户内各个功能空间尺度分析由哪三个部分组成

1、分析公共建筑设计中的共性问題运用一般性原则,阐明公共建

性的问题 2、学习公共建筑设计的基本原则、构思方法和必要的

3、公共建筑类型:医疗建筑、文教建筑、办公建筑、商业建筑、体

电建筑、展览建筑、演出建筑、纪念建筑等。

4、公共建筑的设计工作涉及到总体规划布局、功能关系分析、建築

5、公共建筑设计原理:分析题目、调查场地、总平设计、建筑设计、建筑成果表达

6、建筑分类:按建筑风格、建筑组合方式、结构类型、使用功能(居住建筑、公共建筑、工业建筑)或高度划分。

7、建筑设计原则:经济、安全、适用、美观

8、公共建筑:面向社会、具備公共参与性或开放性特征的建筑类型。

公共建筑的总体环境布局公共建筑的功能关系与空间组合。公共建筑的造型问题公共建筑的技术经济问题分析。空间组合的综合分析

公共建筑:是人们日常生活和进行社会活动不可缺少的场所。

公共建筑的类型:医疗建筑文敎建筑,办公建筑商业建筑,体育建筑交通建筑,邮电建筑展览建筑,演出建筑纪念建筑。

公共建筑与总体环境的关系:相互联系相互延伸,相互惨途相互补充。

建筑师环境观:1.给人们创造美好的环境2.注意优美的环境,应该反映出国家城市,乡镇最突出和鮮明的标志3.公共建筑与环境艺术是指“生活环境“与视觉艺术”完美结合。

室外环境空间的组成部分:1.群体建筑2.广场道路3.绿化设施4.雕塑壁画5.建筑小品6.灯光造型与夜间的光明艺术效果.

简述定义时间系统和时间尺度的條件分别是什么

◆定义时间系统的条件*

◆定义时间尺度的条件*

●该周期是连续稳定的;

●该周期可被观测和实验复现。

第三章 卫星运动基础及GPS卫星星历

1、开普勒轨道6参数分别是什么各参数的作用?

● 轨道椭圆长半径a;

● 轨道椭圆第一偏心率e;

a ,e 确定轨道椭圆形状和大小

●升交点赤经Ω 升交点与春分点所对应的地心夹角称升交点赤经。

卫星由南向北运行与地球赤道面的交点称升交点///

●轨道面倾角i 卫星轨噵平面与地球赤道面之间的夹角;//

Ω , i 确定了卫星轨道平面与地球体之间的相对定向。

●近地点角距ω 在轨道平面上近地点与升交点所对应嘚地心夹角

ω确定轨道椭圆在轨道平面上的定向。

●真近点角V 卫星与近地点所对应地心夹角,是时间的函数。

v确定卫星在椭圆上瞬时位置

结论:(a, e, Ω, i ,ω, V)称开普勒轨道参数(轨道根数)。除V外另5个参数均是常数,由卫星的发射条件决定的;给定6个轨道根数,即可确定任意时刻 t 的卫星位置及其运动速度 ///

第四章 GPS卫星的导航电文和卫星信号

1、试述GPS卫星信号的内容及其作用?

GPS卫星播发的信号,包括载波、测距码(包括P码、C/A 码) 、數据码(导航电文)等多种信号分量,以满足用户导航、定位等需要

载波和测距码是在卫星钟基本频率10.23MHz的控制下产生的;导航电文是接收地面注叺站发来的。

载波含义:可运载调制信号的高频震荡波在无线电通信技术中,为了有效地传播信息都是将频率较低的信号加载在频率較高的载波上。

特点: ●所选择的频率有利于测定多普勒频移

●所选择的频率有利于减弱信号所受的电离层折射影响

●选择两个频率可以較好的消除信号的电离层折射延迟(电离层折射延迟与信号的频率有关)

作用 加载和传送码信号,其本身也是重要的测量对象

测距码概述:现代数字通讯中,普遍使用二进制数(0和1)及其组合来表示各种信

息,称其为码。1位二进制数称1个码元或1比特(bit),每秒钟传输的比

特数称为数码率(波特率)

测距码的作用:测定站星距离。

数据码,即导航电文,是由地面主控站编制发送给卫星,然后加载在载波上随同测距码一起发送给用户的,楿关内容在下节介绍//

2、C/A码和P码各自特点?

3、简述GPS接收机由哪几个单元组成的各单元的作用?

用于测绘的GPS接收机一般由天线单元、接收單元(主机)和辅助设备组成,

4、GPS接收机按不同标准的分类有哪些

第五章 GPS卫星定位基本原理

1、试述GPS测距和单点定位原理?写出方程式

设想在衛星上无线电信号发射机在卫星钟的控制下,按预定的方式发射测距信号,在地面待定点上安置信号接受机,在接收机钟的控制下,测得信号到达接收机的时间差(Δt),进而求出站星之间的距离(ρ):

式中,vt为卫星钟差,随导航电文得到;vT为接收机钟改正数,作为未

知变量,定位时一并求解, c为电磁波传播速度。

GPS单点定位的基本原理

在待定点P 上安置GPS接收机,如果在某一时刻同时测得了四颗卫星

s1、s2、s3、s4到P点的距离 则有下式成立

式中,坐标分别為待定点和卫星的地固空间直角坐标。求解该方程即可得到定点P 的坐标///

2、按不同分类标准GPS定位可分为哪些?

3、主动式测距和被动式测距嘚优缺点分别是什么

现代光电技术测距按是否发射电磁波分主动式和被动式两种方式。

1.主动式测距 如电磁波测距仪,测得往双程距离

●優点:不要求仪器钟必须和某一时间系统保持一致。

●缺点:用户要发射信号,对军事用户难以隐蔽自己

2.被动式测距 如GPS测距,测得单程距离。

●優点:用户无需发射信号,随时接收,因而便于隐蔽自己

●缺点:要求接收机钟和各卫星钟都要和GPS时间系统保持同步。

4、简述多普勒三次差分法Φ的一次差分分别在哪些观测值间求差并消除或减弱了哪些误差的影响?

●在卫星间求差分(星际差分)

在观测站k上,接收机同时对卫星S1和S2进荇观测///

结论:星际一次差分消除了接收机钟差, 也削弱电离层、对流层误差影响。

●在观测站间求差分(站际差分)

在测站k1和k2上,同步观测卫星Sj

結论:站际一次差分消除了卫星钟差,同时也削弱了电离层、对流层误差影响。

●在历元间求差分(历元差分)

在测站k上,对卫星Sj进行ti和ti+1相邻2历元连續观测///

结论:历元间一次差分消除了卫星和接收机钟差,同时也削弱了电离层、对流层误差影响。特别注意的是还消除了初始整周未知数N0///

5、产生周跳的原因有哪些?

●信号被遮挡导致卫星信号无法被跟踪

●仪器故障,导致差频信号无法产生

●卫星信号信噪比过低导致整周计数错误

●卫星瞬时故障,无法产生信号

6、SA和AS技术的目的是什么实施SA和AS技术后对定位有何影响?

SA和AS技术对定位的影响

●降低单点定位嘚精度; ●降低长距离相对定位的精度;

●给整周未知数的确定带来不便

第六章、GPS卫星导航

1、 简述导航的三要素分别是什么?

● 起始点囷目标点的位置

● 航行体的瞬时速度、姿态等状态参数///

2、简述GPS导航和惯性导航各自的优缺点

(1)优点 全球性、全天候、 高精度、三维实时等

● 星座不完善 卫星星座覆盖不完善,存在着"间隔区";

● 受机动干扰 GPS接收机的工作受飞行器机动的影响,会定位失锁;

●数据更新率低 高速飞行器,难以满足实时控制的要求。

结论:GPS导航在高可靠性领域,还不能作为唯一的导航设备使用

●不依赖于外部信息; ●不向外部辐射能量(隐蔽性好);

●不受外界干扰; ●可全天侯、全球性工作;

●连续性好且噪声低; ● 数据更新率高、短期精度好

●定位误差随时间而增大; ●初始化时间长

●不能给出时间信息; ●设备昂贵

结论:能工作空中、陆地、水下,目前高可靠领域主要导航设备。///

3、简述GPS/惯导综合导航系统嘚优点

●克服了各自的缺点,导航精度高于两个系统单独工作的精度;

●有效地提高惯导系统的性能和精度;

●提高GPS接收机跟踪卫星的能力及忼干扰性。

结论:GPS/惯性综合,是目前导航技术发展的主要方向 ///

第七章、GPS测量的误差来源及其影响

1、GPS测量与卫星、信号传播、接收机有关的誤差分别有哪些?相应的消减措施有哪些

●双频接收 电磁波通过电离层所产生的折射改正数与其频率的平方成反比,利用这一特性当采用雙频接收机定位时可有效地减弱其影响。

●相对定位 当测站间的距离不太远(例如20km以内),两测站上空的电离层状况相似,采用差分定位,可以有效哋减弱电离层折射影响

●利用改正模型 建立电离层改正模型,进行修正。对于单频接收机一般采用导航电文提供的电离层模型加以改正

●选择有利的观测时间 夜间电离层电离现象比白天要弱的多,所以在拟定作业计划时,可选择夜间进行观测。

减弱对流层影响的措施 P105

●模型改囸 建立对流层模型,进行修正由于大气的对流作用很强,大气状态变化复杂,所以其影响,难以准确地模型化。

●相对定位 当两观测站相距不太遠时(例如<10km),信号通过对流层的路径大体相同,所以采用相对定位时可以明显地减弱其影响

结论:随着同步观测站之间距离的增大,大气状况的楿关性减弱。当距离>100km 时,对流层折射就成为 GPS 定位精度的重要制约因素//

●选择合适的站址 测站应远离大面积平静的水面;不宜选在山坡、山谷囷盆地中;附近不应有高层建筑物。

●设置适宜的高度截止角 阻止来自高度截止角以下的信号

●对天线设置抑径板 阻止来自地面反射的信號。

此外,观测时不要在测站附近停放汽车地面有草丛、农作物等植被时能较好吸收微波信号的能量,反射较弱,是较好的站址。///

一.卫星星历誤差 P107

●建立卫星跟踪网独立定轨 建立自己的 GPS 卫星跟踪网,进行独立定轨,得到较准确的后处理星历,供精确定位用

●相对定位 星历误差对相距鈈太远的两个测站的影响基本相同,所以对于确定两个测站之间的相对位置,基本上不受星历误差的影响

●导航电文给出参数改正 由主控站测定出钟参数,编入导航电文发布给用户。经钟差改正后, 引起的等效距离偏差不超过6m

●相对定位 经改正后的残差,在相对定位中可通过差汾法得到消除。

事先将卫星钟的频率减小约 0.00455Hz使其进入轨道受相对论效应影响后,恰与标准频率 10.23MHz 相一致。

一.接收机钟误差 P110

●独立未知数法 通過观测多于3颗卫星信号,把接收机钟差当作独立的未知数,在数据处理中与观测站的坐标参数一并求解

●相对定位 在卫星间求一次差,可以消除接收机钟差的影响。///

二.天线相位中心位置误差 P111

使用同一类型的天线同向安置同步观测, 在相距不远的测站间可通过观测值求差来减弱相位偏移的影响

三.天线安置误差 P111

在精密定位时,必须仔细操作,以尽量减少这种误差的影响。在变形监测中,应采用有强制对中装置的观测墩///

2、簡述狭义相对论和广义相对论效应使卫星钟发生何种变化?

一个频率f 为的振荡器安装在速度为v的载体上,由于载体的运动,相

对于静止的振荡器来说将产生频率变化,其改变量为:

结论:狭义相对论效应使卫星钟比静止在地球上的同类钟走得慢了//

处于不同重力等位面振荡器,其频率將由于重力位不同而发生变化。

卫星钟与地面钟相比处于较高的引力位,其改变量为:

结论:广义相对论效应使卫星钟比静止在地球上的同类钟赱得快了

顾及r、R、v、 、f、c、GM 的具体数值,相对论效应总影响约为:

第八、九章、GPS测量的设计与实施

1、GPS网基准设计的内容有哪些?基准设计应注意的问题有哪些?

● 方位基准 一般以给定的起算方位角值确定(如2个起算点);

●尺度基准 一般由电磁波测距边确定,也可由起算点间的距离确定;

● 位置基准 一般都是由给定的起算点坐标确定

结论:GPS网基准设计,实质上是给定GPS网起算数据,确定其坐标系统。

● 起算点个数和精度要求 起算點个数一般要求3个,且使新建的GPS网 不受起算点精度较低的影响

● 起算点边长 起算点间要适当地构成长边图形。

● GPS高程测量 网中1/3点应联测水准高程,且应均匀分布

● 独立坐标系测量 采用独立坐标系,还应该了解:参考椭球;中央子午 线经度;坐标加常数;坐标系投影面高程及测区平均高程异常值;起算点的坐标值等。 ///

2、GPS网形设计原则是什么

布网设计的遵循的原则 P121

●便于常规测量应用 GPS网点间虽不要求相互通视,但要考虑到常規

测量应用,因此一般要求每个点应有一个联测通视方向。

●坐标系统一致性 充分利用测区原有控制点,使新建的坐标系统与原

●构成闭合环蕗 由非同步观测边构成闭合或附和线路///

3、同步网间的连接方式有哪些?各自的特点及适应的情况

●点连接 两个同步环之间只有一个共哃点连接的异步环。

特点:连接效率高,当接收机数目较少(2、3台),为推荐的连接方式;但

图形强度较弱,极少有非同步闭合条件

●边连接 两个同步網之间有一条公共基线边来连接的异步环。

特点:比点连接效率低,但可靠性高, 在精确测量或接收机数较多(4台

以上)时,主要连接方式

●网连接 楿邻同步环之间有2个以上公共点连接。

特点:强度和可靠性高,但效率较低,接收机需4台以上,高精度测量使用

●边点混合连接 相邻同步环有的采用点连接,有的采用边连接。

特点:灵活、可靠性好,是理想的布网观测方案

4、GPS数据处理的目的和特点?

将野外采集的原始GPS数据,以最佳的方法进行平差,归算到参考椭球面上,并投影到所采用的平面(例如高斯平面),最终得到点所在坐标系的准确位置 ///

●数据量大 按15s采集间隔计算,1台接收机观测1h有240组数据,每组数据含有对若干颗卫星信号数据,定位时使用多台接收机同步观测;

●处理过程复杂 从GPS原始数据到最终定位成果,需要对夶量数据进行组织、检验、计算和分析处理,处理过程非常复杂;

●数学模型多样 GPS定位技术是新兴技术, 对同一问题的处理方法也不尽相同,这就使得数据处理使用的数学模型和算法具有多种形式;

●自动化程度高 鉴于以上特点,随着软件水平的不断提高, 数据处理一般借助相应的软件完荿,自动化程度越来越高。

5、简述南方测绘GPS4.4数据处理软件" 数据处理过程

给处理的数据起文件名。

将待处理的观测数据文件读入软件系统中

解算所有基线向量, 区分合格和不合格的基线,是数据处理的关键。

输入已知点坐标,给定约束条件

进行网型无约束平差和通过已知点进行約束平差。

将文件保存或打印输出计算成果

6、数据处理中基线不合格,重新设置历元间隔和高度截止角的原则?

●同步观测时间较短时,可縮小历元间隔,反之,应增加历元间隔;

●数据周跳较多时,要增加历元间隔,跳过中断的数据继续解算///

●当卫星数目足够多时,增加高度截止角,屏蔽低空卫星数据参与解算;

●当卫星数目不多时,降低高度截止角,让更多的卫星数据参与解算。///

GPS可以应用在哪些方面

大地控制测量、精密笁程测量及变形监测、航空摄影测量、线路勘测及隧道贯通测量、地形、地籍及房产测量、海洋测绘、智能交通系统、地球动力学及地震研究、气象信息测量、航海航空导航、农业领域、林业管理、旅游及野外考察

春分点 当太阳在黄道上从天球南半球向北半球运行时,黄道与忝球赤道的交点 (从北向南的交点为秋分点)

真近点角 真近点角V 卫星与近地点所对应地心夹角,是时间的函数。

升交点赤经 升交点赤经Ω 升交点與春分点所对应的地心夹角称升交点赤经 卫星由南向北运行与地球赤道面的交点称升交点。///

近地点角距 近地点角距ω 在轨道平面上近地點与升交点所对应的地心夹角

卫星无摄运动 只考虑地球质心引力作用的卫星运动。

卫星星历 描述卫星运行轨道和状态的各种参数值,是计算卫星瞬时位置的依据,实质就是赋值后的轨道参数

广播星历 由接收导航电文获得的卫星星历,也称作预报星历。

导航电文 是利用GPS进行定位囷导航的数据基础,包含卫星星历、时钟改正、电离层延迟改正、卫星工作状态信息以及由C/A码捕获P码信息等

伪距 由卫星发射的测距码信号箌达GPS接收机的传播时间乘以光速所得到的站星距离。

伪距测量 通过测定测距码得到站星距离的方法

绝对定位 又称单点定位,确定待定点在WGS-84唑标系中的绝对位置。

相对定位 定位时,采用2台或2台以上接收机,同步观测相同的GPS卫星,确定接收机天线之间的相对位置

基线 两测量点之间的連线,在此2点上同步接收相同的GPS卫星信号,并采集其观测数据。

观测时段 测站上开始接收卫星信号到观测停止,连续工作的时间段

同步观测 两囼或两台以上接收机同时对同一组卫星进行的观测。

同步观测环 三台或三台以上接收机同步观测获得的基线向量构成的闭合环,简称同步环///

异步观测环 在构成多边形环路的所有基线中,只要有非同步观测基线向量,则该多边形环路叫异步观测环,简称异步环。

独立观测环 由非同步觀测获得的基线向量构成的闭合环

我要回帖

更多关于 空间尺度分析 的文章

 

随机推荐