献的作者。

碳纤、玻纤复合材料为主

复合材料已在航空航天飞行器上获得多种应用例如飞机机身、机翼、内装件、火箭和导弹发动机壳体、导弹弹药箱、喷管、发射筒、雷达罩和壓力容器等。具体来说复合材料在航空航天领域应用的细分产品主要有两大类,一类是碳纤复合材料另一类是玻纤复合材料。

碳纤复匼材料最大的优点是轻质、高强航空航天高端应用是其主要发展方向,用碳纤复合材料制造飞机的结构件同铝合金相比,减重效果可達20-40%体现出巨大的节能效益。

不过我国碳纤维生产技术和装备水平整体落后于国外,无法满足国家重大装备等高端领域的需求因此主偠集中于体育休闲等低附加值领域,航空航天占比偏低2017年,航空航天领域碳纤维需求量占比仅为3.83%远远低于风电叶片、体育休闲等其他領域。

但是随着我国技术水平的不断提升以及碳纤维复合材料在航空航天上应用比例的增加、装备列装数量增加以及装备换代更新的需要后期航空航天对碳纤维复合材料的需求将逐年增加。2018年我国航空航天领域碳纤维复合材料的需求量预计超过1100吨。

玻纤复合材料具有耐腐蚀、耐高温、耐辐射、阻燃、抗老化的性能应用在航空航天领域可有效的减轻了飞机质量,提高了商用载荷节约了能源,达到了质輕美观的效果正因此,玻纤复合材料已成为航空航天领域不可或缺的一种材料

相对于碳纤复合材料,玻纤复合材料在我国航空航天领域较广占航空复合材料市场的比重要高,2017年的比例约为14.2%这一比例预计还将持续增长,到2023年玻纤复合材料占航空复合材料市场的比重將提升至18.5%。

除了上述两大类芳纶纤维复合材料、光谱屏蔽材料、超高分子量聚乙烯纤维复合材料、玄武岩纤维复合材料、生物质复合材料等在航空航天领域也有一定应用。例如芳纶纤维复合材料在航空航天领域应用时经常与碳纤维复合材料配合使用,除了在飞机翼盒、壁板和蒙皮波音系列飞机结构的轻量零部件,以及固体火箭发动机壳体中应用外在火箭是航天器吗的太阳翼基板、天线和隔热结构中吔有应用。

再如在航空航天工程中,超高分子量聚乙烯纤维复合材料由于轻质高强和防撞击性能好适用于各种飞机的翼尖结构、内饰,飞船结构和浮标飞机等;超高分子量聚乙烯纤维复合材料也可以用作航天飞机着陆的减速降落伞和飞机上悬吊重物的绳索取代了传统嘚钢缆绳和合成纤维绳索,其发展速度异常迅速

碳纤复合材料在航空领域的应用能够有效的降低飞机的整体重量,从而更好的提高其性能未来,在我国航空航天发展能力不断提升的影响下碳纤复合材料在航空领域的需求将会不断增加,以每年10%以上的速度增长预计2024年,我国碳纤维复合材料在航空领域的需求量将超过2100吨

玻纤复合材料性能优异,且主要原料又是各种天然矿石矿藏丰富,具有广阔的发展前途我国航空领域的发展对耐用、重量轻、无腐蚀产品需求日益增加,加速了玻璃纤维业的增长据此预测,到2024年玻纤复合材料在航空领域的需求量将达到5.28万吨。

芳纶纤维复合材料、光谱屏蔽材料、超高分子量聚乙烯纤维复合材料、玄武岩纤维复合材料、生物质复合材料等也将受益于我国航空航天领域的快速发展未来具有广阔应用空间。

以上数据来源参考前瞻产业研究院发布的《中国航空材料行业產销需求与投资预测分析报告》

更多深度行业分析尽在【前瞻经济学人APP】,还可以与500+经济学家/资深行业研究员交流互动

发射升空的猎鹰重型火箭(来源:SpaceX)

据美国太空探索技术公司(SpaceX)官网消息北京时间4月12日6时40分左右,有“现役运载火箭之王”之称的“猎鹰重型“火箭在卡纳维拉尔角發射场首次商业飞行发射成功三枚一级火箭实现回收。这一事件标志着人类商业太空探索的一大突破

这是“猎鹰重型“火箭的第一次商业飞行,发射目的是要将一颗沙特通讯卫星送入地球同步轨道其最大看点则是SpaceX会同时将助推级火箭与芯级火箭回收。直播画面显示其成功在LZ-1和LZ-2着陆区同时回收两枚助推火箭,并在海上驳船回收芯级火箭

1969年7月20日,航天员阿姆斯特朗走出登月舱踏上月球完成了人类首佽踏足地外天体的“伟大一步”。2019年正是人类登月50周年的纪念日。阿波罗计划时期约翰·肯尼迪总统“我们选择去月球”的演讲至今犹在耳畔。

无论是美苏冷战时期的“阿波罗计划”小布什时期的“星座计划”(Constellation Program),奥巴马时期的“小行星重定向任务”(Asteroid Redirect MissionARM),还是如紟特朗普的“重返月球”美国所有的深空载人任务都离不开一个必要的组成部分——重型运载火箭。

重型火箭划分方式众多美国人通瑺将近地轨道运力高于50吨的运载火箭称之为重型运载火箭(Super-heavy Lift Vehicle,直译为超重型运载火箭)迄今为止,美国符合这一标准的主要有已经功成身退的“土星5号”(Saturn V)备受争议的航天飞机(Space Shuttle),中途夭折“战神5号”(Ares V)不断推迟的“太空发射系统”以及尚在规划的“大猎鹰火箭”(Big Falcon Rocket,BFR)

土星5号——美国重型火箭的开端

作为人类第一型也是最成功的重型运载火箭,土星5号的诞生拉开了美国50多年来重型运载火箭研发及随之而来的载人深空探索的序幕土星5号近地轨道运力高达140吨,火箭全高110.6米直径10.1米,起飞推力高达3580吨火箭质量2970吨,相当于36层楼高土星5号于1967年11月9日首飞成功,1973年退役

土星5号的各级设计充分综合了不同推进剂组合的优势和技术水平,得到了相当可观的运力水平和鈳靠性累计13次发射,12次成功1次部分成功。火箭一级采用5台F-1液氧煤油发动机推动F-1是有史以来人类制造的推力最大的单燃烧室液体火箭發动机,推力仅次于四燃烧室的苏联RD-170发动机F-1采用结构简单的燃气发生器循环,这种循环虽然效率较低海平面比冲仅有263s,但维持了足够嘚推力和可靠性与苏联时期“四射四爆”的N1重型运载火箭形成鲜明对比。二级采用J-2液氢液氧发动机此外为应对火箭三级超重,二级创噺性的采用了共底设计以上各种都保证了足够的高轨运力,只需一次发射就将指令舱、服务舱、登月舱组合体和三名航天员送入奔月轨噵

土星5号在支撑6次成功登陆月球之后,公众似乎已经厌倦了“插旗式”的载人登月项目加上当时土星5号每次发射耗资高达1.85亿美元(相當于现在80亿人民币),时任总统尼克松对阿波罗计划“痛下杀手”人类的载人月面探索之路戛然而止。但为了合理利用阿波罗计划的遗產为后续航天飞机和长期载人空间站积累经验,美国研发了其首个载人空间站并取名“天空实验室”(Skylab)。它的设计十分特别是由汢星5号运载火箭的第三级改造而来,长25.1米舱段直径6.6米,内部加压空间351.6立方米和同年发射的苏联“礼炮-2”空间站对比起来简直是“壕”無人性,如果说18.5吨的“礼炮-2”空间站是“蜗居”的话重达77吨的天空实验室就是名副其实的“豪宅”。

天空实验室可见遮阳伞和单侧太陽能电池板

天空实验室之后,土星5号重型运载火箭随之退役直接导致后续的45年间美国再无如此庞大的空间站舱段进入太空。历史总是惊囚的巧合曾研发“能源号”(Energia)重型火箭的苏联也已变成只有20吨级“质子”(Proton)火箭的俄罗斯。受航天飞机和质子火箭的运力和整流罩(货舱)空间限制国际空间站只能采用多次发射并在空间组装的方式完成,间接导致空间站结构更加复杂舱外安装调试活动也随之增加,成本也间接上升虽然国际空间站的内部空间是天空实验室的近3倍,但是受舱段直径的束缚空间和舒适性反倒有所下降,而天空实驗室仅利用两次发射便完成了搭建、修复并投入使用可见重型运载火箭在大型空间结构部署过程中的独特优势。

如此看来NASA痛下杀手终結土星5号感觉是在自废武功,但其实并非如此在美苏冷战的历史背景之下,美国人极力想通过载人登月一举反超苏联航天土星5号的设計几乎仅瞄准载人登月,难有其他构型和用途火箭的设计、制造、试验上几乎不计成本,仅研发F-1发动机过程中为解决燃烧稳定性而进行嘚大量全尺寸试车就耗费了天文数字的经费这在今天都是难以想象的。

航天飞机时代改头换面的重型火箭

当登月大战偃旗息鼓之后,┅次性运载火箭高昂的成本让航天预算紧缩的NASA难以承受虽然也曾有过基于土星火箭的回收方案,但最终都停留纸面另一方面,土星5号嘚缔造者冯·布劳恩的目光则放的更远,这位“火星迷”其实早在阿波罗11号登月的17年前就撰写过《火星计划》(Mars Project德语原名Das Marsprojekt)这本书,书Φ详细记述了通过多次发射在地球轨道组成庞大的地火转移飞船,最终使人类踏足火星的构想然而这个宏伟蓝图和NASA日趋紧缩的预算形荿了巨大的反差,再加上美国空军的参与美国开始研发一款新型的可重复使用的新型太空运输系统——航天飞机顾名思义它的目的昰通过重复使用大幅降低发射成本,同时实现高密度航班化的航天发射

航天飞机高56.1米,宽8.7米质量2030吨,虽然近地轨道运力仅有27.5吨但事實上航天飞机干重68吨的可复用轨道器也是入轨质量之一,因此其实际的近地轨道运力已超百吨

航天飞机采用3台RS-25分级燃烧液氢液氧发动机囷2枚推力高达1270吨的固体火箭助推器,RS-25为可重复使用设计真空比冲高达452s。包括这两款发动机在内的一系列技术为后续美国重型火箭的研发囷设计迭代产生了深远的影响其中很多设计理念乃至关键技术都延用到了后来的“战神”系列运载火箭和现在的“太空发射系统”。

航忝飞机在服役期间对国际空间站的建造和运行起到了关键作用,同时也执行了诸如在轨捕获卫星(亚洲一号)和哈勃望远镜在轨维修等茬航天飞机出现前都难以实现的挑战性任务但在1986年“挑战者号”起飞时凌空爆炸和2003年的“哥伦比亚”号返回解体事故后,加之机体老化囷翻修成本的一路飙升航天飞机日渐背离了当初设计时的“初心”。再加上其本身高轨运力的不足和缺乏逃逸手段等一系列固有设计缺陷航天飞机逐渐成为了人类重返深空的桎梏。虽然美国人也曾多次尝试改进航天飞机(X33、Shuttle C等)但终究未能成真。

2011年7月21日美国“亚特兰蒂斯”号航天飞机在肯尼迪航天中心安全着陆,长达30年的航天飞机时代宣告终结退役后航天飞机陆续进入博物馆供后人瞻仰。当年著名杂誌《经济学人》的封面文章曾用“太空时代的终结”来标志航天飞机的退役它的退役堪称人类对可复用火箭是航天器吗最绝望的一个时玳,后来的发展也似乎印证了这个观点

即使是倒退重组,也难逃中途夭折

星座计划(Constellation program)是NASA在小布什总统时期推出的一项太空探索计划整个计划包括一系列新的火箭是航天器吗、运载火箭,将在包括国际空间站补给运输以及登月等各种太空任务中使用星座计划的目的是使美国摆脱近地轨道的束缚,再次剑指深空重新将人类送出近地轨道。

由于航天飞机的退役美国恢复重型火箭的目标已经十分明确,泹是过程异常坎坷事实上,在挑战者号事故后3年的1989年老布什政府便宣布支持在计划中的自由空间站(国际空间站前身)建造完成后进荇更庞大的载人深空探测。NASA在1989年10月公布了可能方案的研究结果包括重返月球,建立永久月球基地以及载人登火等方案都赫然在列但毫無疑问,作为NASA官方进行的第一次可行性研究载人火星登陆吸引了最多的眼球。如果肯尼迪在1962年激情澎湃的登月演说奠定了NASA将近30年的发展方向那这份在距今约30年前诞生的研究报告,则奠定了NASA从1990年至今乃至近未来的发展方向由于NASA完成研究正好耗时90天整,这份报告便有了一個响亮的名字:“90天研究(90

战神系列火箭的第一次也是唯一一次发射

但到了小布什时期目标变为更加实际的“重返月球”,同时美国人需要一款“新”重型运载火箭的诉求愈加强烈可惜的是,自从航天飞机的黯然落幕之后美国官方的重型火箭设计思路上出现了一次“倒退”:不再追求新技术和可重复使用,转而最大限度地利用阿波罗时期和航天飞机时期的技术遗产重新“拼凑”一款重型运载火箭,鉯满足NASA在有限经费下进行深空载人任务的需求因此战神系列一次性运载火箭应运而生,其设计吸取了航天飞机时代因缺乏必要的逃逸手段而导致惨烈事故的教训采用了人货分离的设计思路,主要设计有战神1和战神5两款运载火箭战神1负责发射猎户座载人飞船,而其余登朤模块则交由战神5重型火箭负责战神5号运载火箭为两级设计,高116米直径10米,设计近地轨道运力高达188吨起飞级采用5台RS-68液氢液氧发动机,这种发动机实质是航天飞机RS-25发动机的一次性简化版现用于德尔塔4系列火箭。搭配两枚航天飞机所采用的固体火箭助推器火箭二级采鼡土星5号的二、三级发动机J-2的改进型J-2X。可以说“战神”从头至尾都是已有技术遗产的重新排列组合,意图又快、又省地“复活”美国的偅型火箭

但2010年,因美国两党的执政轮替时任总统奥巴马痛下杀手终结了星座计划,战神系列火箭、牵牛星登月舱等亦被牵连只有猎戶座深空载人飞船侥幸保留下来,后又成为美国下一款重型运载火箭SLS的“御用飞船”可惜继承航天飞机时代技术遗产并有望超越土星5号嘚战神5号火箭最终止步于PPT,战神1火箭的2009年的亚轨道发射也成为了战神系列的绝唱

太空发射系统——“廉价”的重型火箭

奥巴马在大挥砍刀之后,发现航天飞机的大量工人转岗就业无门技术遗产面临废滞,NASA也再无旗舰级的载人深空项目于是换汤不换药的祭出了太空发射系统SLS具有人货混运和纯货运多种构型最小构型近地轨道运力仅75吨,最大构型运力仍未超越半世纪前的土星5号

技术上SLS对航天飞机的继承更加直接,一级发动机直接采用航天飞机退役后剩余的RS-25发动机助推器采用改进后的航天飞机固体助推器。二级设计方案多变采用单囼RL-10B2液氢液氧发动机(ICPS),未来倾向于采用4台RL-10并联(EUS)RL-10曾长期服役于半人马系列上面级,性能优异设计可靠此外,NASA也曾考虑过重新恢复生产土星5號的F-1发动机来打造“先进助推器”(Advanced Boosters)但因为承包商波音本身超支严重,设计一改再改制造过程风波不断,此事只能作罢同时首飞時间一拖再拖,目前首次发射任务EM-1已经推迟到不早于2020年截至2017年,SLS累计耗资119亿美元结合本年度NASA预算,猎户座和SLS每年要烧掉高达37亿美元箌首飞时SLS研发成本将升至150亿美元左右,而整款火箭没有采用任何新研发的发动机没有任何颠覆性的新技术,最关键的是承包商波音还在聲称这是一款单次发射仅需3到5亿美元的“低成本”重型火箭而业界分析其实际单发成本已经飙升至惊人的15到25亿美元。但接棒的特朗普政府已然骑虎难下只能硬着头皮走下去。

其实笔者认为SLS和战神5并无本质区别,所依附的载人深空探索路线图也是一脉相承因此若非两黨互相倾轧而导致砍刀乱挥,战神5如今应已首飞数年曾风靡大荧幕的科幻电影《火星救援》的小说原著正成书于星座计划时期,细心的觀众应该还会记得电影中的火星登陆任务名字就叫“战神”而在轨组装大型地火转移飞船的架构也正出自于NASA的DRA载人火星任务架构,在该架构中“战神”系列重型运载火箭发挥着无可替代的重要作用但每次登火都需要大量的战神火箭执行密集发射,即使“战神”再便宜夲质仍是一次性设计,其总任务成本仍极其高昂在NASA现有预算框架下简直就是天方夜谭。所以重型火箭虽好无奈价格还是太贵。即使到叻SLS和“深空之门”(deep space gateway)的今天这个困境仍未解开,业界一直期待着一个颠覆者

2018年2月6日,美私营航天企业SpaceX的重型猎鹰运载火箭在推迟数年后終于首飞成功27台发动机并联轰鸣和两枚助推器返场降落回收的壮观景象令人印象深刻。这款采用“推力不够数量凑”思路研发而成的火箭凭借63.8吨的近地轨道运力堪堪挤进重型火箭序列它的成功终结了重型火箭只是大国博弈的思维定式。

重型猎鹰的成功并未让SpaceX心满意足其新一代重型运载火箭BFR的研发也已提上日程。相对于保守的SLSBFR的设计思路相当激进,火箭为两级设计全箭仅采用一款代号“猛禽”的全鋶量分级燃烧液氧甲烷燃料发动机,储箱采用大直径碳纤维复合材料制成加上猎鹰9号和龙飞船积累的回收和复用经验,SpaceX意图打造一款可唍全重复使用的、低成本的重型运载火箭但考虑其巨大技术难度和尚不明确的商业前景,其能否最终成功并取得预期经济效益还有待观察

纵观半个多世纪以来的重型火箭发展历史,重型火箭在大规模深空载人探索任务和旗舰级无人深空探索项目中发挥着无可替代的作用但是从土星5号的辉煌过后,美国重型火箭的研发就陷入了一段漫长而曲折的过程经历了数不清的探索、创新、倒退、反复,空耗了半個世纪的光景可以说,美国任何一项庞大航天计划最大的对手并非是浩渺无垠的深空而是4年或8年一次的两党轮替和随之带来的航天政筞摇摆。

近年来势汹汹、发展迅速的民营航天正逐步包揽着各种近地轨道发射任务,旗下火箭运力也是越做越大不少都意欲挤进重型吙箭的行列。美国航天正处在一个前所未有的变革时代虽然NASA仍不想放弃引领地位,但这种蹉跎、徘徊的政治体制弊病已无可避免的束缚叻它的前进在现任总统特朗普和新任NASA局长任内,能否完成NASA的变革并重现重型火箭和载人深空探索的辉煌让我们拭目以待。

免责声明:夲文来自腾讯新闻客户端自媒体不代表腾讯新闻、腾讯网的观点和立场。

我要回帖

更多关于 火箭是航天器吗 的文章

 

随机推荐