为什么是肽链肽链不能首尾相接,成为一个圈圈状...

高一必修一生物复习提纲 跪求 明天考试了_百度知道
高一必修一生物复习提纲 跪求 明天考试了
提问者采纳
高一生物必修(1)复习提纲第一章
第一节 从生物圈到细胞1.细胞是生物体结构和功能的基本单位.生命活动是建立在细胞的基础上的.
无细胞结构的病毒必需寄生在活细胞中才能生存.
单细胞生物(如:草履虫),单个细胞即能完成整个的生物体全部生命活动.
多细胞生物的个体,以人为例,起源于一个单细胞:受精卵,经过细胞的不断分裂与分化, 形成一个多细胞共同维系的生物个体.
2.细胞是最基本的生命系统.
最大的生命系统是:生物圈。细胞
生物圈第二节 细胞的多样性与统一性一.细胞的多样性与统一性1.细胞的统一性: 细胞膜,细胞质,细胞质中都有核糖体.主要遗传物质都是DNA.2.细胞的多样性: 大小,细胞核,细胞质中的细胞器,包含的生物类群等均不同. 根据细胞内有无以核膜为界限的细胞核,把细胞分为原核细胞和真核细胞两大类.这两类细胞分别构成了两大类生物:原核生物和真核生物.类别 原核细胞 真核细胞细胞大小 较小 较大细胞核(本质) 无成形细胞核,无核膜.核仁.染色体 有成形的细胞核,有核膜.核仁.染色体细胞质 有核糖体 有核糖体、线粒体等,植物细胞还有叶绿体.液泡等生物类群 蓝藻, 细菌 动物,植物,真菌
常见的细菌有: 乳酸菌,大肠杆菌,根瘤菌,霍乱杆菌,炭疽杆菌.
常见的蓝藻有: 颤藻,发菜,念珠藻,蓝球藻.
常见的真菌有: 酵母菌二:细胞学说建立(施旺,施莱登) 细胞学说说明细胞的统一性和生物体结构的统一性。第二章: 组成细胞的分子.
第一节: 组成细胞的元素与化合物一: 元素组成细胞的主要元素是: C H O N P S
基本元素是: C H O N
最基本元素: C组成细胞的元素常见的有20多种,根据含量的不同分为: 大量元素和微量元素.大量元素: C H O N P S K Ca Mg
微量元素: Fe Mn Zn Cu B Mo 生物与无机自然界的统一性与差异性. 元素种类基本相同,元素含量大不相同.占细胞鲜重最大的元素是: O 占细胞干重最大的元素: C二:组成细胞的化合物: 无机化合物:水,无机盐 细胞中含量最大的化合物或无机化合物: 水有机化合物:糖类,脂质,蛋白质,核酸. 细胞中含量最大的有机化合物或细胞中干重含量最大的化合物:蛋白质。.三: 化合物的鉴定:鉴定原理:某些化学试剂能与生物组织中的有关有机化合物发生特定的颜色反应.还原性糖:斐林试剂0.1g/ml NaOH
0.05g/ml CuSO4
甲乙溶液先混合再与还原性糖溶液反应生成砖红色沉淀.(葡萄糖,果糖,麦芽糖)注:蔗糖是典型的非还原性糖,不能用于该实验。蛋白质:双缩脲试剂0.1g/mlNaOH 0.01g/mlCuSO4 先加入A液再加入B液.成紫色反应脂
肪: 苏丹三(橘黄色) 苏丹四(红色)第二节: 生命活动的主要承担者: 蛋白质一: 组成蛋白质的基本单位: 氨基酸氨基酸的结构特点: 一个氨基酸分子至少含有一个氨基和一个羧基,且连接在同一个碳原子上.除此之外,该碳原子还连接一个氢原子和一个侧基团. 各种氨基酸的区别在于侧链基团(R基)的不同生物体中组成蛋白质的氨基酸约有20种, 分为必需氨基酸(8)和非必需氨基酸(12)两种.二:氨基酸形成蛋白质
氨基酸的结构通式(以下氨基酸简称AA)1. 构成方式: 脱水缩合脱水缩合: 在蛋白质的形成过程中,一个氨基酸的羧基和另一个氨基酸的氨基相接同时脱去一分子水,这种结合方式叫做脱水缩合.由2个AA分子缩合而成的化合物叫二肽. 由多个AA分子缩合而成的化合物叫多肽.几个AA就成为几肽,连接两个AA分子的化学健叫肽键.2. 脱去水分子数等于形成的肽键数等于氨基酸数减去肽链数.蛋白质分子量的计算. 假设AA的平均分子量为a,含有的AA数为n则,形成的蛋白质的分子量为: a×n-18(n-m) 即:氨基酸的总分子量减去脱去的水分子总量3. 蛋白质结构的多样性:原因: 组成蛋白质的氨基酸种类,数目,排列顺序不同,肽链的折叠,盘曲及蛋白质的空间结构千差万别4. 蛋白质的功能
蛋白质结构的多样性决定了它的功能多样性:催化功能.结构功能.运输功能,信息传递功能,免疫功能等. 第三节 核酸一、DNA与RNA的比较(表)
DNA(脱氧核糖核酸) RNA(核糖核酸)基本单位 脱氧核苷酸 核糖核苷酸 化学组成 磷酸(P)+ 脱氧核糖+碱基(A.T.G.C) 磷酸(P)+ 核糖+碱基(A.T.G.U)存在场所 主要分布于细胞核中 主要分布在细胞质中主要功能 在生物体的遗传、变异和蛋白质的生物合成中有极其重要的作用。二、核酸的种类及功能核酸分为两大类:脱氧核糖核酸(简称 DNA )和核糖核酸(简称RNA)核酸的功能: 核酸是携带遗传信息的物质,在生物体的遗传、变异和蛋白质的生物合成中有极其重要的作用。三、核酸的组成1)基本组成单位是核苷酸,其组成成分中的五碳糖有两种:核糖、脱氧核糖2)一个核苷酸是由一分子磷酸基团、一分子五碳糖和一分子含氮碱基组成3)DNA和RNA各含4种碱基,4种核苷酸(4)核酸中含有的碱基总数为:5核苷酸数为8四、核酸在细胞中的分布五.实验:甲基绿+DNA=绿色
吡罗红+RNA=红色8%盐酸的作用:①改变细胞膜的通透性,加速染色剂进入细胞
②使染色体中的DNA与蛋白质分离,有利于DNA和染色剂结合0.9%的NaCl的作用:保持动物细胞的细胞形态实验步骤:①制片 ②水解 ③冲洗 ④染色 ⑤观察结论:DNA主要存在于细胞核中,RNA主要存在于细胞质中,少量DNA存在于线粒体,叶绿体中。原核细胞中DNA主要存在于拟核中,RNA主要存在于细胞质中六、核酸分子的多样性绝大多数生物的遗传信息就储存在DNA分子中,组成DNA分子的核苷酸虽然只有4种,但是核苷酸的排列顺序却是千变万化的。核苷酸的排列顺序就代表了遗传信息。生物的遗传物质是核酸(DNA或RNA)其中,主要遗传物质是DNA。第四节 细胞中的糖类和脂质1、糖类的化学元素组成及特点:元素组成( C.H.O),特点: 大多数糖H:O=2:12, 糖类的分类,分布及功能: 种类 分布 功能单糖 五碳糖 核糖(C5H10O4) 细胞中都有 组成RNA的成分
脱氧核糖(C5H10O5) 细胞中都有 组成DNA的成分 六碳糖(C6H12O6) 葡萄糖 细胞中都有 主要的能源物质
果糖 植物细胞中 提供能量
半乳糖 动物细胞中 提供能量二糖(C12H22O11) 麦芽糖
发芽的小麦、谷控中含量丰富 都能提供能量 蔗糖
甘蔗、甜菜中含量丰富
人和动物的乳汁中含量丰富 多糖(C6H10O5)n 淀粉
植物粮食作物的种子、变态根或茎等储藏器官中 储存能量 纤维素 植物细胞的细胞壁中 支持保护细胞 肝糖原糖原肌糖原
动物的肝脏中 储存能量调节血糖
动物的肌肉组织中 储存能量3、单糖、二糖、多糖是怎么区分的 ?单糖:不能水解的糖,可被细胞直接吸收。二糖:由两分子的单糖脱水缩合而成。如麦芽糖由两个葡萄糖分子脱水缩合而成 , 蔗糖可 以水解为一分子果糖和一分子葡萄糖 , 乳糖可以水解为一分子葡萄糖和一分子半乳糖 .( 展示 课本 P31 2-11 〉 多糖:由许多的葡萄糖分子连接而成。如淀粉、纤维素、糖原,构成它们的基本单位都是葡萄糖。(P31)4、脂质的比较: 分类 元素 常见种类 功能脂质 脂肪 C、H、O ∕ 1、主要储能物质2、保温3、减少摩擦,缓冲和减压 磷脂 C、H、O(N、P) ∕ 细胞膜的主要成分 固醇
胆固醇 与细胞膜流动性有关
性激素 维持生物第二性征,促进生殖器官发育
维生素D 有利于Ca、P吸收第五节
细胞中的无机物一、有关水的知识要点
存在形式 含量 功能 联系水 自由水 约95% 1、良好溶剂2、参与多种化学反应3、运送养料和代谢废物 它们可相互转化;代谢旺盛时自由水含量增多,反之,含量减少。 结合水 约4.5% 细胞结构的重要组成成分 二、1.无机盐(绝大多数以离子形式存在)功能:
①、构成某些重要的化合物,如:叶绿素、血红蛋白等
②、维持生物体的生命活动(如动物缺钙会抽搐)
③、维持酸碱平衡,调节渗透压。2.部分无机盐的作用
缺碘:地方性甲状腺肿大(大脖子病)、呆小症缺钙:抽搐、软骨病,儿童缺钙会得佝偻病,老年人会骨质疏松缺铁: 缺铁性贫血第三章
细胞的基本结构第一节
细胞膜------系统的边界一、细胞膜的成分:主要是脂质(约50%)和蛋白质(约40%),还有少量糖类(约2-10%)二、细胞膜的功能:
①、将细胞与外界环境分隔开②、控制物质进出细胞③、进行细胞间的信息交流三、植物细胞有细胞壁,主要成分纤维素和果胶,对细胞有支持和保护作用;是全透性的。第二节
细胞器----系统内的分工合作一、相关概念:细胞质:在细胞膜以内、细胞核以外的原生质,叫做细胞质.包括细胞质基质和细胞器。细胞质基质:细胞质内呈液态的部分是基质。是细胞进行新陈代谢的主要场所。二、八大细胞器的比较:1、线粒体:(呈粒状、棒状,具有双层膜,普遍存在于动、植物细胞中,内有少量DNA和RNA内膜突起形成嵴,内膜、基质和基粒中有许多种与有氧呼吸有关的酶),线粒体是细胞进行有氧呼吸的主要场所,生命活动所需要的能量,大约95%来自线粒体,是细胞的“动力车间”2、叶绿体:(呈扁平的椭球形或球形,具有双层膜,主要存在绿色植物叶肉细胞里),叶绿体是植物进行光合作用的细胞器,是植物细胞的“养料制造车间”和“能量转换站”,(含有叶绿素和类胡萝卜素,还有少量DNA和RNA,叶绿素分布在基粒片层的膜上。在片层结构的膜上和叶绿体内的基质中,含有光合作用需要的酶)。
3、核糖体:椭球形粒状小体,有些附着在内质网上,有些游离在细胞质基质中。是细胞内将氨基酸合成蛋白质的场所。4、内质网:由膜结构连接而成的网状物。是细胞内蛋白质合成和加工,以及脂质合成的“车间”5、高尔基体:在植物细胞中与细胞壁的形成有关,在动物细胞中与蛋白质(分泌蛋白)的加工、分类运输有关。
6、中心体:每个中心体含两个中心粒,呈垂直排列,存在于动物细胞和低等植物细胞,与细胞的有丝分裂有关。
7、液泡:主要存在于成熟植物细胞中,液泡内有细胞液。化学成分:有机酸、生物碱、糖类、蛋白质、无机盐、色素等。有维持细胞形态、储存养料、调节细胞渗透吸水的作用。
8、溶酶体:有“消化车间”之称,内含多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌。三、分泌蛋白的合成和运输:
核糖体(合成肽链)→内质网(加工成具有一定空间结构的蛋白质)高尔基体(进一步修饰加工)→囊泡→细胞膜→细胞外四、生物膜系统的组成:包括细胞器膜、细胞膜和核膜等。第三节
细胞核----系统的控制中心一、细胞核的功能:是遗传信息库(遗传物质储存和复制的场所),是细胞代谢和遗传的控制中心;二、细胞核的结构:
1、染色质:由DNA和蛋白质组成,染色质和染色体是同样物质在细胞不同时期的两种存在状态。
膜:双层膜,把核内物质与细胞质分开。
仁:与某种RNA的合成以及核糖体的形成有关。
孔:实现细胞核与细胞质之间的物质交换和信息交流。第四章
细胞的物质输入和输出第一节
物质跨膜运输的实例一、渗透作用:水分子(溶剂分子)通过半透膜的扩散作用。二、原生质层:细胞膜和液泡膜以及两层膜之间的细胞质。三、发生渗透作用的条件:1、具有半透膜
2、膜两侧有浓度差四、细胞的吸水和失水: 外界溶液浓度>细胞内溶液浓度→细胞失水
外界溶液浓度<细胞内溶液浓度→细胞吸水第二节
生物膜的流动镶嵌模型一、细胞膜结构:
↓磷脂双分子层
“镶嵌蛋白”
糖被(与细胞识别有关)(膜基本支架)二、结构特点:具有一定的流动性细胞膜(生物膜)
功能特点:选择透过性第三节
物质跨膜运输的方式一、相关概念:自由扩散:物质通过简单的扩散作用进出细胞。
协助扩散:进出细胞的物质要借助载体蛋白的扩散。
主动运输:物质从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量。二、 自由扩散、协助扩散和主动运输的比较:比较项目 运输方向 载体 是否消耗能量 代表例子自由扩散 高浓度→低浓度 不需要 不消耗 O2、CO2、H2O、乙醇、甘油等协助扩散 高浓度→低浓度 需要 不消耗 葡萄糖进入红细胞等主动运输 低浓度→高浓度 需要 消耗 氨基酸、各种离子等三、离子和小分子物质主要以被动运输(自由扩散、协助扩散)和主动运输的方式进出细胞;大分子和颗粒物质进出细胞的主要方式是胞吞作用和胞吐作用。第五章
细胞的能量供应和利用第一节
降低化学反应活化能的酶一、相关概念:
新陈代谢:是活细胞中全部化学反应的总称,是生物与非生物最根本的区别,是生物体进行一切生命活动的基础。
细胞代谢:细胞中每时每刻都进行着的许多化学反应。
酶:是活细胞(来源)所产生的具有催化作用(功能:降低化学反应活化能,提高化学反应速率)的一类有机物。
活 化 能:分子从常态转变为容易发生化学反应的活跃状态所需要的能量。二、酶的本质:大多数酶的化学本质是蛋白质(合成酶的场所主要是核糖体,水解酶的酶是蛋白酶),也有少数是RNA。三、酶的特性: ①、高效性:催化效率比无机催化剂高许多。
②、专一性:每种酶只能催化一种或一类化合物的化学反应。③、酶需要较温和的作用条件:在最适宜的温度和pH下,酶的活性最高。温度和pH偏高和偏低,酶的活性都会明显降低。第二节
细胞的能量“通货”-----ATP一、 ATP的结构简式:ATP是三磷酸腺苷的英文缩写,结构简式:A-P~P~P,其中:A代表腺苷,P代表磷酸基团,~代表高能磷酸键,-代表普通化学键。注意:ATP的分子中的高能磷酸键中储存着大量的能量,所以ATP被称为高能化合物。这种高能化合物化学性质不稳定,在水解时,由于高能磷酸键的断裂,释放出大量的能量。二、ATP与ADP的转化:
对转化过程的认识:1)ATP分子中远离A的那个高能磷酸键很容易释放能量,转化成ADP。在有关酶的催化作用下,ADP可以接受能量,同时与一个游离的Pi结合,重新形成一个ATP。3)对细胞的正常生活来说,ATP与ADP的相互转化,是时刻不停地发生并处于动态平衡.5)此反应中物质可逆,酶、场所、能量不可逆。6)ADP与Pi合成ATP的能量来源:动物和人呼吸作用,绿色植物呼吸作用和光合作用。总结:细胞内ATP含量很少,相对稳定,但是能够提供稳定的能量环境,正是细胞内ATP和ADP相互转化的结果。ATP和ADP相互转化的能量供应机制,是生物界的共性。第三节
ATP的主要来源------细胞呼吸一、相关概念:1、呼吸作用(也叫细胞呼吸):指有机物在细胞内经过一系列的氧化分解,最终生成二氧化碳或其它产物,释放出能量并生成ATP的过程。根据是否有氧参与,分为:有氧呼吸和无氧呼吸2、有氧呼吸:指细胞在有氧的参与下,通过多种酶的催化作用下,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放出大量能量,生成ATP的过程。3、无氧呼吸:一般是指细胞在无氧的条件下,通过酶的催化作用,把葡萄糖等有机物分解为不彻底的氧化产物(酒精、CO2或乳酸),同时释放出少量能量的过程。4、发酵:微生物(如:酵母菌、乳酸菌)的无氧呼吸。二、有氧呼吸的总反应式:
能量三、无氧呼吸的总反应式:
2C2H5OH(酒精)+ 2CO2
(酵母菌、植物果实等)
2C3H6O3(乳酸)+
(乳酸菌、人的肌肉细胞等)四、有氧呼吸过程(主要在线粒体中进行):
场所 发生反应 产物第一阶段 细胞质基质
丙酮酸、[H]、释放少量能量,形成少量ATP第二阶段 线粒体基质
CO2、[H]、释放少量能量,形成少量ATP第三阶段 线粒体内膜
生成H2O、释放大量能量,形成大量ATP五、有氧呼吸与无氧呼吸的比较:呼吸方式 有氧呼吸 无氧呼吸不同点 场所 细胞质基质,线粒体基质、内膜 细胞质基质 条件 氧气、多种酶 无氧气参与、多种酶 物质变化 葡萄糖彻底分解,产生CO2和H2O 葡萄糖分解不彻底,生成乳酸或酒精等 能量变化 释放大量能量(1161kJ被利用,其余以热能散失),形成大量ATP 释放少量能量,形成少量ATP六、影响呼吸速率的外界因素:
1、温度:温度通过影响细胞内与呼吸作用有关的酶的活性来影响细胞的呼吸作用。温度过低或过高都会影响细胞正常的呼吸作用。在一定温度范围内,温度越低,,细胞呼吸越弱;温度越高,细胞呼吸越强。
2、氧气:氧气充足,则无氧呼吸将受抑制;氧气不足,则有氧呼吸将会减弱或受抑制。3、水分:一般来说,细胞水分充足,呼吸作用将增强。但陆生植物根部如长时间受水浸没,根部缺氧,进行无氧呼吸,产生过多酒精,可使根部细胞坏死。4、CO2:环境CO2浓度提高,将抑制细胞呼吸,可用此原理来贮藏水果和蔬菜。七、呼吸作用在生产上的应用:1、作物栽培时,要有适当措施保证根的正常呼吸,如疏松土壤等。2、粮油种子贮藏时,要风干、降温,降低氧气含量,能抑制呼吸作用,减少有机物消耗。3、水果、蔬菜保鲜时,要低温或降低氧气含量及增加二氧化碳浓度,抑制呼吸作用。第四节
能量之源----光与光合作用一、1、光合作用:绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧气的过程二、光合色素(在类囊体的薄膜上):
叶绿素 主要吸收红光和蓝紫光 叶绿素b
胡萝卜素 (橙黄色)
类胡萝卜素 主要吸收蓝紫光 叶黄素
(黄色)三、叶绿体的功能:叶绿体是进行光合作用的场所。在类囊体的薄膜上分布着具有吸收光能的光合色素,在类囊体的薄膜上和叶绿体的基质中含有许多光合作用所必需的酶。四、影响光合作用的外界因素主要有:
1、光照强度:在一定范围内,光合速率随光照强度的增强而加快,超过光饱合点,光合速率反而会下降。
2、温度:温度可影响酶的活性。
3、二氧化碳浓度:在一定范围内,光合速率随二氧化碳浓度的增加而加快,达到一定程度后,光合速率维持在一定的水平,不再增加。
4、水:光合作用的原料之一,缺少时光合速率下降。五、光合作用的应用:1、适当提高光照强度。2、延长光合作用的时间。
3、增加光合作用的面积---合理密植,间作套种。4、增加昼夜温差(白高夜低)
5、温室栽培多施有机肥或放置干冰,提高二氧化碳浓度。六、光合作用的过程:光反应阶段 条件 光、色素、酶 场所 在类囊体的薄膜上 物质变化 水的分解:H2O → [H] + O2
ATP的生成:ADP + Pi+光能
→ ATP 能量变化 光能→ATP中的活跃化学能暗反应阶段 条件 酶、ATP、[H] 场所 叶绿体基质 物质变化 CO2的固定:CO2
2C3C3的还原:
(CH2O)+ O2 能量变化 ATP中的活跃化学能→(CH2O)中的稳定化学能总反应式
+ (CH2O)第六章:细胞的生命历程细胞表面积与体积关系限制细胞的长大.细胞增殖是生物体生长、发育、繁殖遗传的基础。 有丝分裂:体细胞增殖 ★无丝分裂:蛙的红细胞。分裂过程中没有出现纺缍丝和染色体变化 分裂间期:完成DNA分子复制及有关蛋白质合成,染色体数目不增加,DNA 加倍。 分裂期:前期:核膜核仁逐渐消失,出现纺缍体及染色体,染色体散乱排列。 中期:染色体着丝点排列在赤道板上,染色体形态比较稳定,数目比较清晰便于观察 后期:着丝点分裂,姐妹染色单体分离,染色体数目加倍 末期:核膜,核仁重新出现,纺缍体,染色体逐渐消失。 ★、动植物细胞有丝分裂区别 间期: 植物细胞: DNA复制(染色体复制),蛋白质合成
动物细胞:染色体复制,中心粒也倍增 前期: 植物细胞:细胞两极发生纺缍丝构成纺缍体
动物细胞:中心体发出星射线,构成纺缍体 末期: 植物细胞:赤道板位置形成细胞板向四周扩散形成细胞壁
动物细胞:不形成细胞板,细胞从中央向内凹陷,缢裂成两子细胞 ★、有丝分裂特征及意义:将亲代细胞染色体经过复制(实为DNA复制后),精确地平均分配到两个子细胞,在亲代与子代之间保持了遗传性状稳定性,对生物遗传有重要意义。 有丝分裂中,染色体及DNA数目变化规律(书上课后题拓展题2) 细胞分化:个体发育中,由一个或一种细胞增殖产生的后代,在形态、结构和生理功能上发生稳定性差异的过程,它是一种持久性变化,是生物体发育的基础,使多细胞生物体中细胞趋向专门化,有利于提高各种生理功能效率。 ★细胞分化举例:红细胞与肌细胞具有完全相同遗传信息,(同一受精卵有丝分裂形成);形态、功能不能原因是不同细胞中遗传信息执行情况不同。 ★细胞全能性:指已经分化的细胞,仍然具有发育成完整个体潜能。 高度分化的植物细胞具有全能性,如植物组织培养因为细胞(细胞核)具有该生物 生长发育所需的遗传信息 高度分化的动物细胞核具有全能性,如克隆羊 细胞衰老:细胞内水分减少,新陈代谢速率减慢,细胞内酶活性降低,细胞衰老特征细胞内色素积累 细胞内呼吸速度下降,细胞核体积增大,细胞膜通透性下降,物质运输功能下降 细胞凋亡指基因决定的细胞自动结束生命的过程,是一种正常的自然生理过程,如蝌蚪尾消失,它对于多细胞生物体正常发育,维持内部环境的稳定以及抵御外界因素干扰具有非常关键作用。 细胞癌变:能够无限增殖 ★癌细胞特征形态结构发生显著变化,癌细胞表面糖蛋白减少,容易在体内扩散,转移. 癌症防治:远离致癌因子,进行CT,核磁共振及癌基因检测;可手术切除、化疗和放疗.
其他类似问题
本人是陕西师范大学毕业的,在重点高中教过高一生物,希望对你有帮助。
1、生命系统的结构层次依次为:细胞→组织→器官→系统→个体→种群→群落→生态系统细胞是生物体结构和功能的基本单位;地球上最基本的生命系统是细胞2、光学显微镜的操作步骤:对光→低倍物镜观察→移动视野中央(偏哪移哪)→高倍物镜观察:①只能调节细准焦螺旋;②调节大光圈、凹面镜★3、原核细胞与真核细胞根本区别为:有无核膜为界限的细胞核①原核细胞:无核膜,无染色体,如大肠杆菌等细菌、蓝藻②真核细胞:有核膜,有染色体,如酵母菌,各种动物注:病毒无细胞结构,但有DNA或RNA4、蓝藻是原核生物,自养生物5、真核细胞与原核细胞统一性体现在二者均有细胞膜和细胞质6、细胞学说建立者是施莱登和施旺,细胞学说建立揭示了细胞的统一性和生物体结构的统一性。细胞学说建立过程,是一个在科学探究中开拓、继承、修正和发展的过程,充满耐人寻味的曲折7、组成细胞(生物界)和无机自然界的化学元素种类大体相同,含量不同★8、组成细胞的元素①大量无素:C、H、O、N、P、S、K、Ca、Mg②微量无素:Fe、Mn、B、Zn、Mo、Cu③主要元素:C、H、O、N、P、S④基本元素:C⑤细胞干重中,含量最多元素为C,鲜重中含最最多元素为O★9、生物(如沙漠中仙人掌)鲜重中,含量最多化合物为水,干重中含量最多的化合物为蛋白质。★10、(1)还原糖(葡萄糖、果糖、麦芽糖)可与斐林试剂反应生成砖红色沉淀;脂肪可苏丹III染成橘黄色(或被苏丹IV染成红色);淀粉(多糖)遇碘变蓝色;蛋白质与双缩脲试剂产生紫色反应。(2)还原糖鉴定材料不能选用甘蔗(3)斐林试剂必须现配现用(与双缩脲试剂不同,双缩脲试剂先加A液,再加B液)R★11、蛋白质的基本组成单位是氨基酸,氨基酸结构通式为NH2—C—COOH,各种氨基酸的区H别在于R基的不同。★12、两个氨基酸脱水缩合形成二肽,连接两个氨基酸分子的化学键(—NH—CO—)叫肽键。★13、脱水缩合中,脱去水分子数=形成的肽键数=氨基酸数—肽链条数★14、蛋白质多样性原因:构成蛋白质的氨基酸种类、数目、排列顺序千变万化,多肽链盘曲折叠方式千差万别。★15、每种氨基酸分子至少都含有一个氨基(—NH2)和一个羧基(—COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上,这个碳原子还连接一个氢原子和一个侧链基因。★16、遗传信息的携带者是核酸,它在生物体的遗传变异和蛋白质合成中具有极其重要作用,核酸包括两大类:一类是脱氧核糖核酸,简称DNA;一类是核糖核酸,简称RNA,核酸基本组成单位核苷酸。17、蛋白质功能:①结构蛋白,如肌肉、羽毛、头发、蛛丝②催化作用,如绝大多数酶③运输载体,如血红蛋白④传递信息,如胰岛素⑤免疫功能,如抗体18、氨基酸结合方式是脱水缩合:一个氨基酸分子的羧基(—COOH)与另一个氨基酸分子的氨基(—NH2)相连接,同时脱去一分子水,如图:HOHHHNH2—C—C—OH+H—N—C—COOHH2O+NH2—C—C—N—C—COOHR1HR2R1OHR219、DNARNA★全称脱氧核糖核酸核糖核酸★分布细胞核、线粒体、叶绿体细胞质染色剂甲基绿吡罗红链数双链单链碱基ATCGAUCG五碳糖脱氧核糖核糖组成单位脱氧核苷酸核糖核苷酸代表生物原核生物、真核生物、噬菌体HIV、SARS病毒★20、主要能源物质:糖类细胞内良好储能物质:脂肪人和动物细胞储能物:糖原直接能源物质:ATP21、糖类:①单糖:葡萄糖、果糖、核糖、脱氧核糖②二糖:麦芽糖、蔗糖、乳糖★③多糖:淀粉和纤维素(植物细胞)、糖原(动物细胞)脂肪:储能;保温;缓冲;减压22、脂质:磷脂:生物膜重要成分胆固醇固醇:性激素:促进人和动物生殖器官的发育及生殖细胞形成维生素D:促进人和动物肠道对Ca和P的吸收★23、多糖,蛋白质,核酸等都是生物大分子,基本组成单位依次为:单糖、氨基酸、核苷酸。生物大分子以碳链为基本骨架,所以碳是生命的核心元素。自由水(95.5%):良好溶剂;参与生物化学反应;提供液体环境;运送24、水存在形式营养物质及代谢废物结合水(4.5%)★25、无机盐绝大多数以离子形式存在。哺乳动物血液中Ca2+过低,会出现抽搐症状;患急性肠炎的病人脱水时要补充输入葡萄糖盐水;高温作业大量出汗的工人要多喝淡盐水。26、细胞膜主要由脂质和蛋白质,和少量糖类组成,脂质中磷脂最丰富,功能越复杂的细胞膜,蛋白质种类和数量越多;细胞膜基本支架是磷脂双分子层;细胞膜具有一定的流动性和选择透过性。将细胞与外界环境分隔开27、细胞膜的功能控制物质进出细胞进行细胞间信息交流28、植物细胞的细胞壁成分为纤维素和果胶,具有支持和保护作用。★29、制取细胞膜利用哺乳动物成熟红细胞,因为无核膜和细胞器膜。30、★叶绿体:光合作用的细胞器;双层膜★线粒体:有氧呼吸主要场所;双层膜核糖体:生产蛋白质的细胞器;无膜中心体:与动物细胞有丝分裂有关;无膜液泡:调节植物细胞内的渗透压,内有细胞液内质网:对蛋白质加工高尔基体:对蛋白质加工,分泌31、消化酶、抗体等分泌蛋白合成需要四种细胞器:核糖体,内质网、高尔基体、线粒体。32、细胞膜、核膜、细胞器膜共同构成细胞的生物膜系统,它们在结构和功能上紧密联系,协调。维持细胞内环境相对稳定生物膜系统功能许多重要化学反应的位点把各种细胞器分开,提高生命活动效率核膜:双层膜,其上有核孔,可供mRNA通过结构核仁33、细胞核由DNA及蛋白质构成,与染色体是同种物质在不同时期的染色质两种状态容易被碱性染料染成深色功能:是遗传信息库,是细胞代谢和遗传的控制中心★34、植物细胞内的液体环境,主要是指液泡中的细胞液。原生质层指细胞膜,液泡膜及两层膜之间的细胞质植物细胞原生质层相当于一层半透膜;质壁分离中质指原生质层,壁为细胞壁★35、细胞膜和其他生物膜都是选择透过性膜自由扩散:高浓度→低浓度,如H2O,O2,CO2,甘油,乙醇、苯协助扩散:载体蛋白质协助,高浓度→低浓度,如葡萄糖进入红细胞★36、物质跨膜运输方式主动运输:需要能量;载体蛋白协助;低浓度→高浓度,如无机盐离子胞吞、胞吐:如载体蛋白等大分子★37、细胞膜和其他生物膜都是选择透过性膜,这种膜可以让水分子自由通过,一些离子和小分子也可以通过,而其他离子,小分子和大分子则不能通过。38、本质:活细胞产生的有机物,绝大多数为蛋白质,少数为RNA高效性特性专一性:每种酶只能催化一种成一类化学反应酶作用条件温和:适宜的温度,pH,最适温度(pH值)下,酶活性最高,温度和pH偏高或偏低,酶活性都会明显降低,甚至失活(过高、过酸、过碱)功能:催化作用,降低化学反应所需要的活化能结构简式:A—P~P~P,A表示腺苷,P表示磷酸基团,~表示高能磷酸键全称:三磷酸腺苷★39、ATP与ADP相互转化:A—P~P~PA—P~P+Pi+能量功能:细胞内直接能源物质40、细胞呼吸:有机物在细胞内经过一系列氧化分解,生成CO2或其他产物,释放能量并生成ATP过程线粒体结构如图:★41、有氧呼吸与无氧呼吸比较有氧呼吸无氧呼吸场所细胞质基质、线粒体(主要)细胞质基质产物CO2,H2O,能量CO2,酒精(或乳酸)、能量反应式C6H12O6+6O26CO2+6H2O+能量C6H12O62C3H6O3+能量C6H12O62C2H5OH+2CO2+能量过程第一阶段:1分子葡萄糖分解为2分子丙酮酸和少量[H],释放少量能量,细胞质基质第二阶段:丙酮酸和水彻底分解成CO2和[H],释放少量能量,线粒体基质第三阶段:[H]和O2结合生成水,大量能量,线粒体内膜第一阶段:同有氧呼吸第二阶段:丙酮酸在不同酶催化作用下,分解成酒精和CO2或转化成乳酸能量大量少量ATP分子高能磷酸键中能量的主要来源42、细胞呼吸应用:包扎伤口,选用透气消毒纱布,抑制细菌有氧呼吸酵母菌酿酒:选通气,后密封。先让酵田菌有氧呼吸,大量繁殖,再无氧呼吸产生酒精花盆经常松土:促进根部有氧呼吸,吸收无机盐等稻田定期排水:抑制无氧呼吸产生酒精,防止酒精中毒,烂根死亡提倡慢跑:防止剧烈运动,肌细胞无氧呼吸产生乳酸破伤风杆菌感染伤口:须及时清洗伤口,以防无氧呼吸★43、活细胞所需能量的最终源头是太阳能;流入生态系统的总能量为生产者固定的太阳能44、叶绿素a叶绿素主要吸收红光和蓝紫光叶绿体中色素叶绿素b(类囊体薄膜)胡萝卜素类胡萝卜素主要吸收蓝紫光叶黄素45、光合作用是指绿色植物通过叶绿体,利用光能,把CO2和H2O转化成储存能量的有机物,并且释放出O2的过程。叶绿体结构如图:46、18C中期,人们认为只有土壤中水分构建植物,未考虑空气作用1771年,英国普利斯特利实验证实植物生长可以更新空气,未发现光的作用1779年,荷兰英格豪斯多次实验验证,只有阳光照射下,只有绿叶更新空气,但未知释放该气体的成分。1785年,明确放出气体为O2,吸收的是CO21845年,德国梅耶发现光能转化成化学能1864年,萨克斯证实光合作用产物除O2外,还有淀粉1939年,美国鲁宾卡门利用同位素标记法证明光合作用释放的O2来自水。★47、条件:一定需要光光反应阶段场所:类囊体薄膜,产物:[H]、O2和能量过程:(1)水在光能下,分解成[H]和O2;(2)ADP+Pi+光能ATP条件:有没有光都可以进行暗反应阶段场所:叶绿体基质产物:糖类等有机物和五碳化合物过程:(1)CO2的固定:1分子C5和CO2生成2分子C3(2)C3的还原:C3在[H]和ATP作用下,部分还原成糖类,部分又形成C5联系:光反应阶段与暗反应阶段既区别又紧密联系,是缺一不可的整体,光反应为暗反应提供[H]和ATP。48、空气中CO2浓度,土壤中水分多少,光照长短与强弱,光的成分及温度高低等,都是影响光合作用强度的外界因素:可通过适当延长光照,增加CO2浓度等提高产量。49、自养生物:可将CO2、H2O等无机物合成葡萄糖等有机物,如绿色植物,硝化细菌(化能合成)异养生物:不能将CO2、H2O等无机物合成葡萄糖等有机物,只能利用环境中现成的有机物来维持自身生命活动,如许多动物。50、细胞表面积与体积关系限制了细胞的长大,细胞增殖是生物体生长、发育、繁殖遗传的基础。有丝分裂:体细胞增殖51、真核细胞的分裂方式减数分裂:生殖细胞(精子,卵细胞)增殖★无丝分裂:蛙的红细胞。分裂过程中没有出现纺缍丝和染色体变化★52、分裂间期:完成DNA分子复制及有关蛋白质合成,染色体数目不增加,DNA加倍。前期:核膜核仁逐渐消失,出现纺缍体及染色体,染色体散乱排列。有丝分裂中期:染色体着丝点排列在赤道板上,染色体形态比较稳定,数目比分裂期较清晰便于观察后期:着丝点分裂,姐妹染色单体分离,染色体数目加倍末期:核膜,核仁重新出现,纺缍体,染色体逐渐消失。★53、动植物细胞有丝分裂区别植物细胞动物细胞间期DNA复制,蛋白质合成(染色体复制)染色体复制,中心粒也倍增前期细胞两极发生纺缍丝构成纺缍体中心体发出星射线,构成纺缍体末期赤道板位置形成细胞板向四周扩散形成细胞壁不形成细胞板,细胞从中央向内凹陷,缢裂成两子细胞★54、有丝分裂特征及意义:将亲代细胞染色体经过复制(实质为DNA复制后),精确地平均分配到两个子细胞,在亲代与子代之间保持了遗传性状稳定性,对于生物遗传有重要意义。55、有丝分裂中,染色体及DNA数目变化规律56、细胞分化:个体发育中,由一个或一种细胞增殖产生的后代,在形态、结构和生理功能上发生稳定性差异的过程,它是一种持久性变化,是生物体发育的基础,使多细胞生物体中细胞趋向专门化,有利于提高各种生理功能效率。★57、细胞分化举例:红细胞与肌细胞具有完全相同遗传信息,(同一受精卵有丝分裂形成);形态、功能不能原因是不同细胞中遗传信息执行情况不同。★58、细胞全能性:指已经分化的细胞,仍然具有发育成完整个体潜能。高度分化的植物细胞具有全能性,如植物组织培养因为细胞(细胞核)具有该生物生长发育所需的遗传信息高度分化的动物细胞核具有全能性,如克隆羊59、细胞内水分减少,新陈代谢速率减慢细胞内酶活性降低细胞衰老特征细胞内色素积累细胞内呼吸速度下降,细胞核体积增大细胞膜通透性下降,物质运输功能下降60、细胞凋亡指基因决定的细胞自动结束生命的过程,是一种正常的自然生理过程,如蝌蚪尾消失,它对于多细胞生物体正常发育,维持内部环境的稳定以及抵御外界因素干扰具有非常关键作用。能够无限增殖★61、癌细胞特征形态结构发生显著变化癌细胞表面糖蛋白减少,容易在体内扩散,转移62、癌症防治:远离致癌因子,进行CT,核磁共振及癌基因检测;也可手术切除、化疗和放疗
其他2条回答
1、生命系统的结构层次依次为:细胞→组织→器官→系统→个体→种群→群落→生态系统细胞是生物体结构和功能的基本单位;地球上最基本的生命系统是细胞2、光学显微镜的操作步骤:对光→低倍物镜观察→移动视野中央(偏哪移哪)→高倍物镜观察:①只能调节细准焦螺旋;②调节大光圈、凹面镜★3、原核细胞与真核细胞根本区别为:有无核膜为界限的细胞核①原核细胞:无核膜,无染色体,如大肠杆菌等细菌、蓝藻②真核细胞:有核膜,有染色体,如酵母菌,各种动物注:病毒无细胞结构,但有DNA或RNA4、蓝藻是原核生物,自养生物5、真核细胞与原核细胞统一性体现在二者均有细胞膜和细胞质6、细胞学说建立者是施莱登和施旺,细胞学说建立揭示了细胞的统一性和生物体结构的统一性。细胞学说建立过程,是一个在科学探究中开拓、继承、修正和发展的过程,充满耐人寻味的曲折7、组成细胞(生物界)和无机自然界的化学元素种类大体相同,含量不同★8、组成细胞的元素①大量无素:C、H、O、N、P、S、K、Ca、Mg②微量无素:Fe、Mn、B、Zn、Mo、Cu③主要元素:C、H、O、N、P、S④基本元素:C⑤细胞干重中,含量最多元素为C,鲜重中含最最多元素为O★9、生物(如沙漠中仙人掌)鲜重中,含量最多化合物为水,干重中含量最多的化合物为蛋白质。★10、(1)还原糖(葡萄糖、果糖、麦芽糖)可与斐林试剂反应生成砖红色沉淀;脂肪可苏丹III染成橘黄色(或被苏丹IV染成红色);淀粉(多糖)遇碘变蓝色;蛋白质与双缩脲试剂产生紫色反应。(2)还原糖鉴定材料不能选用甘蔗(3)斐林试剂必须现配现用(与双缩脲试剂不同,双缩脲试剂先加A液,再加B液)R★11、蛋白质的基本组成单位是氨基酸,氨基酸结构通式为NH2—C—COOH,各种氨基酸的区H别在于R基的不同。★12、两个氨基酸脱水缩合形成二肽,连接两个氨基酸分子的化学键(—NH—CO—)叫肽键。★13、脱水缩合中,脱去水分子数=形成的肽键数=氨基酸数—肽链条数★14、蛋白质多样性原因:构成蛋白质的氨基酸种类、数目、排列顺序千变万化,多肽链盘曲折叠方式千差万别。★15、每种氨基酸分子至少都含有一个氨基(—NH2)和一个羧基(—COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上,这个碳原子还连接一个氢原子和一个侧链基因。★16、遗传信息的携带者是核酸,它在生物体的遗传变异和蛋白质合成中具有极其重要作用,核酸包括两大类:一类是脱氧核糖核酸,简称DNA;一类是核糖核酸,简称RNA,核酸基本组成单位核苷酸。17、蛋白质功能:①结构蛋白,如肌肉、羽毛、头发、蛛丝②催化作用,如绝大多数酶③运输载体,如血红蛋白④传递信息,如胰岛素⑤免疫功能,如抗体18、氨基酸结合方式是脱水缩合:一个氨基酸分子的羧基(—COOH)与另一个氨基酸分子的氨基(—NH2)相连接,同时脱去一分子水,如图:HOHHHNH2—C—C—OH+H—N—C—COOHH2O+NH2—C—C—N—C—COOHR1HR2R1OHR219、DNARNA★全称脱氧核糖核酸核糖核酸★分布细胞核、线粒体、叶绿体细胞质染色剂甲基绿吡罗红链数双链单链碱基ATCGAUCG五碳糖脱氧核糖核糖组成单位脱氧核苷酸核糖核苷酸代表生物原核生物、真核生物、噬菌体HIV、SARS病毒★20、主要能源物质:糖类细胞内良好储能物质:脂肪人和动物细胞储能物:糖原直接能源物质:ATP21、糖类:①单糖:葡萄糖、果糖、核糖、脱氧核糖②二糖:麦芽糖、蔗糖、乳糖★③多糖:淀粉和纤维素(植物细胞)、糖原(动物细胞)脂肪:储能;保温;缓冲;减压22、脂质:磷脂:生物膜重要成分胆固醇固醇:性激素:促进人和动物生殖器官的发育及生殖细胞形成维生素D:促进人和动物肠道对Ca和P的吸收★23、多糖,蛋白质,核酸等都是生物大分子,基本组成单位依次为:单糖、氨基酸、核苷酸。生物大分子以碳链为基本骨架,所以碳是生命的核心元素。自由水(95.5%):良好溶剂;参与生物化学反应;提供液体环境;运送24、水存在形式营养物质及代谢废物结合水(4.5%)★25、无机盐绝大多数以离子形式存在。哺乳动物血液中Ca2+过低,会出现抽搐症状;患急性肠炎的病人脱水时要补充输入葡萄糖盐水;高温作业大量出汗的工人要多喝淡盐水。26、细胞膜主要由脂质和蛋白质,和少量糖类组成,脂质中磷脂最丰富,功能越复杂的细胞膜,蛋白质种类和数量越多;细胞膜基本支架是磷脂双分子层;细胞膜具有一定的流动性和选择透过性。将细胞与外界环境分隔开27、细胞膜的功能控制物质进出细胞进行细胞间信息交流28、植物细胞的细胞壁成分为纤维素和果胶,具有支持和保护作用。★29、制取细胞膜利用哺乳动物成熟红细胞,因为无核膜和细胞器膜。30、★叶绿体:光合作用的细胞器;双层膜★线粒体:有氧呼吸主要场所;双层膜核糖体:生产蛋白质的细胞器;无膜中心体:与动物细胞有丝分裂有关;无膜液泡:调节植物细胞内的渗透压,内有细胞液内质网:对蛋白质加工高尔基体:对蛋白质加工,分泌31、消化酶、抗体等分泌蛋白合成需要四种细胞器:核糖体,内质网、高尔基体、线粒体。32、细胞膜、核膜、细胞器膜共同构成细胞的生物膜系统,它们在结构和功能上紧密联系,协调。维持细胞内环境相对稳定生物膜系统功能许多重要化学反应的位点把各种细胞器分开,提高生命活动效率核膜:双层膜,其上有核孔,可供mRNA通过结构核仁33、细胞核由DNA及蛋白质构成,与染色体是同种物质在不同时期的染色质两种状态容易被碱性染料染成深色功能:是遗传信息库,是细胞代谢和遗传的控制中心★34、植物细胞内的液体环境,主要是指液泡中的细胞液。原生质层指细胞膜,液泡膜及两层膜之间的细胞质植物细胞原生质层相当于一层半透膜;质壁分离中质指原生质层,壁为细胞壁★35、细胞膜和其他生物膜都是选择透过性膜自由扩散:高浓度→低浓度,如H2O,O2,CO2,甘油,乙醇、苯协助扩散:载体蛋白质协助,高浓度→低浓度,如葡萄糖进入红细胞★36、物质跨膜运输方式主动运输:需要能量;载体蛋白协助;低浓度→高浓度,如无机盐离子胞吞、胞吐:如载体蛋白等大分子★37、细胞膜和其他生物膜都是选择透过性膜,这种膜可以让水分子自由通过,一些离子和小分子也可以通过,而其他离子,小分子和大分子则不能通过。38、本质:活细胞产生的有机物,绝大多数为蛋白质,少数为RNA高效性特性专一性:每种酶只能催化一种成一类化学反应酶作用条件温和:适宜的温度,pH,最适温度(pH值)下,酶活性最高,温度和pH偏高或偏低,酶活性都会明显降低,甚至失活(过高、过酸、过碱)功能:催化作用,降低化学反应所需要的活化能结构简式:A—P~P~P,A表示腺苷,P表示磷酸基团,~表示高能磷酸键全称:三磷酸腺苷★39、ATP与ADP相互转化:A—P~P~PA—P~P+Pi+能量功能:细胞内直接能源物质40、细胞呼吸:有机物在细胞内经过一系列氧化分解,生成CO2或其他产物,释放能量并生成ATP过程线粒体结构如图:★41、有氧呼吸与无氧呼吸比较有氧呼吸无氧呼吸场所细胞质基质、线粒体(主要)细胞质基质产物CO2,H2O,能量CO2,酒精(或乳酸)、能量反应式C6H12O6+6O26CO2+6H2O+能量C6H12O62C3H6O3+能量C6H12O62C2H5OH+2CO2+能量过程第一阶段:1分子葡萄糖分解为2分子丙酮酸和少量[H],释放少量能量,细胞质基质第二阶段:丙酮酸和水彻底分解成CO2和[H],释放少量能量,线粒体基质第三阶段:[H]和O2结合生成水,大量能量,线粒体内膜第一阶段:同有氧呼吸第二阶段:丙酮酸在不同酶催化作用下,分解成酒精和CO2或转化成乳酸能量大量少量ATP分子高能磷酸键中能量的主要来源42、细胞呼吸应用:包扎伤口,选用透气消毒纱布,抑制细菌有氧呼吸酵母菌酿酒:选通气,后密封。先让酵田菌有氧呼吸,大量繁殖,再无氧呼吸产生酒精花盆经常松土:促进根部有氧呼吸,吸收无机盐等稻田定期排水:抑制无氧呼吸产生酒精,防止酒精中毒,烂根死亡提倡慢跑:防止剧烈运动,肌细胞无氧呼吸产生乳酸破伤风杆菌感染伤口:须及时清洗伤口,以防无氧呼吸★43、活细胞所需能量的最终源头是太阳能;流入生态系统的总能量为生产者固定的太阳能44、叶绿素a叶绿素主要吸收红光和蓝紫光叶绿体中色素叶绿素b(类囊体薄膜)胡萝卜素类胡萝卜素主要吸收蓝紫光叶黄素45、光合作用是指绿色植物通过叶绿体,利用光能,把CO2和H2O转化成储存能量的有机物,并且释放出O2的过程。叶绿体结构如图:46、18C中期,人们认为只有土壤中水分构建植物,未考虑空气作用1771年,英国普利斯特利实验证实植物生长可以更新空气,未发现光的作用1779年,荷兰英格豪斯多次实验验证,只有阳光照射下,只有绿叶更新空气,但未知释放该气体的成分。1785年,明确放出气体为O2,吸收的是CO21845年,德国梅耶发现光能转化成化学能1864年,萨克斯证实光合作用产物除O2外,还有淀粉1939年,美国鲁宾卡门利用同位素标记法证明光合作用释放的O2来自水。★47、条件:一定需要光光反应阶段场所:类囊体薄膜,产物:[H]、O2和能量过程:(1)水在光能下,分解成[H]和O2;(2)ADP+Pi+光能ATP条件:有没有光都可以进行暗反应阶段场所:叶绿体基质产物:糖类等有机物和五碳化合物过程:(1)CO2的固定:1分子C5和CO2生成2分子C3(2)C3的还原:C3在[H]和ATP作用下,部分还原成糖类,部分又形成C5联系:光反应阶段与暗反应阶段既区别又紧密联系,是缺一不可的整体,光反应为暗反应提供[H]和ATP。48、空气中CO2浓度,土壤中水分多少,光照长短与强弱,光的成分及温度高低等,都是影响光合作用强度的外界因素:可通过适当延长光照,增加CO2浓度等提高产量。49、自养生物:可将CO2、H2O等无机物合成葡萄糖等有机物,如绿色植物,硝化细菌(化能合成)异养生物:不能将CO2、H2O等无机物合成葡萄糖等有机物,只能利用环境中现成的有机物来维持自身生命活动,如许多动物。50、细胞表面积与体积关系限制了细胞的长大,细胞增殖是生物体生长、发育、繁殖遗传的基础。有丝分裂:体细胞增殖51、真核细胞的分裂方式减数分裂:生殖细胞(精子,卵细胞)增殖★无丝分裂:蛙的红细胞。分裂过程中没有出现纺缍丝和染色体变化★52、分裂间期:完成DNA分子复制及有关蛋白质合成,染色体数目不增加,DNA加倍。前期:核膜核仁逐渐消失,出现纺缍体及染色体,染色体散乱排列。有丝分裂中期:染色体着丝点排列在赤道板上,染色体形态比较稳定,数目比分裂期较清晰便于观察后期:着丝点分裂,姐妹染色单体分离,染色体数目加倍末期:核膜,核仁重新出现,纺缍体,染色体逐渐消失。★53、动植物细胞有丝分裂区别植物细胞动物细胞间期DNA复制,蛋白质合成(染色体复制)染色体复制,中心粒也倍增前期细胞两极发生纺缍丝构成纺缍体中心体发出星射线,构成纺缍体末期赤道板位置形成细胞板向四周扩散形成细胞壁不形成细胞板,细胞从中央向内凹陷,缢裂成两子细胞★54、有丝分裂特征及意义:将亲代细胞染色体经过复制(实质为DNA复制后),精确地平均分配到两个子细胞,在亲代与子代之间保持了遗传性状稳定性,对于生物遗传有重要意义。55、有丝分裂中,染色体及DNA数目变化规律56、细胞分化:个体发育中,由一个或一种细胞增殖产生的后代,在形态、结构和生理功能上发生稳定性差异的过程,它是一种持久性变化,是生物体发育的基础,使多细胞生物体中细胞趋向专门化,有利于提高各种生理功能效率。★57、细胞分化举例:红细胞与肌细胞具有完全相同遗传信息,(同一受精卵有丝分裂形成);形态、功能不能原因是不同细胞中遗传信息执行情况不同。★58、细胞全能性:指已经分化的细胞,仍然具有发育成完整个体潜能。高度分化的植物细胞具有全能性,如植物组织培养因为细胞(细胞核)具有该生物生长发育所需的遗传信息高度分化的动物细胞核具有全能性,如克隆羊59、细胞内水分减少,新陈代谢速率减慢细胞内酶活性降低细胞衰老特征细胞内色素积累细胞内呼吸速度下降,细胞核体积增大细胞膜通透性下降,物质运输功能下降60、细胞凋亡指基因决定的细胞自动结束生命的过程,是一种正常的自然生理过程,如蝌蚪尾消失,它对于多细胞生物体正常发育,维持内部环境的稳定以及抵御外界因素干扰具有非常关键作用。能够无限增殖★61、癌细胞特征形态结构发生显著变化癌细胞表面糖蛋白减少,容易在体内扩散,转移62、癌症防治:远离致癌因子,进行CT,核磁共振及癌基因检测;也可手术切除、化疗和放疗
您可能关注的推广回答者:
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁

我要回帖

更多关于 什么是肽链 的文章

 

随机推荐