恒星爆炸与原子核爆炸有什么关系

原恒星_百度百科
关闭特色百科用户权威合作手机百科
收藏 查看&原恒星本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来吧!
原恒星就是处于“原始状态”(处于慢收缩阶段的天体)的恒星。原恒星由“大爆炸”后产生的星际云(星际云很大,直径可达上千光年)演变而来。它是在星际介质中的巨分子云收缩下出现的天体,是恒星形成过程中的早期阶段。对一个太阳质量的恒星而言,这个阶段至少持续大约100,000年。它开始于分子云核心的密度增加,结束于的形成,然后就发展进入主序带。这个阶段由金牛T星-一种恒星风的开始宣告结束,标志着恒星从质量的进入的辐射。阶&&&&段慢收缩状&&&&态原始状态
大爆炸后的宇宙空间充满了大致均匀的星际物质。这些物质中的一些不稳定的因素(主要是引力)慢慢地引起星际云中物质密度的变化,导致一个或几个“引力中心”的出现。这些“引力中心”的作用使周围的物质向其中心坠落。物质以越来越快的速度被吸收,这些物质的引力势能转化为热能,致使原恒星中心的温度持续的升高。当温度达到六七百万度的时候,“质子——质子”的聚变核反应被点燃。当温度升到一千多万度时,恒星中心的核反应稳定地进行。至此,恒星的原恒星阶段结束,主序星阶段开始。
在恒星演化过程中处于极早期阶段的天体。通常把正处在引力收缩阶段的浓密星际物质云叫作原恒星,特别是其中的一种近乎的球状体。但也有人认为球状体的密度还很小,不足以产生引力收缩;而且球状体中的尘埃与气体的比例过大,不能成为原恒星的原料。不少人认为赫比格-阿罗天体、金牛座T型变星、耀星以及一些红外星是原恒星的不同演化阶段或不同形态。
恒星演化早期处在引力收缩阶段的浓密星际物质云。也有人更严格地把原恒星定义为这样一种天体:它的主要能源既不像主序星来自氢燃烧,也不像主序前恒星靠准流体静力学收缩,释放引力能,而是来自下落物质的吸积。恒星孕育和诞生于气体-尘埃云中,难以探测,寻找原恒星成为红外天文学的重要任务。红外天文卫星发现的红外源中,有些可能是仍然在吸积星云物质的真正原恒星。一种最新技术的模拟提供了人们迄今最为详尽的有关宇宙中第一批星球是如何开始存在的画面。这种电脑模拟是由Naoki Yoshida 在和日本的同事研发的,它所模拟的星球形成披露了星球形成前的是如何在早期宇宙中以较简单的物理学方式实际地演变并形成一颗原恒星。原恒星是一种巨大星球的早期阶段。了解这些原始星球是如何演变的非常重要,因为它们的形成以及最终的爆炸为接踵而来的星球的产生提供了种子。它们可能会教导我们有关宇宙中生命和行星起源的有关知识。
这种新的电脑模拟被Volker Bromm 在一则相关的Perspective 中称作“宇宙的Rosetta Stone”,显示了这种原恒星可能会演化为一颗能够合成重的巨大的恒星,其时间不仅仅是在较后世代的星球中,而且还可在宇宙大爆炸发生之后不久。人们需要更强有力的电脑、更多的物理数据及一个更大的范围来进行进一步的演算和模拟,但研究人员希望最终能够将这一模拟扩展到核反应启动的那一点上——即当星状物体变成一颗真正的恒星的那一刻。
也有人更严格地把原恒星定义为这样一种天体:它的主要能源既不像主序星来自氢燃烧,也不像主序前恒星靠准流体静力学收缩,释放引力能,而是来自下落物质的吸积。恒星孕育和诞生于气体-尘埃云中,光学望远镜难以探测,寻找原恒星成为红外天文学的重要任务。发现的红外源中,有些可能是仍然在吸积星云物质的真正原恒星。
大爆炸后的宇宙空间充满了大致均匀的星际物质。这些物质中的一些不稳定的因素(主要是引力)慢慢地引起星际云中物质密度的变化,导致一个或几个“引力中心”的出现。这些“引力中心”的引力作用使周围的物质向其中心坠落。物质以越来越快的速度被吸收,这些物质的引力势能转化为,致使原恒星中心的温度持续的升高。当温度达到六七百万度的时候,“质子——质子”的聚变核反应被点燃。当温度升到一千多万度时,恒星中心的核反应稳定地进行。至此,恒星的原恒星阶段结束,主序星阶段开始。当云气继续收缩时,它的温度会增加。这不是造成的,只是重力原恒星附近的气体分布转换成的热动能。当(或分子)因为在收缩的碎片中而减少至质量中心的距离时,就会导致重力的减少。但是因为总的守恒,因此伴随着重力能量的减少,微粒的动能就必须相对的增加。热动能的增加也会表现在云气温度的增加,云气越收缩温度增加的就越多。
分子间的碰撞经常也可以让它们成为激发状态,然后经由辐射的发射衰变状态。这些辐射都有特定的频率,在这些温度(10到20K)发射的辐射是光谱中的微波或红外线。这些辐射大部分都会由云气中逃逸,因此能防止温度快速的上升。当云气收缩时,分子的数值密度会增加,这终将使得散发的越来越难以逃逸。实际上,气体对这些辐射会变得不透明,并且云气内的温度将开始更迅速的上升。
云气在红外线变得不透明的事实,也使我们难以直接观测到云气内发生的变化。我们必须使用波长更长的无线电观察还能逃逸出来的辐射。另外,理论和计算机的数值模拟也是了解这个阶段所必须的。直到周围的物体落入中心的凝块,原恒星的阶段才算开始。而当周围的气体和都已经消散,的过程也都停止,这颗原恒星才会被考虑是是前。
观测显示巨型分子云近似在维里平衡的状态—总体上,星云中的重力束缚能被星云中构成分子的动能平衡。任何对云气的干扰都可能扰乱它的,干扰的例子可以是来自超新星的震波;星系内旋臂的密度波,或是与其他云气的接近或碰撞。无论扰动的来源是何种,只要够大就可能在云气内特定的地区造成重力大于热动能的重力变化。
英国的物理学家詹姆士·琼斯曾详细的讨论过上述的现像。他能显示,在适当的情况下,一团云气或其中的一部分,将开始如上所述的收缩。他导出了一条公式可以计算云气所需要的大小和,以及在重力收缩开始前的温度和密度。这个就是所知的琼斯质量,可以由下式得到:琼斯质量计算式 此处 n是特定区域的密度,m是在云气内气体平均的质量,而T是气体的温度。
恒星演化早期处在引力收缩阶段的浓密星际物质云。也有人更严格地把原恒星定义为这样一种天体:它的主要能源既不像主序星来自氢燃烧,也不像主序前恒星靠准流体静力学收缩,释放引力能,而是来自下落物质的吸积。恒星孕育和诞生于气体-尘埃云中,光学望远镜难以探测,寻找原恒星成为红外天文学的重要任务。红外天文卫星发现的红外源中,有些可能是仍然在吸积星云物质的真正原恒星。
在恒星演化过程中处于极早期阶段的。通常把正处在引力收缩阶段的浓密星际物质云叫作原恒星,特别是其中的一种近乎球形的球状体。但也有人认为球状体的密度还很小,不足以产生引力收缩;而且球状体中的尘埃与气体的比例过大,不能成为原恒星的原料。不少人认为赫比格-阿罗天体、金牛座T型变星、耀星以及一些红外星是原恒星的不同演化阶段或不同形态。
原恒星的形成是天体领域中最为基础性的问题,因为它是解答其他许多问题所必须知道的常识。这些问题包括恒星系的形成、太阳系的形成等问题。这一物理过程涉及到了某一包含有不规则的部分离子化粒子的湍流行为。当前核心的争论主要围绕着湍流开始消退的时间,以及磁场和湍流所起到的作用的重要程度。诸如毫米波照相机等新的技术进步使我们可以观察的温度及密度分布,并可以让我们统计分析在自身引力作用下正在崩溃及处于崩溃边缘的天体的寿命。同时,计算机计算能力的提高,使得我们可以使用包含磁场及效应的更为复杂的模型。 一团、稀疏、有强磁场并高速旋转的气团(就是所谓的星际云),要降低温度、磁场变弱、旋转变慢、最后收缩到形成恒星,有哪些因素起作用呢。
首先是引力。没有引力,绝不会形成恒星的。原恒星形成的过程就是引力战胜所有其他阻碍使得气团收缩为致密的恒星的过程。一团密度均匀、温度相同而又相对静止的气团,它们之间的自引力必然相互抵消,不会发生收缩。因此,要形成恒星就要使气团内有的地方密度高,有的地方密度低。但同时我们知道,密度高的气体要往密度低的地方流动。密度高的地方的引力如果能够压倒这种向密度低区域流动的作用,那么就能收缩形成恒星。这个在上有一个著名的判据:Jeans不稳定性。如果密度相差的程度(天文学上用密度的来表示,这里是功率谱的波长)超过了Jeans波长,那么肯定会发生坍缩。这个Jeans不稳定性有一个简单的物理解释。大家知道,总包括和势能,其中动能是一个正值,而为负值。如果密度相差的程度使得总为负值,那么气体的热运动就会被引力所压倒,最后坍缩。
其次是磁场。星际云中大部分是,比如氢原子,即不带。但也有部分带的离子等存在。如果星际云中有磁场,那么这些带电粒子的运动就要受到影响。在磁场中运动的导电流体,根据法拉第,将在随流体运动的回路里产生。如果任意运动回路中的不变,磁力线必然随流体一起运动,犹如磁力线与流体牢固地粘在一起。这个现象称为磁场的“冻结”效应,即磁场与流体完全冻结起来。这时磁场所满足的称为“冻结方程”。
这样,引力就要克服这个冻结效应才能继续坍缩下去。而这个磁场也有一种机制会逐渐减弱,这种机制叫“双极扩散”,磁场为阻止的主要机制的理论在过去几十年里一直是恒星形成理论的基础,被新理论取代。还有湍流。湍流其实只是一种的传递方式。湍流中的能量传递特点是从最大的传到次大的涡流,最后传到最小的涡流。提出超音速的、可压缩的湍流是阻止的最主要的机制,目前这种理论是最热门也是最成功的。1、原恒星是非常重要的。原恒星是的主要来源,是重于氢和氦的元素的主要来源,也是我们获取宇宙信息的主要来源。要形成我们所在的丰富的重元素的环境,需要多次恒星的诞生和灭亡,也就是说,我们其实都是恒星的。
我们研究宇宙,理解其演化,这些信息大部分都来自于宇宙辐射。
在可见光波段,几乎所有的光都来自于恒星(太阳、遥远的星星),月亮和其他行星的光来自于太阳光的反射。而星空中那些黑暗的部分,包括星际尘埃等,阻止通过,因此看起来是黑的,而根本就和光没有接触。但它们对于恒星发出的我们肉眼看不见的各种波段的辐射,特别是波段、毫米波段和远红外波段则是透明的,也就是我们能够接收到这些辐射并研究它们。
研究恒星的形成对于人类理解宇宙的形成和宇宙中的辐射信息有重要意义。原恒星对于理解星系构成有重要作用。质量是恒星演化的最重要参数,大质量恒星中心压力大、寿命短、亮,小质量恒星则相反。由于大质量恒星的寿命短,它们的演化还是受产生它们的因素的控制,星系对其影响不大,因此研究这些恒星的在何种条件下形成就能知道的构成。恒星经常被发现是成群的,而且看似同一个时间形成的,也就是所知道的星团。这可以被解释为当云气收缩时他的密度是不均匀的。事实上,第一个指出这一点的是理查德·拉森,当恒星在巨分子云内形成时,可以全面的观察到在云气内所有尺度上的湍流速度都增加了。这些湍流的速度产生震波,通常会在巨分子云尺度和密度的广大范围内引发丝状和团块的结构。这个过程被称为湍流碎裂。一些团块结构超过了琼斯质量并且重心变得不稳定,可能会在被分颗成单一或多星的系统。
无论原因为何,云气因碎裂而变得较小,密度较高的区域可能会持续再成为更小的区域,结果是成为原恒团。这与星团是普遍存在的观测现象一致。&原恒星&这个字眼是在1889年的出版品上才首度出现的。
& protostar acquiring two condensations will become a binary and be stable thereafter [..] Whether a binary or a single star results depends largely on the total angular momentum of the protostar&
&原恒星获得两个浓缩体将发展成为联星并且是稳定的。其结果是联星或单独的恒星,取决于原恒星的总角动量 。,,,,,
  恒星:是大质量、明亮的球。
,,,,,,赫比格Ae/Be星
,,,,渐近巨星分支,,,,
UBV色,,,,,,微观湍流,,,,
,,,,,,
,,,,,,,,
新华网巴黎4月12日电(记者李学梅)欧洲航天局12日宣布,该机构发射的“赫歇尔”卫星日前拍下了宇宙中正在形成的巨型原恒星的图像,这些巨型原恒星每一颗的质量都超过太阳的10倍。
欧航局当天发表公报说,“赫歇尔”卫星拍下了距地球5000光年的蔷薇星云和位于它周边的一片范围更大云团的图像。这个云团遍布尘埃和气体等物质,足以形成一万个与太阳类似的恒星。从图像上可以看到,云团色彩绚烂,极为壮观。公报称,不同的颜色代表着尘埃的不同温度,其浮动范围从零下263摄氏度(仅比绝对零度——零下273摄氏度高出10摄氏度)到零下223摄氏度。
欧航局表示,图像中的亮斑正是巨型原恒星,即处于极早期演化阶段的恒星。它们被尘埃包裹起来,宛如一个个蚕蛹。未来,这些庞然大物都有可能形成质量超过太阳10倍的巨大恒星。此外,图像中还有一些较小的亮点,它们是质量较小的原恒星,与太阳不相上下。
公报称,这是“赫歇尔”卫星首次拍下如此之巨的原恒星,对研究巨型恒星的形成过程十分重要。
“赫歇尔”卫星是人类有史以来发射的体积最大的远红外线太空望远镜,主要用于研究星体和星系的形成过程。2009年5月,它与宇宙辐射探测卫星“普朗克”一起从法属圭亚那库鲁航天中心发射升空。
新手上路我有疑问投诉建议参考资料 查看分子和原子的区别是什么?
分子和原子的区别是什么?
09-05-10 & 发布
本质区别是:在化学变化中原子不可再分,分子可以再分 分子是由原子组成的,分子是化学反应的最小的粒子,而原子是不能通过化学反应再分解的
请登录后再发表评论!
分子是由原子组成的,分子是化学反应的最小的粒子,而原子是不能通过化学反应再分解的
请登录后再发表评论!
分子是独立存在而保持物质化学性质的最小粒子。分子有一定的大小和质量;分子间有一定的间隔;分子在不停的运动;分子间有一定的作用力;分子可以构成物质,分子在化学变化中还可以被分成更小的微粒:原子.分子可以随着温度的变化,在3态中互相转换。同种分子性质相同,不同种分子性质不同。最小的分子是氢分子的同位素,是没有中子的氢分子,称为氕,质量是1.大的分子其相对分子质量可高达几百万以上。相对分子质量在数千以上的分子叫做高分子。分子是组成物质的微小单元,它是能够独立存在并保持物质原有的一切化学性质的最小微粒.分子一般由更小的微粒原子构成.按照组成分子的原子个数可分为单原子分子,双原子分子及多原子分子;按照电性结构可分为有极分子和无极分子.不同物质的分子其微观结构,形状不同,分子的理想模型是把它看作球型,其直径大小为10^-10m数量级。分子质量的数量级约为10^-26kg。目录 [隐藏] 1 基本简介 2 高分子介绍 3 分子的运动 4 分子常数 5 分子的寿命 6 其它方面 7 相关词条 8 相关链接
分子-基本简介     分子结构图 分子是物质中能够独立存在的相对稳定并保持该物质物理化学特性的最小单元。分子由原子组成,原子通过一定的作用力,以一定的次序和排列方式结合成分子。以水分子为例,将水不断分割下去,直至不破坏水的特性,这时出现的最小单元是由两个氢原子和一个氧原子组成的水分子。它的化学式写作H2O。水分子可用电解法或其他方法再分为两个氢原子和一个氧原子,但这时它们的特性已和水完全不同了。有的分子只由一个原子构成,称单原子分子,如氦和氩等分子属此类,这种单原子分子既是原子又是分子。由两个原子构成的分子称双原子分子,例如氧分子(O2),由两个氧原子构成,为同核双原子分子;一氧化碳分子(CO),由一个氧原子和一个碳原子构成,为异核双原子分子。由两个以上的原子组成的分子统称多原子分子。分子中的原子数可为几个、十几个、几十个乃至成千上万个。例如二氧化碳分子(CO2)由一个碳原子和两个氧原子构成。一个苯分子包含六个碳原子和六个氢原子(C6H6),一个猪胰岛素分子包含几百个原子,其分子式为C255H380O78N65S6。物质中能独立存在并保持其组成和一切化学特性的最小微粒。分子是由原子用化学键结合在一起而构成的,原子之间的作用力比较强,但分子之间的作用力却相当弱,这种力称为范德华力,所以分子在一定程度上表现出独立粒子的行为。分子可以由同种原子构成,也可以由不同种类的原子构成。最简单的分子只含有一个原子,如稀有气体的分子。大多数非金属构成的分子为双原子分子,如氮、氧等分子。化合物是由不同元素组成的分子,为数最多。最早提出比较确切的分子概念的化学家是意大利A.阿伏伽德罗,他于1811年发表了分子学说,认为:“原子是参加化学反应的最小质点,分子则是在游离状态下单质或化合物能够独立存在的最小质点。分子是由原子组成的,单质分子由相同元素的原子组成,化合物分子由不同元素的原子组成。在化学变化中,不同物质的分子中各种原子进行重新结合。”自从阿伏伽德罗提出分子概念以后,在很长的一段时间里,化学家都把分子看成比原子稍大一点的微粒。1920年,德国化学家H.施陶丁格开始对这种小分子一统天下的观点产生怀疑,他的根据是:利用渗透压法测得的橡胶的分子量可以高达10万左右。他在论文中提出了大分子(高分子)的概念,指出天然橡胶不是一种小分子的缔合体,而是具有共价键结构的长链大分子。高分子还具有它本身的特点,例如高分子不像小分子那样有确定不变的分子量,它所采用的是平均分子量。随着分子概念的发展,化学家对于无机分子的了解也逐步深入,例如氯化钠是以钠离子和氯离子以离子键互相连接起来的一种无限结构,很难确切地指出它的分子中含有多少个钠离子和氯离子,也无法确定其分子量,这种结构还包括金刚石、石墨、石棉、云母等分子。在研究短寿命分子的方法出现以后,例如用微微秒光谱学研究方法,测得甲基(CH3·)的寿命为10-13秒,不但寿命短,而且很活泼,其原因是甲基的价键是不饱和的,具有单数电子的结构。这种粒子还有CH·、CN·、HO,它们统称为自由基,仅具有一定程度的稳定性,很容易发生化学反应,由此可见自由基也具有分子的特征,所以把自由基归入分子的范畴。还有一种分子在基态时不稳定,但在激发态时却是稳定的,这种分子被称为准分子。从分子水平上研究各种自然现象的科学称为分子科学,例如动物学、遗传学、植物学、生理学等正在掌握各种形式的不同种类分子的性能和结构,由分子的性能和结构设计出具有给定性能的分子,这就是所谓分子设计。在化学变化中,分子会改变,而原子不会改变。分子-高分子介绍     模拟一条高分子链 高分子又称高分子聚合物,高分子是由分子量很大的长链分子所组成,高分子的分子量从几千到几十万甚至几百万。 而每个分子链都是由共价键联合的成百上千的一种或多种小分子构造而成。高分子的分类有多种,按来源可分为 天然高分子、天然高分子衍生物、合成高分子三大类;根据用途则可分为合成树脂和塑料、合成橡胶、合成纤维等;按热行为可分为热塑性和热固性聚合物;按主链结构可分为碳链、杂链、和元素有机三类;另外根据工业产量和价格还可分为通用高分子、中间高分子、工程塑料以及特种高分子等等。 高分子组成:一个大分子往往由许多简单的结构单元通过共价键重复键接而成。合成聚合物的原料称为单体,通过聚合反应,单体才转变成大分子的结构单元。由一种单体聚合而成的聚合物称为均聚物,由两种以上单体共聚而成的聚合物则称为均聚物。特点: 高分子与低分子化合物相比较,分子量非常高。由于这一突出特点,聚合物显示出了特有的性能,表现为“三高一低一消失”。既是:高分子量、高弹性、高黏度、结晶度低、无气态。因此这些特点也赋予了高分子材料(如复合材料、橡胶等)高强度、高韧性、高弹性等特点。高分子类型:高分子化合物中的原子连接成很长的线状分子时,叫线型高分子。这种高分子在加热时可以熔融,在适当的溶剂 中可以溶解。 高分子化合物中的原子连接成线状并带有较长分支时,叫支链型高分子。这种高分子也可在加热时熔融,也可在适当的溶剂中溶解。如果高分子化合物中的原子连接成网状时,则叫网状高分子,这种高分子由于一般都不是平面 结构而是立体结构,所以也叫体型高分子。体型高分子加热时不能熔融,只能变软和弹性增大;不能在任何溶剂中溶解,只能在某些适当的溶剂中溶胀。 分子-分子的运动     分子运动演示仪 分子的存在形式可以为气态、液态或固态。分子除具有平移运动外,还存在着分子的转动和分子内原子的各种类型的振动。分子内部的振动和转动的幅度,比气体和液体中分子的平动和转动幅度小得多,分子的这种内部运动,并不会破坏分子的固有特性。通常所说的分子结构,是这些原子处在平衡位置时的结构。分子的内部运动,决定分子光谱的性质,因而利用分子光谱,可以研究分子内部运动情况。分子的构型和构象相同成分的分子中,若原子的排列次序和排列方式不同,可形成不同的分子。例如C2H6O分子可以排列为乙醇分子,也可以排列为二甲醚分子,它们的结构式所示分子的结构式反映分子内部原子的排列次序。组成分子的成分相同,而排列次序不同,形成两种或两种以上的分子,这种现象称为同分异构现象,这些成分相同结构不同的分子称为同分异构体。分子的结构式一般只反映分子中原子的连接次序,而决定分子形状的键长和键角的数值,需要通过实验测定。反映分子中原子在空间的排列次序与分布称为分子的构型。分子中原子间的化学键长与键角则称为立体构型参数。对有些分子,当它的构型确定时,分子的形状大小也就确定了,例如水分子、甲烷分子、苯分子等。有些分子在一定的构型条件下,分子的形状还会随原子的相对位置而改变。例如乙烷(C2H6)分子在相同的连接次序及双原子分子纯转动光谱相同的键长键角数据下,还可以有交叉式(图3之a)和重叠式(图3之b)两种不同形状,这种情况称为分子的构象。不同构象的分子,能量有一定差别,它们的对称性亦不同,对于乙烷分子,常温下交叉式的构象比较稳定。分子-分子常数     分子 在一定状态下,分子的形状和大小、结构和性质都是一定的。研究分子的力学性质、热学性质、电学性质以及分子光谱等实验数据,可以获得分子的平均运动速度、碰撞频率、分子直径(按球体直径计算)、电离电位(即中性分子最低能态和离子的最低能态的能量差)、离解能(即分子最低能态分解为原子基态的能量差)、核间距离(即键长)、分子振动的力常数、偶极矩等物理量,还可以给出描述分子振动和转动状态的物理量数据。这些数据统称为分子常数,是描述分子结构和物理性质的重要数据。具体数值,见双原子分子纯转动光谱。分子质量原子通过化学键结合成分子,分子有确定的质量。分子的质量与12C原子质量的1/12之比叫做分子量。通常的碳元素由12C、13C、14C组成,因此碳的原子量为12.011。氢的原子量为1.088,氧的原子量为15.999,而乙醇(C2H6O)的分子量为2×12.011+6×1.088+1×15.999=46.069克。0.012千克的12C含12C原子6.^23个,称它为1摩尔(或1克原子);同理,46.069克的乙醇含有同样数目的乙醇分子,称为1摩尔(或1克分子)的乙醇。通常把分子量大于10000的分子称为高分子,当然这个界限并不是绝对的。分子量大到一定的程度,分子会出现一些特有的性质。高分子在工业上和生物化学上十分重要,例如塑料、橡胶、油漆、木材、蛋白质、核酸、多糖等等都是高分子材料。分子的分子量可通过实验测定。测定分子量的方法很多,其中以质谱法最优越,现代的高分辨质谱仪测量分子量的精度可高于质量数的万分之一。其他如气体状态法,可测定气体分子的分子量,X射线衍射法可测量晶体的分子量,溶液渗透压法主要应用于测定高分子的分子量等。分子-分子的寿命     分子 处于基态的分子在光、热、电等形式能量的作用下,可能改变结构,形成受激态(或称激发态)分子。受激态分子存在的时间往往很短,有的寿命只有微秒数量级或更短,故又称为准分子。利用闪光光解和分子光谱等实验,已对若干准分子的寿命、结构以及其他分子常数等进行过研究。从射电天文学和分子光谱学的研究得知,星际之间存在许多分子,如OH、CN、SiO、CS、HCN、SO、CH、N2H、NS、HCO等,这些分子在地球上是极不稳定的,但却能稳定地存在于星际空间,这是因为它们处于分子极为稀薄的天空之中,在不受其他分子干扰的状态下,可以长期存在。分子-其它方面     分子 分子是独立存在而保持物质化学性质的最小粒子。分子有一定的大小和质量;分子间有一定的间隔;分子在不停的运动;分子间有一定的作用力。同种分子性质相同,不同种分子性质不同。最小的分子是氢分子,其相对分子质量为2,大的分子其相对分子质量可高达几百万以上。相对分子质量在数千以上的分子叫做高分子。补充内容一滴水是由(22个0)个分子组成的,分子在光学显微镜下是看不见的。固体中分子间的间距较小液体中分子间的距离比固体中分子间的距离大气体中分子间的距离最大在化学变化中分子是能单独存在、并保持由分子构成的物质的化学性质的最小粒子。一个分子是由多个原子在共价键中透过共享电子连接一起而形成。它可以由相同化学元素的原子组成,如氧气O2;也可以是不同的元素,如水分子H2O。抽象地,一个单一原子也可当作是一分子(单原子分子),但在实际使用时,“分子”指的通常是多个原子的化学化合物。原子在某一元素的分子内的数目叫作该元素的原子数。在气体元素中,氢(H2)、氮(N2)、氧(O2)、氟(F2)和氯(Cl2)的原子数是2。稀有气体(如氩Ar)是1。固体元素中,黄磷(P4)原子数是4,硫(S8)的是8。所以,氩(Ar)是单原子,氧气(O2)是双原子的,臭氧(O3)则是三原子的。由分子组成的物质叫分子化合物。大部分的分子太细小,无法用肉眼看见,但也有例外,如DNA,ANA——高分子化合物的一种。实验式:分子的一个特征就是组成化合物的元素比例总是整数。例如,纯水中氢和氧的比例总是2:1,乙醇中碳、氢、和氧总是以2:6:1的比例组合。利用各种元素的比例和化学符号就可以组成分子的实验式。但是单凭实验式是无法决定分子的类别——如乙烯的实验式就与丙烯一样(同是CH2),尽管这两个分子的原子数或质量都不同。化学式:要反映分子中各种原子的真实数量,就要利用化学式。例如乙烯和丙烯的化学式分别为C2H4和C3H6。但化学式相同并不代表两个分子是一样的物质,因为分子中原子的排列和组合,亦即分子的结构,也是决定分子性质的要素。同样的原子但排列不同的分子叫同分异构体。同分异构体有同一化学公式但因不同结构的关系有不同的特质。立体异构体是一种特别的异构体,它们可以有很相似的物理及化学性质,而同时有十分不同的生物化学性质。由量子力学的定律的演算,分子有固定的平衡几何状态——键的长度和之间的角度。纯物质都是由相同几何结构的分子组合而成的。分子的化学式和结构是决定它的特质,尤其是它的化学活性的两要素。原子(atom)构成化学元素的基本单元和化学变化中的最小微粒,即不能用化学变化再分的微粒。原子由带正电的原子核和带负电的核外电子组成,原子核非常小,它的体积约为整个原子体积的10-15,但原子质量的 99.95%以上都集中在原子核内。质量很小的电 子在原子核外的空间绕核作有规 律的高速运动,原子核和核外电子相互吸引,组成中性的原子。在科学昌盛的20世纪,科学家已经能够利用场发射显微镜直接观察到原子图像,这是证明原子存在的最有力的证据。目录 [隐藏] 1 概述 2 特点 3 构成 4 性质 5 发展史 6 历史及意义 7 现状 8 参考文献 9 参考资料
原子-概述    原子近代原子概念是在1803年由英国J.道尔顿提出的,主要内容有3点:1.一切化学元素都是由不能再分割、不能毁灭的微粒组成的,这种微粒称为原子。2.同一种元素的原子的性质和 质量都相同 , 不同元素的原子的性质和质 量都不同。3.两种不同元素的化合作用是一种元素的一定数目的原子与另一种元素的一定数目的原子结合而形成化合物的各个分子。自从放射性元素发现以后,原子是可以蜕变和分裂的,因此,道尔顿关于原子不可分割的说法应该加以修正,只能说在普通的化学反应中,原子不可分。同位素的发现也改变了同一种元素的原子的性质和重量都相同的说法,因为同一种元素的各种同位素的质量是不同的。1913年英国 H.G.J. 莫塞莱提出原子序数概念,指出同一种元素的各原子的质量可能不等,由此可见,一种元素所有的原子的基本特征仍是原子序数。原子-特点    原子,是化学元素最小组成单元,是组成分子和物质的基本单元,它具有该元素的化学性质。原子由带正电荷的原子核和在原子核的库仑场中运动的带负电的电子组成。核电荷数或原子序数Z,是组成原子核的质子数。原子是非常微小的粒子。假设原子是球体的话,典型原子的直径大约是10-8厘米, 质量大约是10-23克。原子的概念最初是由英国化学家约翰?道尔顿提出的。1803年他发表“原子说”,提出所有物质都是由原子构成。原子-构成    原子的中心是一个微小的由核子(质子和中子)组成的原子核,占据了整个原子的绝大部分质量。原子核中的质子和中子紧密地堆在一起,因此原子核的密度很大。质子和中子的质量大至相等,中子略高一些。质子带正电荷,中子不带电荷,是电中性的。所以整个原子核是带正电荷的。原子核即使和原子相比,还是非常细小的——比原子要小100,000倍。原子的大小主要是由最外电子层的大小所决定的。如有原子是一个足球场,那原子核就是场中央的一颗绿豆。所以原子几乎是空的,被电子占据著。原子-性质    放射性衰变是某些原子核(如铀、钍、镭-226、钾-40等)固有的核特征电子是带负电荷的。它们远比质子和中子轻,质量只有质子的约1/1836。它们高速地围著原子核运转。电子围绕原子核的轨道并不都一样。在一颗电中性的原子中,质子和电子的数目是一样的。另一方面,中子的数目不一定等于质子的数目。带电荷的原子叫离子。电子数目比质子小的原子带正电荷,叫阳离子。相反的原子带负电荷,叫阴离子。金属元素最外层电子一般小于四个,在反应中易失去电子,趋向达到稳定的结构,成为阳离子,非金属元素最外层电子一般多于四个,在化学反应中易得到电子,趋向达到稳定的结构,成为阴离子。原子序决定了该原子是那个族或那类元素。例如,碳原子是那些有6颗质子的原子。所有相同原子序的原子在很多物理性质都是一样的,所显示的化学反应都一样。质子和中子数目的总和叫质量数。只有94种原子是天然存在的每种原子都有一个名称,每个名称都有一个缩写。俄国化学家门捷列夫根据不同原子的化学性质将它们排列在一张表中,这就是元素周期表。为纪念门捷列夫,第101号元素被命名为钔。首11种原子(或元素)依次为氢、氦、锂、铍、硼、碳、氮、氧、氟、氖 和 钠。它们的简写是H、He、Li、Be、B、C、N、O、F、Ne、Na。原子-发展史    德谟克列特原子结构发展史前400年,希腊哲学家德谟克列特提出原子的概念。 1803年,英国物理学家约翰?道尔顿提出原子说。 1833年,英国物理学家法拉第提出法拉第电解定律,表明原子带电,且电可能以不连续的粒子存在。 1874年,司通内建议电解过程被交换的 粒子叫做电子。1879年,克鲁克斯从放电管(高电压低气压的真空管)中发现阴极射线。 1886年,哥德斯坦从放电管中发现阳极射线。 1897年,英国物理学家汤姆生证实阴极射线即阴极材料上释放出的高速电子流,并测量出电子的荷质比。e/m=1. 库仑/克。 1909年,美国物理学家密立根的油滴实验测出电子之带电量,并强化了“电子是粒子”的概念。 α粒子散射实验1911年,英国物理学家卢瑟福的α粒子散射实验,发现原子有核,且原子核带正电、质量极大、体积很小。其条利用(粒子(即氦核)来撞击金箔,发现大部分(99.9%)粒子直穿金箔,其中少数成大角度偏折,甚至极少数被反向折回(十万分之一)。 1913年,英国物理学家莫塞莱分析了元素的X射线标识谱,建立原子序数的概念。 1913年,汤姆生之质谱仪测量质量数 , 并发现同位素。1919年,拉塞褔发现质子。其利用α粒子撞击氮原子核与发现质子,接著又用α粒子撞击棚 (B) 、氟 (F) 、铝  、磷 (P) 核等也都能产生质子,故推论“质子”为元素之原子核共有成分。 1932年,英国物理学家乍得威克利用α粒子撞击铍原子核,发现了中子。 1935年,日本物理学家汤川秀树建立了介子理论。原子-历史及意义    物理学家——道尔顿道尔顿提出原子论,标志着近代化学发展的开始。因为化学作为一门重要的自然科学,它所要说明的现象本质正是原子的化合与化分。道尔顿的学说已抓住了这一核心和本质,主张用原子的化合与化分来说明各种化学现象和化学定律间的内在联系。因此无论从广度和深度上说都是更加超过了燃烧的氧化学说。要了解道尔顿的原子学说的提出,要溯源至古希腊时期的原子学说。古希腊的哲学家留基伯首先提出了关于原子的学说,后经他的学生德谟克利特的进一步 发展,形成了欧洲最早的朴素唯物主义的原子论,德谟克利特认为:宇宙万物是由世界上最微小的、坚硬的、不可入、不可分的物质粒子构成的,他将这种粒叫作“原子”。他认为,原子在性质上相同,但在形状大小上却是多种多样的。万物之所以不同,就是由于万物本身的原子在数目、形状和排列上各有不同,就是由于万物本身的原子在数目、形状和排列上各有所不同。并且认为,原子总在不断运动,运动是原子本身所因有的性质。无数的原子在空间中不断运动、互相碰撞而形成世界及其中的事物。月、日、星辰是由原子构成的,甚至人的灵魂也是由原子构成的。由此可见,德谟克利特的原子论论证了世界的物质性,对自然界的本质提出了大胆而有创造性的臆测,比较深刻地说明了物质结构,肯定了运动是物质的属性,因而具有重要的意义。原子-现状    红超巨星的剖面图显示出核合成和元素的形成核合成稳定的质子和电子在大爆炸后的一秒钟内出现。在接下来的三分钟之内,太初核合成产生了宇宙中大部分的氦、锂和氘,有可能也产生了一些铍和硼。在理论上,最初的原子(有束缚的电子)是在大爆炸后大约380,000 年产生的,这个时代称为重新结合,在这时宇宙已经冷却到足以使电子与原子核结合了.自从那时候开始,原子核就开始在恒星中通过核聚变的过程结合,产生直到铁的元素。地球大部分组成地球及其居民的原子,都是在太阳系刚形成的时候就已经存在了。还有一部分的原子是核衰变的结果,它们的相对比例可以用来通过放射性定年法决定地球的年龄。大部分地壳中的氦都是α衰变的产物.地球上有很少的原子既不是在一开始就存在的,也不是放射性衰变的结果。碳-14是大气中的宇宙射线所产生的。有些地球上的原子是核反应堆或核爆炸的产物,要么是特意制造的,要么是副产物。在所有超铀元素──原子序数大于92的元素中,只有钚和镎在地球中自然出现理论形式虽然原子序数大于82(铅)的元素已经知道是放射性的,但是对于原子序数大于103的元素,提出了“稳定岛”的概念。在这些超重元素中,可能有一个原子核相对来说比其它原子核稳定。最有可能的稳定超重元素是Ubh,它有126 个质子和184 个中子。每一个粒子都有一个对应的反物质粒子,电荷相反。因此,正电子就是带有正电荷的反电子,反质子就是与质子对等,但带有负电荷的粒子。不知道什么原因,在宇宙中反物质是非常稀少的,因此在自然界中没有发现任何反原子。然而,1996年,在日内瓦的欧洲核子研究中心,首次合成了反氢──氢的反物质。把原子中的质子、中子或电子用相等电荷的其它粒子代替,可以形成奇异原子。例如,可以把电子用质量更大的渺子代替,形成渺子原子。这些类型的原子可以用来测试物理学的基本预言。
请登录后再发表评论!

我要回帖

更多关于 原子核爆炸 的文章

 

随机推荐