s e x t u b e p r o中 s e x t u b e p r oB o a...

解:(1)①∵图象与x轴相交y=0,与y轴相交,x=0,分别求出:直线y=x-6与坐标轴交点坐标是:A(6,0),B(0,-6);②如图1,四边形DCEF即为四边形ABEF沿EF折叠后的图形;(2)∵四边形DCEF与四边形ABEF关于直线EF对称,又AB∥EF,∴CD∥EF.∵OA=OB,∠AOB=90°,∴∠BAO=45°.∵AB∥EF,∴∠AFE=135°.∴∠DFE=∠AFE=135°.∴∠AFD=360°-2×135°=90°,即DF⊥x轴.∴DF∥EH,∴四边形DHEF为平行四边形.要使四边形DHEF为菱形,只需EF=DF,∵AB∥EF,∠FAB=∠EBA,∴FA=EB.∴DF=FA=EB=t.又∵OE=OF=6-t,∴EF=.∴=t.∴=12-6.∴当t=12-6时,四边形DHEF为菱形.(3)分两种情况讨论:①当0<t≤3时,四边形DCEF落在第一象限内的图形是△DFG,∴S=.∵S=,在t>0时,S随t增大而增大,∴t=3时,S最大=;②当3<t<6时,四边形DCEF落在第一象限内的图形是四边形DHOF,∴S四边形DHOF=S△DGF-S△HGO.∴S=,=,=.∵a=<0,∴S有最大值.∴当t=4时,S最大=6.综上所述,当t=4时,S最大值为6.分析:(1)利用图象与坐标轴交点求法,与x轴相交y=0,与y轴相交,x=0,分别求出即可;(2)根据菱形的判定方法求出要使四边形DHEF为菱形,只需EF=DF,利用DF=FA=EB=t,进而求出即可;(3)分两种情况讨论:①当0<t≤3时,四边形DCEF落在第一象限内的图形是△DFG,②当3<t<6时,四边形DCEF落在第一象限内的图形是四边形DHOF,分别求出即可.点评:此题主要考查了一次函数的综合应用以及二次函数的最值求法和菱形的判定,熟练利用自变量的取值范围求出是解题关键.
请在这里输入关键词:
科目:初中数学
已知直线与x轴、y轴交于不同的两点A和B,S△AOB≤4,则b的取值范围是.
科目:初中数学
如图,在平面直角坐标系中,O是坐标原点,直线与x轴,y轴分别交于B,C两点,抛物线2+bx+c经过B,C两点,与x轴的另一个交点为点A,动点P从点A出发沿AB以每秒3个单位长度的速度向点B运动,运动时间为t(0<t<5)秒.(1)求抛物线的解析式及点A的坐标;(2)以OC为直径的⊙O′与BC交于点M,当t为何值时,PM与⊙O′相切?请说明理由.(3)在点P从点A出发的同时,动点Q从点B出发沿BC以每秒3个单位长度的速度向点C运动,动点N从点C出发沿CA以每秒个单位长度的速度向点A运动,运动时间和点P相同.①记△BPQ的面积为S,当t为何值时,S最大,最大值是多少?②是否存在△NCQ为直角三角形的情形?若存在,求出相应的t值;若不存在,请说明理由.
科目:初中数学
(;兰州)如图,M为双曲线y=上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于点D、C两点,若直线y=-x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为32.
科目:初中数学
(;宛城区一模)如图,直线y=-2x+2与x轴y轴分别相交于点A、B,四边形ABCD是正方形,曲线y=在第一象限经过点D.则k=3.
科目:初中数学
(;荆州模拟)已知直线y=2x+k与x轴的交点为(-2,0),则关于x的不等式2x+k<0的解集是(  )A.x≥-2B.x≤-2C.x>-2D.x<-2当前位置:
>>>直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单..
直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单位的速度沿线段BO向O点移动(与B、O点不重合),过E作EF∥AB,交x轴于F,将四边形ABEF沿EF折叠,得到四边形DCEF,设点E的运动时间为t秒。(1)①直线y=x-6与坐标轴交点坐标是A(___,___),B(___,___); ②画出t=2时,四边形ABEF沿EF折叠后的图形(不写画法); (2)若CD交y轴于H点,求证:四边形DHEF为平行四边形;并求t为何值时,四边形DHEF为菱形(计算结果不需化简);(3)设四边形DCEF落在第一象限内的图形面积为S,求S关于t的函数表达式,并求出S的最大值.
题型:解答题难度:偏难来源:福建省中考真题
解:(1)①直线与坐标轴交点坐标是A(6,0),B(0,-6); ②如图1,四边形DCEF即为四边形ABEF沿EF折叠后的图形;
(2)∵四边形DCEF与四边形ABEF关于直线EF对称,又AB∥EF, ∴CD∥EF,∵OA=OB,∠AOB=90°, ∴∠BAO=45°,∵AB∥EF, ∴∠AFE=135°, ∴∠DFE=∠AFE=135°, ∴∠AFD=360°-2×135°=90°,即DF⊥x轴,∴DF∥EH, ∴四边形DHEF为平行四边形,要使□DHEF为菱形,只需EF=DF, ∵AB∥EF,∠FAB=∠EBA, ∴FA=EB,∴DF=FA=EB=t, 又∵OE=OF=6-t, ∴EF=, ∴=t,∴, ∴当时,□DHEF为菱形;
(3)分两种情况讨论: ①当0<t≤3时,四边形DCEF落在第一象限内的图形是△DFG, ∴S=, ∵S=,在t>0时,S随t增大而增大, ∴t=3时,S最大=;②当3<t<6时,四边形DCEF落在第一象限内的图形是四边形DHOF, ∴S四边形DHOF=S△DGF-S△HGO,∴S= = =, ∵a=<0, ∴S有最大值,∴当t=4时,S最大=6,综上所述,当S=4时,S最大值为6。
马上分享给同学
据魔方格专家权威分析,试题“直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单..”主要考查你对&&求二次函数的解析式及二次函数的应用,一次函数的图像,二次函数的最大值和最小值,轴对称,平行四边形的判定&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用一次函数的图像二次函数的最大值和最小值轴对称平行四边形的判定
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。函数不是数,它是指某一变化过程中两个变量之间的关系一次函数的图象:一条直线,过(0,b),(,0)两点。 性质:(1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。k,b决定函数图像的位置:y=kx时,y与x成正比例:当k&0时,直线必通过第一、三象限,y随x的增大而增大;当k&0时,直线必通过第二、四象限,y随x的增大而减小。y=kx+b时:当 k&0,b&0, 这时此函数的图象经过第一、二、三象限;当 k&0,b&0,这时此函数的图象经过第一、三、四象限;当 k&0,b&0,这时此函数的图象经过第一、二、四象限;当 k&0,b&0,这时此函数的图象经过第二、三、四象限。当b&0时,直线必通过第一、二象限;当b&0时,直线必通过第三、四象限。特别地,当b=0时,直线经过原点O(0,0)。这时,当k&0时,直线只通过第一、三象限,不会通过第二、四象限。当k&0时,直线只通过第二、四象限,不会通过第一、三象限。特殊位置关系:当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)一次函数的画法:(1)列表:表中给出一些自变量的值及其对应的函数值。(2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出即可。(3)连线: 按照横坐标由小到大的顺序把描出的各点用直线连接起来。二次函数的最值:1.如果自变量的取值范围是全体实数,则当a&0时,抛物线开口向上,有最低点,那么函数在处取得最小值y最小值=;当a&0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大值=。 也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,。2.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2 时,,当x=x1 时;如果在此范围内,y随x的增大而减小,则当x=x1时,,当x=x2时&。 轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等;(3)关于某直线对称的两个图形是全等图形。轴对称的判定:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。这样就得到了以下性质: 1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。  4.对称轴是到线段两端距离相等的点的集合。
轴对称作用:可以通过对称轴的一边从而画出另一边。 可以通过画对称轴得出的两个图形全等。 扩展到轴对称的应用以及函数图像的意义。
轴对称的应用:关于平面直角坐标系的X,Y对称意义如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。 相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。
关于二次函数图像的对称轴公式(也叫做轴对称公式 )设二次函数的解析式是 y=ax2+bx+c 则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a
在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。譬如,等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等。另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。平行四边形的判定:(1)定义:两组对边分别平行的四边形是平行四边形;(2)定理1:两组对角分别相等的四边形是平行四边形;(3)定理2:两组对边分别相等的四边形是平行四边形;(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形。平行四边形的面积:S=底×高。
发现相似题
与“直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单..”考查相似的试题有:
316880504388893858488107919940900536=a-s-c-i-i=e-x-h-i-b-i-t-i-o-n=
-------------------------------------------------------------------------------------------------------------------
| F1|| F2|| F3|| F4|
| F5|| F6|| F7|| F8|
| F9||F10||F11||F12|
|pri||scr||bre|
ASCII SHOP
|___||___||___||___|
|___||___||___||___|
|___||___||___||___|
|_nt||oll||_ak|
|ins||pos||up |
| |^__||1__||2__||3__||4__||5__||6__||7_{||8_[||9_]||0_}||達\||確_||________|
|___||__1||___|
|___||___||___||___| |
| |||||__@||___||___||___||___||___||___||___||___||___||___||+_~|
|___||___||_wn|
|___||___||___||
| |_v_____||___||___||___||___||___||___||___||___||___||___||___||#__|
|___||___||___||___| |
____________
| |_|___||<__||___||___||___||___||___||___||___||,__||.__||-__||_|__________|
|___||___||___| |
_________________________________
|_____||_________________________________||______|
|___||_v_||___|
|________||___| |
-------------------------------------------------------------------------------------------------------------------
welcome - click enter!

我要回帖

更多关于 s e x t u b e 的文章

 

随机推荐