人体已知序列查找基因名的基因有数万个,那么有没有数亿个基因呢

北京时间9月2日消息据国外媒体報道,我们出生时的性别主要由X和Y染色体出现的概率决定如果有两条X染色体,你就会发育出卵巢如果有一条X染色体和一条Y染色体,你僦会发育出睾丸这些遗传物质组合的区别不仅在于使我们长出何种身体部位。X染色体上约有1000个基因而Y染色体上仅有45个,和X染色体相比簡直小得可怜并且研究显示,Y染色体多年来一直在不断缩小有些人认为,这也许预示着男性最终将走向灭亡

那么,Y染色体最终真的會灭绝吗这对男人来说又意味着什么呢?

要回答这些问题先让我们将目光投向很久以前。我们的性染色体并非一直都是X和Y决定雌雄嘚因素也并非百分之百与它们有关。

约1亿至2亿年前、地球上刚刚进化出第一批哺乳动物的时候它们根本就没有性染色体。当时的X染色体囷Y染色体与其它任何一对染色体别无二致大小相同、结构对应。

这里要指出一点:动物并不需要性染色体过去如此,现在依然如此峩们的所有染色体都是由与性相关的基因和与性无关的基因组合而成的。Y染色体唯一的特别之处便是一个名叫SRY的基因它是决定生物体是否会发育出睾丸的“开关”。而对鳄鱼和海龟而言就连这个“开关”都不是必需的,它们的性别由胚胎发育时的温度决定我们的哺乳動物祖先也许同样拥有这个特征。但某一天我们祖先体内的某条平平无奇的、与性别无关的染色体中突然出现了一个具有这种“开关”功能的基因,事情就演变成了今天这样:你必须要有Y染色体才能发育出男性生殖器官。

但Y染色体一经问世体积就一直在缩小。随着时間的推移基因会发生突变,并且许多突变都是有害的染色体可以通过与另一条染色体结合来避免将这些突变遗传下去。但减数分裂中(即形成精子和卵子的过程)父体染色体与母体染色体会随机发生交叉互换。这个过程会将基因拆分开来使真正有用的基因更有可能遺传下去。所有染色体都会经历这一过程来自母体的染色体1会与来自父体的染色体1进行交叉互换。然而Y染色体并没有与之配对的染色體可以交换。两条X染色体可以相互重组但Y染色体和X染色体的相似程度不够高,无法进行重组此外,极少出现同时有两条Y染色体的情况因此Y染色体也无法与另一条Y染色体重组。

如果发生了有害的基因变异这条染色体一般都能与配对的染色体互换。但Y染色体无法这么做因此Y染色体累积的有害变异会越来越多,而这些有害变异会逐渐在自然选择的作用下被淘汰掉这样一来,Y染色体就会变得越来越小

研究显示,在1.66亿年以前Y染色体上有1669个基因,与“当时的X染色体相同”不难算出,假设Y染色体的基因流失速度始终不变、稳定在每100万年減少10个的话整个Y染色体将在450万年后彻底消失。

“始终不变”这一点很关键近期研究显示,Y染色体的退化速度其实是在逐渐减慢的在2005姩《自然》期刊上发表的一项研究中,研究人员将人类的Y染色体与黑猩猩进行了比较到了2012年,同一支研究团队又对恒河猴的Y染色体做了基因测序同样将结果发表在了《自然》上。研究人员发现自从人类与恒河猴于2500万年前在进化之路上分道扬镳以来,人类的Y染色体只减尐了一个基因;并且在600万年前与黑猩猩分开进化以来Y染色体上更是一个基因都没少。这些结果说明Y染色体的退化并非如最初指出的那樣、以每100万年10个基因的速度线性减少。

不过这并不意味着Y染色体就不会消失了,这种情况在其它物种身上也发生过例如,有两种生活茬地下的啮齿动物都分别失去了Y染色体还有生活在日本几座小岛上的三种濒危棘鼠。

但这些物种显示就算缺失了Y染色体,也不会对生粅的生存造成威胁上面提到的几种物种依然雌雄皆有。人们总把性别想成一件非常确定的事情认为只要你有Y染色体,你就是男性;如果你没有Y染色体你就是女性。但情况并非如此

事实上,在雄性和雌性身上表达存在区别的基因中有95%都并不取决于X和Y染色体。例如負责雌激素受体编码的基因ESR1就位于6号染色体上。该受体对雌性生物生长和性发育具有至关重要的作用

失去Y染色体并不意味着失去雄性。倳实上Y染色体的缺失可能意味着将有另一个基因接手决定性别的工作,即前文提到的“开关“有很多基因都能完美地完成这项工作。泹发生这种情况的可能性有多大呢“确实有可能发生,不过我们这辈子是看不到了”(叶子)

其发现的几千个未知功能

所谓已表达序列标记(expressed

tagsEsr)向美国专利与商标局(PTO)提交专利申请以来,由NIH的行动引起的争论几乎没有停止过在生命科学界,这场争论的焦点主要集中于是建立开放的数据库以使公众免费得到这些遗传信息还是通过专利获得排他垄断权。而在知识产权界争论的焦点则主要是未知功

DNA片段(例如EST和SNP等基因标志)能否获得专利,以及针对EST和SNP专利申请应采用什么样的专利性标准问题(特别是充分公开和实用性要求)

1998年欧共体通过并发布了生物技术发明专利指令,并且继后美国专利与商标局于1999年12月发布了针对美国专利法第112条书面描述要求修订的专利申请内部审查指南和实用性审查指南。自此问题似乎在逐步得到澄清,争论似乎也在逐渐平息下来(尽管迄今仍有一些法律界人士对仩述规程和准则的某些细节提出异议)然而,当中国国内也可能面临国际上已争论了将近十年之久的相似问题时概要了解基因组部分序列特别是ESr的技术背景和特征,回顾国际上那场争论的经过和已提出的法律解决途径与对策对于处理我国面临的相似问题,可能会有一萣的启示作用

为了充分理解ESr的实用性等专利性条件问题,有必要首先对分子生物学特别是EST的某些基本概念简要总结如下。

DNA是由字母A、T、G和C所代表的四种不同的核苷酸组成的因此,DNA序列可由一长串按不同顺序排列的上述字母来表示例如AGGTCGAATCCGTAC.染色体DNA实际上是由两条互补的核苷酸链构成的双链分子。以A-T和G-c配对方式存在的核苷酸称为碱基对如果上述序列为染色体DNA,它应该是如下所示的一串碱基对:

DNA链中每三个連续的核苷酸代表一个翻译成21种氨基酸之一的密码子而所说的21种氨基酸是构成蛋白质的基本成分。由DNA的密码子拼出蛋白质的序列

基因昰编码生物体内基本成分即蛋白质的DNA序列。基因组是生物体细胞染色体中成套基因的总称基因组序列中除包括编码特定蛋白质的结构基洇(外显子)外,还包括更大数量的基因转录(即由DNA转录成信息BNA(mRNA))和翻译(即由mRNA翻译成蛋白质)调控区和及其他非编码区(内含子)原定于2005年完成的人类基因组合作计划的主要目的就是弄清人类基因组中包括大约10万个基因的大约30亿个DNA基本构成单位即碱基(或核苷酸)嘚排列顺序,得到人类基因组的高分辨率基因图谱

在活的生物体中,只有基因组DNA的编码区才被拷贝成具有真正生物学功能的分子即由┅长串不同的氨基酸连接成的蛋白质。因此这些DNA编码区是负责各种表型功能的大多数遗传信息的载体。但这些DNA编码区只代表总DNA的3-5%其餘为调节编码区表达水平的非编码区。

到目前为止大多数生物技术研究仍是基于反向工作方式。例如首先从生物体中分离出一种有特萣生物学性质的蛋白质,并测定该蛋白质的氨基酸序列然后可根据已测知的氨基酸序列,由单个核苷酸合成一小段称探针的DNA序列这样,在将探针与生物体的DNA样品混合后探针将与DNA序列上能够与之互补的一段DNA精确杂交,从而有可能分离出编码特定蛋白质的确切基因一般凊况下,使用生化分离技术只能从生物学样品中得到很微量的蛋白质但如果分离到编码蛋白质的基因,就可以使用常规基因工程技术鼡基因转染适当的宿主细胞系,然后大批量培养被转染的宿主细胞从而可由宿主细胞表达产生大量所需要的蛋白质。

按照这种策略科學家已克隆并表达了包括人干扰素和自介素等免疫系统调节蛋白质及骨和脑等组织其他活性蛋白质在内的数千种完整人类基因编码的蛋白質。其中商业上获得极大成功的一个典型例子是主要用于治疗肾性贫血的红细胞生成素(EPO)。一旦使用一组探针分离得到基因科学就鈳将其插入到载体中,并在大肠杆菌或哺乳动物细胞系(表达系统)中表达之可以大批量培养经过基因工程改造的细胞,并从而可以收集并纯化得到足够用于治疗贫血病人的大量脚或其他生物学活性蛋白质

与上述从已知序列查找基因名的蛋白质开始寻找基因的策略相反,人类基因组研究则代表了DNA研究的一个新的方向例如,NIH的科学家Crag

Venter早在二十世纪八十年代后期就建立了一种从cDNA库中快速选择DNA片段并测定其序列的方法进而使用这种方法随机测定了一大批不知编码什么蛋白质的人DNA的片段。可以使用常规方法(如聚合酶链反应技术)由选择嘚并估计包括DNA编码区的DNA片段合成得到双链形式分离的cDNA片段。然后将这些片段连接到载体上并在适当的表达系统中由之转录成相应的多肽或疍白质因此,cDNA反映了已表达的DNA序列故后来将这样的片段称为“已表达序列标志”。与核苷酸数据库进行同源性比较显示NIH早期专利申請所包括的2,412个片段中大约有83%与以前已知序列查找基因名的序列无关。

因此可以认为EST是在随机选择并经序列分析后分离得到的和(戓)进行了特性鉴定的核酸。与按照传统方法分离并鉴定的核酸不同的是当确定EST片段的序列时尚不知道由之编码的蛋白质的功能。在相關研究中首先是在分子水平上对FST分子进行鉴定,然后借助计算机程序指认可能由之编码的蛋白质及其潜在功能一般说来,鉴定EST分子可包括几个特定的步骤:首先确定部分序列信息并将其储存在数据库中然后用该序列信息作为探针与数据库中的已知序列查找基因名序列數据进行比较。在有些情况下经过这种同源性检索可以在核苷酸序列水平上揭示出与编码已知序列查找基因名功能之蛋白质的另一种核酸相关的特定EST序列。最后选择这样的EST分子并进一步分析之。

由此可见每个EST片段的序列都是与单个人类基因的一部分互补的。虽然这些爿段可长达几百个碱基但大多都不跨越相应基因的编码区。实际上这些片段的序列本身并不是基因,而是与人类基因互补的部分DNA序列每个片段都可以看作是可在体内被转录的人类基因的标志,直接针对已表达的基因因此,可将其作为探针用于确定基因在染色体上嘚定位、鉴定和分离整个基因,甚至还有可能借助同源性比较来鉴定基因或相应蛋白质的生物学功能也可能使用EST序列进行法医学分析、組织特异性或个体特异性鉴定,以及疾病相关基因鉴定此外,还可使用EST片段制备可阻断基因表达的反义序列或三螺旋探针

二十世纪八┿年代后期,美国国家卫生院所属国家神经病和中风研究所的生化学家Crag

Venter建立了一种在没有进行全基因作图和测序情况下获得基因遗传信息嘚手段并在基因组课题框架内分析和初步鉴定了几千个代表某些已表达基因互补的DNA(cDNA)片段。当时的NIH院长Bemadine

Healy受到国会准许将政府资助的科研成果转让给企业这一政策的鼓励也考虑到巨额政府投资的回收,同时抱着将来保有这些序列的优先占有权这一愿望于1991年就Venter等人的研究成果向美国专利与商标局(PTO)提交了发明名称为“人类基因转录产物的序列特征”的专利申请(申请序号07/716831)。

令NIH始料未及的是它的荇动轰动了全社会,特别是在生命科学界和知识产权界引发了一场旷时持久的激烈争论首先被激怒的是科学家们,许多人认为对这些未知功能的DNA序列授予独占权必将会引发一场专利许可战,对生物医药研究与技术发展造成巨大冲击另外,认为个别机构或个人垄断其发現的序列还将阻碍生物技术实验室之间的合作,从而减慢人类基因组研究计划的进展步伐NIH的行动也引起了法律界的强烈反响。例如華盛顿大学国家法律中心的Stephen

Maebius指出:NIH在人类基因组研究的早期阶段寻求部分DNA序列的专利保护,很可能会造成许多从事人类基因组开发的私人公司竞相靠专利“立桩圈地”的局面从而延缓建立在基因测序基础上的相应蛋白质产品的研究与开发。Maebius

还建议PTO依据以前的有关判例(例洳最后由最高法院作出裁决的Bnmn诉Mansou案)采用所谓的“实际实用性”(Practicalutility)这一专利性标准严格把关,以防止在发现其能够为人类带来直接益處的之前批准有关DNA片段的专利

1992年8月,美国专利与商标局(PTO)主要以缺乏非显而易见性(创造性)和实用性以及没有提供足够的书面描述为理由,在初步审查中驳回了NIH的专利申请驳回后,NIH尚有机会将其意见提交到专利申诉委员会或上诉法院以求得更深层次的裁决。但NIH繼任院长Harold

Varmus在放弃权利要求的压力(主要来自美国卫生与福利部)下决定不再申诉(1993年2月)。很显然作为一个靠政府提供财政资助的非贏利性研究机构,此时它在这一涉及全球性研究计划的问题上正在改变自己的立场并加入了一些政治上的考虑。1994年初NIH又采取了一个令科学界震惊的行动:宣布撤回已提交的涉及6,869个部分DNA序列的专利申请对此,Varmus解释说:寻求这些部分序列的专利并不符合公众和科学界的朂大利益差不多与此同时,英国医学研究理事会(MRC)也主动撤回了它的涉及1200个部分DNA序列的专利申请。

尽管PTO驳回了NIH的早期专利申请但┅些在基因“淘金热”中涌现出来的公司,例如已在基因片段研究上投入了大量资金的人类基因组科学公司(HGS)与其非赢利性合作伙伴基洇组研究所(TIGR)以及Incyte医药公司等,仍在冒险申请专利到1997年初,PTO至少受理了350件复盖500000个以上基因标记的专利申请。其中最大的一个申请包括18500个序列。显然这些专利申请的权利要求范围都是很宽的。申请人希望在他们深入研究了这些序列所牵涉的特定基因后依据最初嘚EST专利申请日来证明他们是基因的第一个发现者。在加快工厂化测序进展的同时他们曾希望NIH牵头通过诉讼程序尽早解决基因片段的专利性问题,但Varmus和他的法律顾问们没有接受这一建议1997年8月,Varmnus至PTO局长Lehman的公开信进一步表明NIH管理层已成为EST专利的强烈反对者

Haseltine曾试图说服怀疑者:“已表达序列标志作为研究工具是可以获得专利的”。其主要投资人George

Poste也坚称:对EST授予专利与批准BRCAI乳癌基因这样的生物标记专利没有什么鈈同但生物技术团体中的反对者则不同意这些论点。例如Genzyme公司的顾问Mank

Hoffer(遗传学试验和医药产品开发者之一)嘲笑说:“他们在要求保護一堆大小不等的螺栓”,理由是“这些螺栓可用于制造汽车”甚至PTO局长Lehman也说:“这些材料大多都是数据……,单单数据是不能授予专利的”负责整个人类基因组测序项目的人类基因组组织(HUGO)当时则明确表示反对授予EST专利。

针对个别从事大规模cDNA测序的公司(特别是私囚公司)抢先寻求专利保护并且提出超过其实际研究成果的宽范围权利要求的作法,包括NIH在内的一些公共科研团体、基金管理机构及大公司(如Merck公司)则投资建立公共数据库并鼓励研究人员在公共数据库中保存序列信息,以暗中破坏涉及人类基因组的独占权利要求这┅反击行动在一定程度上削弱了HGS、Incyte等公司累积的私有数据库的价值。投资分析家Matthew

Manrray表示了这种担忧:“由于快速公布DNA数据使得基因组公司僦基因发现投资牟利的机会受到相当程度的限制”,而且“一旦完整人类基因组序列投入公共区域获得基因专利将会更加成问题。”

可見在人类基因组的部分DNA序列问题上,一直存在着建立公共数据库和寻求专利这两种不同的态度和作法公众能否得到并分享包括EST和SNP在内嘚人类基因组部分序列信息,已成为争论最多的问题在此期间,虽然许多专利律师和专利法律研究人员都认为未经特征鉴定并且未知功能的基因片段,因其本身缺乏商业上的实用价值而不能被授予专利权但PTO除初步驳回NIH的早期申请外,对其他EST申请并未作任何法律处理叧外,由于NIH没有提出申诉所以FID申诉委员会和联邦巡回法院也未介入这一争论。人们都在等待和期盼着FTO或法院早日拿出政策或相关判例鉯求得最终解决基因组DNA片段专利的不确定性和相关法律问题。

几乎被DNA片段淹没的PTO局长Lehman估计他的全体生物技术部工作人员既使什么事都不幹,也要花费将近一年的时间整理和区分这些序列为此,他首先被迫采取了一个减少EST专利权利要求积压的对策:规定每件申请不得包括10個以上的序列这就意味着为保留其目前的权利要求,有关公司必须提交数千件新的申请从而增加一大笔法定费用(每件400―800美元)。这┅政策也一定程度上促使这些公司仅就其已彻底研究清楚并证明具有实际实用性的序列申请专利

1998年5月,美国专利与商标局生物技术审查蔀主任John

Doll在Nature杂志上发表文章指出:因为包括EST在内的DNA序列是人为干预的制造品或其组合物即已从天然来源分离和纯化出来的游离分子,或者昰构成重组分子或载体的一部分所以属于可授予专利的主题材料。但Doll也特别强调与其他技术领域的发明一样,涉及DNA序列的发明必须满足专利法规定的新颖性、非显而易见性和实用性以及提供足够的书面描述等专利性条件,之后才能被批准为专利关于EST的专利性,Doll进一步解释说:“我们不妨将整个基因和其包括的重要DNA片段分别比作电视机和显像管很显然,对显像管授予专利权并不阻碍其他人获得电视機的专利”

Doll提出的观点基本上代表了PTO的观点。在长时期因为实用性问题而不愿批准EST等DNA片段的专利后此时美国专利局实际上已改变了它原来的观点。

在欧洲欧共体于1998年7月公布了生物技术发明专利指令(98/44/EC),从而使基因和基因片段的专利问题再次以一个新的角度凸现絀来欧共体成员国即使不完全照搬该指令,至少也要在其国家法中体现指令的中心思想和目标另外,为了法律的确定性和欧洲范围内專利法的协调统一欧洲专利局(EPO)应在实践中严格执行该指令。特别值得注意的是该指令第5条述及:1.处在不同的形成和发育阶段的人體,以及简单地发现其元件之一包括基因序列或部分序列,不能构成可专利的发明;2.从人体分离的或借助技术程序生产的元件包括基洇序列或部分序列,即使其结构与天然元件完全相同也构成可专利的发明;3.专利申请中必须公开已测序的基因或其部分序列的工业可应鼡性。

针对反映十分突出的EST专利性问题特别是有关EST的书面描述和实用性问题,美国专利与商标局(PTO)于1998年向社会发出征集对原内部审查指南的意见的通知书在充分考虑了其所收到的13个个人和19个组织的答复意见之后,PTO于1999年12月公布了涉及美国专利法第112条“书面描述”要求修妀的内部审查指南由于有些意见要求Fro对最后的(1995年)实用性审查指南进行必要的修改和澄清,所以PIO还同时公布了修改的实用性审查指南借以澄清其在这些问题上的观点。

三、已表达序列标志(EST)的专利性

尽管不同技术领域里所谓“本领域普通技术人员”水平可能有很大鈈同但对一件具体的专利申请,不管它是涉及计算机芯片、机械装置、药物或是DNA片段专利局都将依据专利法规定的同样专利性标准进荇审查。在每个技术领域中不管发明的主题是否为开创性的、十分复杂的或是竞争性的,在其权利要求被批准之前都必须符合所有的专利性条件即发明的主题未落入专利保护排除的范围内(专利法第25条)、发明具有新颖性、创造性和实用性(专利法第26条),并且说明书必须对发明作出足够清楚完整的描述以使本领域技术人员在阅读了说明书之后即能够重复或再现发明(专利法第26条)。

以下仅就EST的这些專利性问题作进一步地讨论

(一)是否构成专利保护的主题:

与其他技术领域相比,自然界衍生的物质因其属于“发现”而不能获得专利但作为一个普通原则,从自然界分离的或以其他技术手段得到的物质即使其与天然等同物相同,也不能排除其专利性无可置疑,洳能满足专利性的所有要求基因工程领域的专利可授予天然存在的编码有用蛋白质的人、动物或植物基因,以及与基因相联系的其他材料如质粒构建体、重组蛋白质、被转化的细胞及转基因植物和动物等。

然而从生物体中得到基因片段或DNA序列是否构成可获得专利的发奣主题呢?答案应是肯定的首先,虽然构成EST的DNA是以其序列所给出的信息为特征的但DNA本身也是化学物质,特别是作为EST的cDNA本来就不是生物體中天然固有的借助人为手段(如提取、筛选等)从其天然来源中分离的化学物质或微生物被看作是新产生的物质。虽然可以用简要的甚至自动化常规手段得到Esr片段但其中仍需人的智力活动和技术上的人为干预,即得到这些DNA片段实际是技术处理的结果是人为创造的或汾离的化学物质。

因为构成EST的DNA是化学物质而且EST不同于构成全长度基因的DNA序列,所以相对于构成全长度基因序列的DNA而言EST并不能成为现有技术的一部分,即不失去新颖性然而,关于EST的已知序列查找基因名信息可使构成全长度基因序列的DNA失去创造性另一方面,因为EST序列不哃于包括EST的较长基因序列所以EST的专利并不能破坏较长基因序列的新颖性。然而关于EST的信息有可能使构成EST的较长基因序列失去创造性。

目前国际上普遍认为与全长度基因或包括部分序列的较长基因大片段相比,如果尚未以特定形式公开过基因的部分序列则涉及该基因蔀分序列的发明应是具有新颖性的。这就提示如果权利要求的DNA序列与以前公开的较长序列完全重叠或部分相同序列重叠,则权利要求的DNA序列的新颖性将取决于它的特定长度当序列区域只有部分重叠时,一般在非交叠区域中很可能存在一个提供新颖性的结构元件一般说來,在先公开部分基因序列并不影响完整基因的新颖性因为后者还包括有新的基因区域。例如在先发明人虽已就其中包括某个重要基洇的DNA大片段获得了专利,但后来真正确定基因的可读框并分离出该基因的人以及从同一基因中分离出许多DNA片段(如EST或SNP)的人,仍可获得苐二个专利

另外,技术发展的促进因素不只限于发现相应的全长度基因即使权利要求的DNA与已知序列查找基因名的DNA序列完全相同,发明囚和申请人仍可在充分认识并描述新的功能的基础上获得该DNA序列的用途专利(这里所说的用途除直接用作药物外还包括其第二用途或其怹非药物用途)。因此包括EST在内的DNA序列象其他常规化学物质一样,不仅可获得绝对的产品保护还可就其未曾公开过的新的有益用途获嘚专利。

如何判断EST相关发明的创造性是目前专利法律界遇到的一个难以处理的特殊问题。首先虽然DNA在本质上也是一种化学物质,但生粅体内所有DNA都是由仅仅四种普通碱基组成的其化学性质没有直接依据于结构的实质性特征,故不能简单地基于DNA化学结构的相似性或非相姒性比较来判断创造性(或美国专利法所称的非显而易见性)另一方面,EST实际上是从已建立的cDNA库中随机选择并经过序列测定的DNA片段得箌EST的方法基本上是标准化的。在这种技术背景下如果不考虑其特殊的技术性质,而仅仅基于常规结构非显而易见性标准对每个具有新的序列的EST片段授予专利显然是与保护并鼓励对工业发展作出贡献的发明这一专利立法宗旨相违背的。

针对这一问题有的学者认为可基于現有技术(例如标准的自动化方法)来比较和判断EST“获取方法”(obtainment

process)的非显而易见性。如果有证据足以推翻获取方法的显而易见性(例如方法本身的困难程度和有关DNA的不可预见的优点)就判定该DNA是非显而易见的。相反如果提不出这样的证据,便有理由因显而易见而否认其专利性

然而应该看到,特别是对于医药和生物技术领域的发明发明的创造性往往是与实用性密切联系在一起的。对于常规药用化学粅质或天然提取物常常可通过改变合成或提取条件来获得预期的物质,进而可基于结构或组成来推测并实现预期的使用效果但DNA序列则唍成不同。EST作为信息载体它所提供给人们的是遗传信息,而有用遗传信息的获取往往带有一定的随机性和偶然性因此,以“获取方法”的创造性作为推断EST创造性的标准至少是有一定局限性的。实际上在确定了部分基因序列的常规分离和测序方法之后,发明对现有技術的贡献就在于权利要求的DNA能实现怎样的技术结果也就是说,DNA序列创造性不是取决于如何得到权利要求的DNA而是在于该DNA能完成或成就什麼。当然如果在发现序列的有益用途和特征(什么)中克服了技术难题(为何),而且在专利申请中予以充分公开则这些研究成果也足以体现发明的创造性。

在判断EST的创造性时一般首先考虑两个重要因素:一是在发掘有益用途中克服客观技术难题,二是EST序列具有不可預见的特征或特殊优点在技术迅速发展的过程中,技术难题将会变得不那么重要因此不可预见的结果主要是与特定EST序列或一组不均一DNA汾子所携带之信息的特殊功能直接相关。一个或一组以常规自动化手段筛选并分离得到的EST如果它们只用作探针,其可能被认为是显而易見的或缺乏创造性的因为在与DNA的相反链杂交中难以获得不可预见的技术效果。相反如果这些EST具有除作为探针以外的某些实用性特征,即使其包括已知序列查找基因名的序列数据则也可被认为是有创造性的。

另外还应指出的是作为一个原则,在判断发明的创造性和保護范围时应注意专利所授予的垄断权是否与发明对现有技术所作出的贡献相匹配,即应在发明所提供的技术贡献与专利权利要求所限定嘚垄断权之间找到一个合理的平衡点

数目 不同生物的基因数目有很大差异,已经确知RNA噬菌体MS2只有3个基因而哺乳动物的每一细胞中至少囿100万个基因。但其中极大部分为重复序列而非重复的序列中,编码肽链的基因估计不超过10万个除了单纯的重复基因外,还有一些结构囷功能都相似的为数众多的基因它们往往紧密连锁,构成所谓基因复合体或叫做基因家族

我要回帖

更多关于 已知序列查找基因名 的文章

 

随机推荐