Many scientists are now thinking of m【】 thesql server computee...

75Scientific Thinking in Young Children
上亿文档资料,等你来发现
75Scientific Thinking in Young Children
ScientificThinkinginYoun;Science337,);;DOI:10.1126/science.1223;Thiscopyisforyourpersona;Permissiontorepublishorr;Thefollowingresourcesrel;www.sciencemag.org(thisi;Updated
 Scientific Thinking in Young Children: Theoretical Advances,Empirical Research, and Policy ImplicationsAlison GopnikScience 337, );DOI: 10.1126/science.1223416This copy is for your personal, non-commercial use only.Permission to republish or repurpose articles or portions of articles can be obtained byfollowing the guidelines here.The following resources related to this article are available online atwww.sciencemag.org (this information is current as of October 6, 2012 ):Updated information and services, including high-resolution figures, can be found in the onlineversion of this article at:http://www.sciencemag.org/content/337/.full.htmlSupporting Online Material can be found at:http://www.sciencemag.org/content/suppl//337..DC1.htmlA list of selected additional articles on the Science Web sites related to this article can befound at:http://www.sciencemag.org/content/337/.full.html#related This article cites 29 articles, 8 of which can be accessed free:http://www.sciencemag.org/content/337/.full.html#ref-list-1 This article appears in the following subject collections:Psychologyhttp://www.sciencemag.org/cgi/collection/psychologyScience (print ISSN ; online ISSN ) is published weekly, except the last week in December, by theAmerican Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright2012 by the American Association for the Advancement of S all rights reserved. The title Science is aregistered trademark of AAAS.Downloaded from www.sciencemag.org on October 6, 2012If you wish to distribute this article to others, you can order high-quality copies for yourcolleagues, clients, or customers by clicking here.ScientificThinkinginYoungChildren:TheoreticalAdvances,EmpiricalResearch,andPolicyImplicationsAlisonGopnikNewtheoreticalideasandempiricalresearchshowthatveryyoungchildren’slearningandthinkingarestrikinglysimilartomuchlearningandthinkinginscience.Preschoolerstesthypothesesagainstdataandtheylearnfromstatisticsandinformalexperimentation,andfromwatchingandlisteningtoothers.ThemathematicalframeworkofprobabilisticmodelsandBayesianinferencecandescribethislearninginpreciseways.Thesediscoverieshaveimplicationsforearlychildhoodeducationandpolicy.Inparticular,theysuggestboththatearlychildhoodexperienceisextremelyimportantandthatthetrendtowardmorestructuredandacademicearlychildhoodprogramsismisguided.hirtyyearsago,theideathat2-year-oldsthinklikescientistswouldhaveseemedabsurd.JeanPiaget,thegreatpioneerofcognitivedevelopment,claimedthatpreschoolers’thinkingwasjusttheoppositeofscientificthink-ing.Preschoolerswereirrational,illogical,“pre-causal,”andlimitedtothehereandnow(1).Theseideasinformedbotheducationandpolicy.Theseclaimshaveturnedouttobewrong.Severalwavesofempiricalworkhaveshownthateveninfantsandveryyoungchildrenhaveintuitivetheoriesoftheworldaroundthem.Morerecently,mathematicalmodelsoflearninghavebeendeveloped.Empiricalresearchin-formedbythosemodelsshowsthatearlylearningisalsoremarkablysimilartoscientificinduction(Fig.1).Duringthe1980sand1990s,researchersdis-coveredthatveryyoungchildrenhaveabstract,structured,coherent,causalrepresentationsoftheworldaroundthem―representationsthataresim-ilartoscientifictheories.Theyusethoserepre-sentationstomakewide-rangingnewpredictions.Theserepresentationsappeartobeinplaceevenininfancy,butitisparticularlyclearthatpre-schoolershaveintuitivetheoriesofthephysical,biological,psychological,andsocialworld(2C4).Newmethodsledtothisfirstrevolutioninourunderstandingofdevelopment.Theadventofvideorecording,andstrikingexperimentalingenuity,ledtoafloodofresultsthatshowedsophisticatedknowledgeineventheyoungestinfants.Bystudyingwhatbabieslookedat,reachedfor,orimitated,researcherscouldshowthateveninfantsunderstandbothphysicalob-jectsandotherpeople[e.g.,(3,5)].Piagettriedtoassesspreschoolchildren’sknowledgebyask-ingthemopen-endedquestionsabouthypotheticalscenarios.Butpreschoolersshowmuchmoretweenstimuli.Associativelearningappearstobeverydifferentfromthehypothesistestingandex-perimentationofscience.Inthepast10years,however,theoreticalandempiricalresearchhasbeguntoshowthatchil-dren’slearningmechanismsdoindeedresem-blethebasicinductiveprocessesofscience.Wenowhaveamorepreciseandformaltheoryofchildren’slearningmechanisms,derivedfromideasaboutprobabilisticmodelsandBayesianlearningmethodsthatoriginatedincomputersci-ence,statistics,andphilosophyofscience.ProbabilisticModelsPhilosophyofscience,artificialintelligence,anddevelopmentalpsychologyallfacethesamefundamentaldilemma.Asadults,weseemtohavehighlystructured,abstract,coherentknowl-edgeoftheworldaroundus.Thisknowledgeallowsustomakewide-rangingpredictionsandinferences.Butwealsoseemtolearnthathighlystructuredknowledgefromthecontingent,con-crete,probabilisticevidenceofoursenses.Howcanthisbe?Traditionally,philosophersandpsy-chologistshaverespondedtothisdilemmaintwoways.“Nativists”havearguedthatthisab-stractstructuremustbeinplaceinnatelybe-causeitcouldnotpossiblybelearned.“Empiricists”havearguedthatthisabstractstructureisillu-inrealitythereareonlyspecificlearnedas-sociationsbetweenparticularpiecesofevidence.Theprobabilisticmodelsapproach[e.g.,(6C9)]addressesthisdilemmainanewway.Imaginethatthereissomerealstructureintheworld―aspatialconfiguration,agrammar,oranetworkofcausalrelationships.ThatstructuregivesriseTsophisticatedknowledgewhentheyrespondtofocusedquestionsaboutreal-lifeexamples(2C4).Thisresearchshowedthatyoungchildren’sknowledgeisstructurallysimilartoscientificthe-ories,butnotnecessarilythatchildrenlearnlikescientists.Itcouldbethatmuchofthisknowl-edgeisinnateratherthanlearned―evolutionarilydeterminedratherthaninferredfromexperience.Moreover,untilquiterecently,therewerefewthe-oreticalaccountsthatcouldencompasslearningmechanismsinbothchildhoodandscience,orempiricalresultsthatshowedthosemechanismsweresimilar.Infact,thepredominanttheoriesoflearningemphasizedcomplexassociationsbe-DepartmentofPsychology,UniversityofCalifornia,Berkeley,CA94720,USA.E-mail:gopnik@socrates.berkeley.eduFig.1.Child’splayisscience.[“PlayingDoctors”byFrederickDanielHardy();image:StapletonCollection/Corbis]SCIENCEVOL33728SEPTEMBER2012www.sciencemag.org1623Downloaded from www.sciencemag.org on October 6, 2012REVIEWtosomepatternsofevidenceratherthanothers―edgethatweseeinscientificandintuitivethe-higher-ordercausalstructure―forexample,theaparticularsetofvisualimages,orspokensen-ories.Inparticular,causalknowledgeiscentraltogeneralframeworkprinciplesthatprevailinatences,orstatisticalcontingenciesbetweenevents.bothkindsoftheories.Causalgraphicalmodelsscientificparadigmandthatshapeparticularcaus-Thatspatialorgrammaticalorcausalstructureor“Bayesnets,”developedinthephilosophyofalhypotheses(14).Therehasalsobeenworkoncanberepresentedmathematicallybyagenera-scienceandcomputerscience,provideapartic-anevenmoregeneral“probabilisticlogic”thattivemodel,suchasamaportreestructureoraularlypowerfulandsuccessfulaccountofcausalcanencodeamuchwiderrangeofrelationships,graphicalnetwork.Therepresentationisahypoth-knowledgeandlearning(6,12,13).Algorithmsincludingspatialandlogicalaswellascausalesisaboutwhattheactualstructureislike.ThisthatuseBayesnetsallowcomputerstoactuallyones.Atleastinprinciple,thislogicallowsahypothesiscanbepreciselydescribedinformaldosomekindsofscience,suchasdiscoveringthewiderangeofgenerativemodelstobelearnedways.Therepresentationisgenerative,whichcausalstructureofweathersystems,geneexpres-fromprobabilisticdata(15).meansthatitwillallowyoutomathematicallysion,orbrainfunctionfromdata.Unliketraditionalnativism,theprobabilisticcomputethepatternsofevidencethatfollowfromMostrecently,thisworkhasbeenexpandedmodelsapproachgivesusawaytoactuallyinferthatstructureandthenmakenewinferencesac-toallowforformalrepresentationsofmoreabstractabstracthierarchicalstructurefromdata,atleastcordingly:Aparticularmapwillletyoupredicthowtoreachapar-ticulargrammaticaltreewillletyoupredictwheth-eranewsentaparticularcausalgraphwillletyoupredictwhetheraneweventwillbefollowedbyotherevents.Ifthehypothesisiscorrect,thenthesepredictionswillturnouttoberight.Thesegenerativemodels,then,candescriberepresentationsoftheworldandexplainhowthoserepresentationsallowustomakeawiderangeofnewinferences.Critically,thesystematiclinkbetweenstructureandevidenceinthesemod-elsalsoallowsyoutoreversetheprocessandtomakeinferencesaboutthenatureofthestructurefromtheevidenceitgenerates.Itletsyoudecidewhichmaportreeorcausalgraphbestaccountsfortheevidence,andsoleadsyoutoadoptthemostlikelyhypothesis.Theideathatmentalmodelsofthestructureoftheworldgeneratepredictions,andthatwecaninvertthatprocesstolearnthestructurefromevidence,isnotitselfnew.Thebigadvancehasbeenintegratingideasaboutprobabilityintothatbasicframework.Typically,agreatmanyhypothe-sesare,inprinciple,compatiblewithanypatternofevidence,sohowcanwedecideonthebestone?Integratingprobabilitytheorymakesthislearningproblemmoretractable.Althoughmanyhypothesesmaybecompatiblewiththeevidence,somehypotheseswillbemoreorlesslikelytohavegeneratedtheevidencethanothers.OneofthemostpowerfulandgeneralwaystosolvethelearningproblemistouseBayesianinference.Ifweknowthepriorprobabilityofahypothesis,andagenerativemodeltellsusthelikelihoodoftheevidencegiventhehypothesis,thenwhenweobserveanewpatternofevidence,wecanuseBayes’ruletodeterminetheprob-abilitythatthehypothesisistruegiventhatevi-dence.Ratherthansimplygeneratingayes-or-nodecisionaboutwhetheraparticularhypothesisistrue,theprobabilisticBayesianlearningalgo-rithmsconsidermultiplehypothesesandassignprobabilitiestothosehypotheses.Bayesianmeth-odsletyoudeterminetheprobabilityofpossibilities.BayesianideashavebeensuccessfullyappliedFig.2.Schematicrepresentationoftheping-pongballexperiment.Theexperimentershowedtheinfantstoawiderangeofproblems,includingvisionandaboxfullofwhiteandredballs.Thensheclosedhereyesandrandomlytooksomeballsfromtheboxandmotorcontrol(10,11).Thiskindofperceptualputtheminanothersmallbin.Ifthesamplewastrulyrandom,thenthedistributionofballsinthebinandmotorlearningmaynotappeartoresembleshouldmatchthedistributionoftheballsinthebox.Infantssawasamplethateithermatchedordidnotmatchthedistribution,andtheylookedlongeratthenonmatchingsample.Inacontrolcondition,infantsscientificlearning.Butprobabilisticmodelshavesawjustthesamesequenceofevents,buttheexperimentertooktheballsoutofherpocketratherthanalsobeenappliedtopreciselythekindsofknowl-takingthemfromthebox,andthelooking-timedifferencedisappeared.162428SEPTEMBER2012VOL337SCIENCEwww.sciencemag.orgDownloaded from www.sciencemag.org on October 6, 2012REVIEWinprinciple.Ifchildrenlearnedinthisway,theycoulddrasticallyrevisetheirrepresentationsoftheworldonthebasisoftheirexperience,asscientistsdo.Theywouldnotbelimitedtomakingsmalladjustmentstoinnatelydeterminedrepre-sentations.Unliketraditionalempiricism,theap-proachproposesthatchildren,alsolikescientists,neverstartfromacompletelyblankslateorwithcompletelypuredata.Instead,fromtheverybe-ginning,theywouldbetestinghypothesesandassessingthedatainthelightofthosehypotheses.ChildrenasScientificLearnersDochildrenactuallylearnabouttheworldinthisway?Overthepast10years,researchershavesystematicallygivenyoungchildrenpatternsofevidenceabouttheworldandthenobservedtheconclusionsthattheydraw[e.g.,(7)andarticlesin(16,17);foranextensivereviewandtutorial,see(18)].Toastrikingextent,childrenusedatatoformulateandtesthypothesesandtheoriesinmuchthesamewaythatscientistsdo.Scientistslearnabouttheworldinthreeways:Theyanalyzestatisticalpatternsinthedata,theydoexperi-ments,andtheylearnfromthedataandideasofotherscientists.TherecentstudiesshowthatchildrenalsolearninthesewaysandthattheyoftenresembleidealBayesianlearners.Proba-bilisticmodelsmakeaccurateanddetailedpre-dictionsaboutchildren’slearning.Statistics.Anyonewhohasevertaughtameth-odscourseknowsthatadultshaveahardtimeexplicitlyunderstandingstatistics.Itmaybesur-prising,then,thatevenveryyounginfantscanimplicitlyreasonstatistically.Thefirstwaveoftheseexperimentsshowedthatevenyoungin-fantsaresensitivetostatisticalpatterns[e.g.,(19)].Morerecently,researchershaveshownthatin-fantsandyoungchildrennotonlydetectstatis-ticalpatterns,theyusethosepatternstotestcausalhypothesesaboutpeopleandthings.Forexample,XuandGarcia(20)demon-stratedthat8-month-oldsweresensitivetostatis-ticalsamplingpatterns.Theyuseda“looking-time”techniquethathasbeenextensivelyusedtostudyinfantcognition.Itdependsonthefactthatin-fantslooklongeratunexpectedevents.Whentheexperimentertookasampleofmostlyredping-pongballsfromaboxofmostlywhiteballs,in-fantslookedlongerthanwhenshetookasampleofmostlyredballsfromaboxofmostlyredballs(Fig.2).Notethattheunlikelyeventsinthisexperi-myoucould,afterall,pullmostlyredballsfromaboxofmostlywhiteballs.Theeventsweremerelyimprobableifyourcausalmodeloftheeventassumedthattheballsinthebinwerearandomsample.It’sasiftheinfantssaidtothemselves,“Aha!Lessthan0.05probabilitythatthisoccurredbychance!”Butwouldthesurprisingevidencedrivethechildrentoanewcausalmodel?Kushniretal.(21)foundthatitwould.Infact,childrenasyoungas20monthsinterpretednon-randomsamplingpsychologically.Anexperi-mentertookfrogsfromaboxofallfrogsorshetookfrogsfromaboxofalmostallducks.Thenshelefttheroomandanotherexperimentergavethechildasmallbowloffrogsandaseparatebowlofducks.Whentheoriginalexperimenterreturned,sheextendedherhandambiguouslybetweenthebowls.Thechildrencouldgivehereitherafrogoraduck.Whenshehadtakenfrogsfromaboxofallfrogs,childrenwereequallylikelytogiveherafrogoraduck.Whenshehadtakenfrogsoutoftheboxthatwasalmostallducks,childrengaveherafrog.Inthefirstcase,thechildrenconcludedthatshehadmerelydrawnarandomsamplefromthebox,butinthesecondcasetheyconcludedthatshehaddisplayedapreferenceforfrogs.Thus,childrenlessthan2yearsoldhadinferredanunderlyingmentalstate―apreference―fromastatisticalpattern.Inanotherlineofresearch,mycolleaguesandIdesignedasimpletesttoseewhetheryoungchildrenwouldappropriatelyinferphysicalcaus-alrelationshipsfromstatisticalevidenceaboutcovariation(7,22).Weshowedchildrena“blicketdetector”―aboxthatplaysmusicwhenyouputsomeobjectsonitbutnotothers―andthenshowedthemvariouspatternsofstatisticalde-pendencebetweentheobjectsandtheeffect.Thenweaskedchildrentomakethemachinegoorturnitoff.Figure3showsonesuchexperi-ment.Basedonthechild’spriorknowledgeaboutthemachine,itcouldhaveanyofthecausalstructuresrepresentedinFig.3.Wefoundthat2-,3-,and4-year-oldscouldusethepatternofco-variationbetweentheblocksandthemachine’sactivationtoinferwhichofthesecausalstruc-tureswascorrect,andsotomakethemachinegoorstop.Otherstudiesshowthattoddlersasyoungas24monthscanmaketheseinferencesevenwhenthestatisticalpatternismorecompli-cated(23).Onerecentstudyshowsthateven16-month-oldscanusecovariationtoinfercausationinthisway(24).Schulzetal.(25)showedthat4-year-oldchil-drencouldalsousestatisticaldependenciestoinfermorecomplexcausalstructures.Childrensawasimplemachinewithaswitchononesideandtwodisksthatspunontop.Eventhissimplemachinecouldworkinmanydifferentways(theswitchcouldmakethebluediskgo,whichcoultheswitchetc.).Preschoolersusedevidencecorrectlytodistinguishbetweencausalchainstruc-tures(theswitchmakesthebluediskgo,whichmakestheyellowdiskgo),commoncausestruc-tures(theswitchmakesbothdisksgo),andcon-junctivecausestructures(theswitchandthebluediskarebothnecessarytomaketheyellowdiskgo).Bayesianinferenceconsidersbothnewevi-denceandthepriorprobabilityofhypotheses.ThisgivesBayesianlearningacharacteristiccombi-nationofstabilityandflexibility.Inscience,weholdontowell-confirmedhypotheses,butenoughnewevidencecaneventuallyoverturneventheABABObject A activatesthe detector by itselfObject B does not activatethe detector by itselfBoth objects activatethe detectorCausal interpretationsFig.3.Theblicketdetectorexperiment.ChildrensawthatthemachinedidnotactivatewhenBalonewasplacedonit,butdidactivatewhenAwasplacedonitandcontinuedtodosowhenBwasaddedtoA.Thentheywereaskedtomakethemachinestop.Giventhisevidence,thecorrectcausalinterpretationisthatAaloneactivatesthemachine,andthechildrenshouldactonAandnotB.www.sciencemag.orgSCIENCEVOL33728SEPTEMBERDownloaded from www.sciencemag.org on October 6, 2012REVIEWmostcherishedidea.Severalrecentstudiesshowtesteachbeadbyitself.The“allbeads”conditiontubes,eachofwhichdidsomethingdifferentthatchildrenintegratepriorknchildrencanassumethatbothbeads(onelitup,onemadeasqueakingsound,etc.).Inevidence,too.Forexample,4-year-oldsbeginbywillmakethemachinego.Sureenough,childrenonecondition,childrensawtheexperimenterac-thinkingthatpsychologicalcauses(e.g.,beingspontaneouslypulledthebeadsapartandtestedcidentallybumpagainstthetoy,settingoffoneofanxious)areunlikelytocausephysicaleffectsthemseparatelyintheirplayinthe“somebeads”thesqueakytubes.Thenshesimplyleftthechild(e.g.,havingastomachache)andrejectevidenceconditionbutnotintheotherwiseidentical“allalonetoplaywiththetoy.Thechildrenimitatedtothecontrary.Butifyougivethemaccumulat-beads”condition.thesqueakbutalsodiscoveredalltheotherthingsingevidenceinfavorofthis“psychosomatic”Similarly,Legare(34)showed4-year-oldsthatthetoycoulddo.Inanothercondition,thehypothesis,theygraduallybecomemoreandmorethatredblocksmadea“blicketdetector”machineexperimenterintroducedthetoybysaying“Herelikelytoacceptthatinitiallyunlikelyidea(26),goandthenshowedthemananomaly―aredismytoy”andthenmadeitsqueak.LiketheandaBayesianmodelcanpredictthischangeblockthatfailed.Sheaskedthem“Whydidthatchildrenintheimitationexperiment,childreninquiteprecisely.happen?”andletthemplaywiththemachine.thisconditionsimplyrepeatedwhattheexperi-Childrenalsousestatisticstoinfertheexis-Childrensystematicallyplayedwiththemachinementerdid,anddidn’texplorethemachine’stenceofunobservedcauses―hidden“theoreticalinwaysthattestedthehypothesesthattheyex-otherpossibilities.entities.”Gopniketal.(7)foundthatwhenthepressedintheirexplanations.AnotherrecentstudyThesenewstudies,andmanysimilarones,observedvariablescouldn’texplaintheevidence,showsthatpretendplayisalsocloselyrelatedtosuggestthatchildrenaswellasscientistslearnchildrenwouldlookforunobservedvariablesin-counterfactualreasoning―aparticularlysophis-inwaysthatarewelldescribedbyprobabilisticstead,inawaythatcouldbepredictedbyBayesticatedtypeofcausalinference(35).models.Thisresearchalsoraisesmyriadnewnets.SchulzandSommerville(27)foundthatTheseresultsindicatethatwhenyoungchil-problemsandexcitingdirectionsforfurtherwork.whenchildrensawa“blicketdetector”thatwentdrenfaceacausalpuzzle,theytrytosolvethatHowaretheseabstractcomputationsactuallyim-offonly2of6times,theyinferredthatsomepuzzleintheirspontaneousplay.Children’sac-plementedindetailbylimitedhumanmindsand,hiddenvariablewasresponsibleforthefailures.tionsensurethattheyreceivecausallyrelevantultimately,howaretheyinstantiatedinhumanFinally,wecanaskwhetherchildrenarere-andinformativeevidence.Oncethatevidencebrains?Childrenandscientistsoftenseemtode-strictedtomakingspecificinferencesaboutisgeneratedthroughplay,childrencanuseittovelopradicallynewhypotheses.Wheredotheseparticularcausalrelationshipsorwhether,likemakethecorrectcausalinferences.hypothesescomefrom?Arechildrensimplylearn-scientists,theycanalsomakeinferencesabouterswithlessexperience―inBayesianterms,dobroader“frameworkprinciples”―generaltheoret-LearningfromOtherstheysimplyhaveadifferentprior?Ordotheyicalideasor“paradigms.”Anexcitingdevelop-Thepictureofthechildasa“littlescientist”haslearninwaysthatareBayesianbutarequalita-mentinthecomputationalworldhasbeenthesometimesbeentakentoimplythatchildrenaretivelydifferentfromadultlearning?Forexample,discoverythatmoreabstracttheoreticallawscansolitarylearners.Ofcourse,realscienceisahigh-dotheysearchawiderspaceofhypothesesthanactuallysometimesbelearnedmorequicklythanlysocialendeavor,andscientistsmustconstantlyadultsdo(29)?Howisthislearninginfluencedthespecificcausalhypothesestheysubsume(28).interpretthedemonstrationsandreportsofotherbythedevelopmentofexplicitsymbolsystems,Tworecentstudiesalsosuggestthatpreschoolerspeople.Childrencanalsolearnaboutcausalrela-fromlanguageitselftothecomplexmathematicalcanmakethesebroadergeneralizationsswiftlytionshipsbywatchingwhatotherpeopledoandnotationofphysics?Whatistheidealbalanceandappropriately(29,30).whathappensasaresult.Inourlab(36),4-year-betweenindividualdiscoveryandlearningfromoldssawanexperimenterperformfivedifferentothers,anddoesthisbalanceshiftindifferentdrenExperiments.hasseenhowAnyonetheywhoceaselesslywatchesfiddleyoungwithchil-sequencesofthreeactionsonatoy,whichac-educationalandscientificcontexts?Thenewthe-thingsandobservetheresults.Children’splaytivatedordidnotactivateoneachtrial.Asta-oreticalideasandexperimentalmethodsgivecanlooklikeexperimentation.RecentresearchtisticalanalysisofthedatawouldsuggestthatusaframeworkforaskingandansweringthesebySchulzandcolleaguesshowsthatchildren’sonlythelasttwoactionswerenecessarytoactivatequestions.exploratoryplaydoesindeedinvolveakindofthetoy.Whenchildrengotthetoy,theyoftenintuitiveexperimentation.Children’splayisnotproducedjustthetworelevantactions,ratherthanImplicationsforPolicyasstructuredastheidealexperimentsofinstitu-imitatingeverythingthattheexperimenterdid.Sonewtheoreticalworkletsusdescribebothsci-evenadultscanhaveahardtimeMoreover,veryyoungchildrenandevenin-entificlearningandchildren’slearninginanewlydesigningideallycontrolledexperiments[e.g.,(31)].fantsaresensitivetotheintentionsofothers,par-systematicandrigorousway.NewempiricalworkHowever,recentformalworkinthephilosophyticularlytheirintentiontoteach,andmaydrawshowsthatyoungchildrenlearnfromstatistics,ofsciencehasshownthatmuchlesssystematicdifferentconclusionsfromtheevidencethatteach-experiments(i.e.,play)andfromtheactionsofexperimentationcanyieldaremarkableamountersgivethemthanfromtheevidencetheygatherothersinmuchthesamewaythatscientistsdo.ofcausalknowledge(32).Theempiricalresearchthemselves.Bayesianmodelscanincorporateped-Whatdoesallthismeanforeducationandpolicy?showsthatplayissufficientlysystematictohelpagogicalinformationbyassumingthatteachersFirst,thisworkprovidesanexplanatoryfoun-childrendiscovercausalrelationships.provideadifferentandmoreinformativesampledationforthedemonstrableimpactofhigh-qualityForexample,Cooketal.(33)performedaofevidencethanonewouldgetfromarandompreschoolandcareforchildrenonlaterlife(39).variantofthe“blicketdetector”experimentsusingsample(37).Veryyoungchildrenarespontaneouslyandper-“We(36)didexactlythesamestatisticalimi-vasivelylearningfromexperience.Moreover,thehookedpop-beads,together”smalltomakeplasticlargerbeadsunits.thatcouldFirst,thebetationexperimentbutnowincludedpedagogicalBayesianpictureprovidesabettermodelfortheseexperimenterputindividualbeadsonthema-information:Theexperimentersaid“Here’smyeffectsthanthinkingaboutearlychildhoodasanchine.Onegroupof4-year-oldssawthatsomeoftoy,I’mgoingtoshowyouhowitworks.”Inthisirreversible“criticalperiod.”Withouttherightse-thebeadsmadethemachinegoandsomedidn’t.condition,childrenweremuchmorelikelytoas-quenceofevidence,theoreticaladvanceswillbeAsecondgroupsawthatallthebeadsmadethesumethateverythingtheadultdidwascausallydelayedormayneveremergeatall.Conversely,machinego.Then,theexperimentersimplygaveeffectiveandtoimitateallheractions.ABayesianwhenparticularhypothesesareespeciallywellthechildrenthemachineandtwonewbeadsthatmodelmadequiteprecisequantitativepredictionsconfirmedearlyinlife(hypotheses,forexam-werehookedtogetherandletthemplay.aboutwhatthechildrenwoulddointhepeda-ple,thatexpressingdistresscausescaregiverstoThe“somebeads”conditionsetsupacausalgogicalandnonpedagogicalcontext.turnaway,orthatthreatleadstoviolence),itmayproblemforthechildren:WhichbeadsmaketheSimilarly,Bonawitzetal.(38)gavechildrenbemuchmoredifficultforthemtoberevisedmachinego?Tosolvethatproblem,youneedtoacomplicatedtoytoexplore.Thetoyhadfourlateron.Eventhemostentrencheddysfunctional162628SEPTEMBER2012VOL337SCIENCEwww.sciencemag.orgDownloaded from www.sciencemag.org on October 6, 2012包含各类专业文献、应用写作文书、专业论文、行业资料、文学作品欣赏、高等教育、生活休闲娱乐、各类资格考试、幼儿教育、小学教育、75Scientific Thinking in Young Children等内容。 
  【】 
您可在本站搜索以下内容:
  Critical Thinking Skills... 暂无评价 2页 免费 Scientific Thinking in Y..... for young children, too, the difficulty lies not in the inferential ...
 Critical Thinking Skills for Children Critical ... the habit of critical thinking in young minds....scientific brain Teaching Geology Low cost, high ...
 a 2s. thinking A One of the first questions young children ask is “why...how you can use scientific thinking to solve a problem in your own life....
 (B) One of the first questions young children ask is “Why?” It is ...how you can use scientific thinking to solve a problem in you own life....
 The second major contributor to heteronomous moral thinking in young children, is their relative social relationship with adults. In the natural authority ...
 Usually children are allowed to ___ when they... a national 34 for young people in the U.K....He changed scientific thinking in the modern world...
  young man is in college at the top of his ...He changed scientific thinking in the modern world...has done a lot of good to children in the ...
 (s) One of the first questions young children ask is “Why?” It is ...how you can use scientific thinking to solve a problem in your own way....
 (B) One of the first questions young children ask is “Why?” It is ...how you can use scientific thinking to solve a problem in you own life....
赞助商链接
别人正在看什么?
赞助商链接

我要回帖

更多关于 sql server compute 的文章

 

随机推荐