铸件的元素地壳含量最高的元素到底有多少种?主要元素跟...

铸造铝合金101A各元素的作用?(页 1)
◆铸造技术经验交流◆ -
热加工行业论坛 -锻造你的铸造人生-专业铸锻焊技术交流的网上家园 - Powered by Discuz! Archiver
热加工行业论坛's Archiver
mxhmoon 发表于
铸造铝合金101A各元素的作用?我们要对铸造铝合金进行进厂检查,化学成分那方面的,不知道各个元素都有什么作用?还有
就是按照国家标准GB/T应该有铅的含量范围,但是我们委托别的单位进行化验的话,c8x&m Pi.j
他们都不提供铅的范围。请问有必要做铅的含量分析控制吗?ZL101A只做哪些元素的含量分析"r(p-[
L:N+p2Fu+x[m
就行了?请各位高手帮忙。谢谢
[[i] 本帖最后由 mxhmoon 于
09:11 编辑 [/i]]王全武 发表于
一.Al-Si铸造合金中有害杂质
& & 1)Fe& & & && && &&&来自坩埚、熔炼工具和炉料,形成Al3Fe、α(Al12Fe3Si)和粗大针状的脆性β(Al9Fe2Si2)等相,它们大大削弱基体,降低塑性和耐蚀性。(加入Mn&0.5%可使相减少,形成新的复杂多元化合物)#~3c#~D)\T
2)& & & & Sn、Pb& & & & 它们在α(Al)中固溶度很小,形成共晶体的熔点低,热处理时引起过烧,Sn还降低耐蚀性(应≤0.01%)。
二. ZL101合金(亚共晶Al-Si合金) q%@8P2V)sG~+P
& && && && && &&&p11-13 Py#^y}
& && && &&&  Si 6.5%~7.5%4J,@5Hyj B-d\!iKQ
& && && && & Mg0.25%~0.45%,余为Al3gK6G N5ee
p9]
实际铸造组织:α(Al)+共晶Si+Mg2Si; q^b'lOaj]$p
固溶处理时,Mg2Si溶入α(Al)中,经人工时效后又呈弥散状析出,使α(Al)的结晶点阵发生畸变,强度大幅度提高。:dU_2c%QK C)J
:) 希望你能满意范恋雪 发表于
ZL101A与ZL101的区别我没记错的话101A含0.08--0.2的钛其余一样
硅量6.5--7.5%镁0.25%~0.45%是一定要分析的还有一下杂质含量QA vsQ4U
S
都是不大于 铜0.2 (重点的锰0.5 ) 锌0.3 锡0.01铅0.05 铁0.6mxhmoon 发表于
[quote]原帖由 [i]王全武[/i] 于
20:25 发表 [url=/redirect.php?goto=findpost&pid=4237&ptid=2430][img]/images/common/back.gif[/img][/url]Z;~
OPBzFm3\2b
一.Al-Si铸造合金中有害杂质 J:y`^5Q7LoJ`
& & 1)Fe& & & && && &&&来自坩埚、熔炼工具和炉料,形成Al3Fe、α(Al12Fe3Si)和粗大针状的脆性β(Al9Fe2Si2)等相,它们大大削弱基体,降低塑性和耐蚀性。(加入Mn ... [/quote]
[color=DarkSlateBlue]很满意的,但是能不能说的再详细点,比如各种主元素的作用和杂质元素的坏处。还有我们为控制铸造铝合金的性能,有必要严格控制哪些元素的含量呢?
非常感谢:handshake [/color]王全武 发表于
铝合金热处理工艺|VNL:m`q({t
铝合金热处理原理qZ-is~/a&I
tw
铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定的速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。QyN2me;e4e#c7u
1.1铝合金热处理特点{
_0Q-g0I.h!x^
众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。
1.2铝合金时效强化原理Q-N j CJ*K,q#hU
铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。#oQl;N*q
C7nd
铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。
硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。
沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。
在时效热处理过程中,该合金组织有以下几个变化过程:+P5i2o1B(M
1.2.1 形成溶质原子偏聚区-GoP(Ⅰ)区
在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称GoP(Ⅰ)区。GoP(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。Jw~_~v"~ `
1.2.2 GoP区有序化-形成GoP(Ⅱ)区
随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成GoP(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较GoP(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比GoP(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。p(hD*i;`y
1.2.3形成过渡相θ′
随着时效过程的进一步发展,铜原子在GoP(Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。
1.2.4 形成稳定的θ相
过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的延长,θ相的质点聚集长大,合金的强度、硬度进一步下降,合金就软化并称为“过时效”。θ相聚集长大而变得粗大。&j!ZR7{2\ C3Sp~4c
铝-铜二元合金的时效原理及其一般规律对于其他工业铝合金也适用。但合金的种类不同,形成的GoP区、过渡相以及最后析出的稳定性各不相同,时效强化效果也不一样。几种常见铝合金系的时效过程及其析出的稳定相列于表3-1。从表中可以看到,不同合金系时效过程亦不完全都经历了上述四个阶段,有的合金不经过GoP(Ⅱ)区,直接形成过渡相。就是同一合金因时效的温度和时间不同,亦不完全依次经历时效全过程,例如有的合金在自然时效时只进行到GoP(Ⅰ)区至GoP(Ⅱ)区即告终了。在人工时效,若时效温度过高,则可以不经过GoP区,而直接从过饱和固溶体中析出过渡相,合计时效进行的程度,直接关系到时效后合金的结构和性能。g lGI HTM
表3-1几种铝合金系的时效过程及其析出稳定的强化相
1.3影响时效的因素
3.1.3.1从淬火到人工时效之间停留时间的影响
研究发现,某些铝合金如Al-Mg-Si系合金在室温停留后再进行人工时效,合金的强度指标达不到最大值,而塑性有所上升。如ZL101铸造铝合金,淬火后在室温下停留一天后再进行人工时效,强度极限较淬火后立即时效的要低10~20Mpa,但塑性要比立刻进行时效的铝合金有所提高。
1.3.2合金化学成分的影响 [,j{4gTe:R
一种合金能否通过时效强化,首先取决于组成合金的元素能否溶解于固溶体以及固溶度随温度变化的程度。如硅、锰在铝中的固溶度比较小,且随温度变化不大,而镁、锌虽然在铝基固溶体中有较大的固溶度,但它们与铝形成的化合物的结构与基体差异不大,强化效果甚微。因此,二元铝-硅、铝-锰、铝-镁、铝-锌通常都不采用时效强化处理。而有些二元合金,如铝-铜合金,及三元合金或多元合金,如铝-镁-硅、铝-铜-镁-硅合金等,它们在热处理过程中有溶解度和固态相变,则可通过热处理进行强化。 VCv(RwJ
1.3.3合金的固溶处理工艺影响%tWJ5~u f
为获得良好的时效强化效果,在不发生过热、过烧及晶粒长大的条件下,淬火加热温度高些,保温时间长些,有利于获得最大过饱和度的均匀固溶体。另外在淬火冷却过程不析出第二相,否则在随后时效处理时,已析出相将起晶核作用,造成局部不均匀析出而降低时效强化效果。huawei06yu 发表于
[b] [url=/redirect.php?goto=findpost&pid=4181&ptid=2430]1#[/url] [i]mxhmoon[/i] [/b]+o y }9u.g6qH'z5E4Fc~
Lx/\jK
t+V7SY!C}vl&~
铝中合金元素和杂质对性能的影响8]|4z6aBd}
1&&合金元素影响
铜元素 {Y{mWe1N?&_
铝铜合金富铝部分平衡相图如图& &所示。548时,铜在铝中的最大溶解度为 5.65%,温度降到302时,铜的溶解度为0.45%。铜是重要的合金元素,有一定的固溶强化效果,此外时效析出的CuAl2有着明显的时效强化效果。 铝合金中铜含量通常在2.5% ~ 5%,铜含量在4%~6.8%时强化效果最好,所以大部分硬铝合金的含铜量处于这范围。Z$GDX{V7]0?
铝铜合金中可以含有较少的硅、镁、锰、铬、锌、铁等元素。 #]4~_]
MG.P
Al—Si合金系平衡相图富铝部分如图& &所示。在共晶温度577&&时,硅在&&固溶体中的最大溶解度为1.65%。尽管溶解度随温度降低而减少,介这类合金一般是不能热处理强化的。铝硅合金具有极好 的铸造性能和抗蚀性。 H!Lh{6QX5^
若镁和硅同时加入铝中形成铝镁硅系合金,强化相为MgSi。镁和硅的质量比为1.73:1。设计Al-Mg-Si系合金成分时,基体上按此比例配置镁和硅 的含量。有的Al-Mg-Si合金,为了提高强度,加入适量的铜,同时加入适量的铬以抵消铜对抗蚀性的不利影响-[g ci'Z@
Al-Mg2Si合金系合金平衡相图富铝部分如图&&所示。Mg2Si 在铝中的最大溶解度为1.85%,且随温度的降低而减速小。 F.K0_,h
n"U N
变形铝合金中,硅单独加入铝中只限于焊接材料,硅加入铝中亦有一定的强化作用。
Al-Mg合金系平衡相图富铝部分如图& &所示。尽管溶解度曲线表明,镁在铝中的溶解度随温度下降而大大地变小,但是在 大部分工业用变形铝合金中,镁的含量均小于6%,而硅含量也低,这类合金是不能热处理强化的,但是可焊性良好,抗蚀性也好,并有中等强度。
镁对铝的强化是明显的,每增加1%镁,抗拉强度大约升高瞻远34MPa。如果加入1%以下 的锰,可能补充强化作用。因此加锰后可降低镁含量,同时可降低热裂倾向,另外锰还可以使Mg5Al8化合物均匀沉淀,改善抗蚀性和焊接性能。&&
Al-Mn合金系平平衡相图部分如图&&所示。在共晶温度658时,锰在&&固溶体中的最大溶解度为1.82%。合金强度随溶解度增加不断增加,锰含量为0.8%时,延伸率达最大值。Al-Mn合金是非时效硬化合金, 即不可热处理强化。^,?J.I3Lj)K4V
锰能阻止铝合金的再结晶过程,提高再结晶温度,并能显著细化再结晶晶粒。再结晶晶粒的细化 主要是通过MnAl6化合物弥散质点对再结晶晶粒长大起阻碍作用。MnAl6的另一作用是能溶解杂质铁,形成(Fe、Mn)Al6,减小铁的有害影响。
锰是铝合金的重要元素,可以单独加入形成Al-Mn二元合金,更多的是和其它合金元素一同加入,因此大多铝合金中均含有锰。7Z}` E x K3gD
Al-Zn合金系平衡相图富铝部分如图& &所示。275时锌在铝中的溶解度为31.6%,而在125时其溶解度则下降到5.6%。
锌单独加入铝中,在变形条件下对铝合金强度的提高十分有限,同时存在应力腐蚀开裂、倾向,因而限制了它的应用。
F XlRVU7J
在铝中同时加入锌和镁,形成强化相Mg/Zn2,对合金产生明显的强化作用。Mg/Zn2含量 从0.5%提高到12%时,可明显增加抗拉强度和屈服强度。镁的含量超过形成Mg/Zn2相所需超硬铝合金中,锌和镁的比例控制在2.7左右时,应力腐蚀 开裂抗力最大。
如在Al-Zn-Mg基础上加入铜元素,形成Al-Zn-Mg-Cu系合金,基强化效果在所有铝合金中最大,也是航天、航空工业、电力工业上的重要的铝合金材料。
2.微量元素的影响
铁和硅 b_;R$w&?
铁在Al-Cu-Mg-Ni-Fe系锻铝合金中,硅在Al-Mg-Si系锻铝中和在Al-Si系焊条及铝硅铸造合金中,均作为合金元素加的,在基它铝合金 中,硅和铁是常见的杂质元素,对合金性能有明显的影响。它们主要以FeCl3和游离硅存在。在硅大于铁时,形成β-FeSiAl3(或 Fe2Si2Al9)相,而铁大于硅时,形成α-Fe2SiAl8(或Fe3Si2Al12)。当铁和硅比例不当时,会引起铸件产生裂纹,铸铝中铁含量过 高时会使铸件产生脆性。
钛和硼 G:a"Ob
P?P[
钛是铝合金中常用的添加元素,以Al-Ti或Al-Ti-B中间合金形式加入。钛与铝形成 TiAl2相,成为结晶时的非自发核心,起细化铸造组织和焊缝组织的作用。Al-Ti系合金产生包反应时,钛的临界含量约为0.15%,如果有硼存在则减 速小到0.01%。 g#w'b:~eBK
铬在Al-Mg-Si系、Al-Mg-Zn系、Al-Mg系合金中常见的添加元素。600℃时,铬在铝中溶解度为0.8%,室温时基本上不溶解。;V@ b^5^"Hv
铬在铝中形成(CrFe)Al7和(CrMn)Al12等金属间化合物,阻碍再结晶的形核和长大过程,对合金有一定的强化作用,还能改善合金韧性和降低应力腐蚀开裂敏感性。但会场增加淬火敏感性,使阳极氧化膜呈黄色。 9[#d.p9WT%a`SYg
铬在铝合金中的添加量一般不超过0.35%,并随合金中过渡元素的增加而降低。
锶是表面活性元素,在结晶学上锶能改变金属间 化合物相的行为。因此用锶元素进行变质处理能改善合金的塑性加工性和最终产品质量。由于锶的变质有效时间长、效果和再现性好等优点,近年来在Al-Si铸 造合金中取代了钠的使用。对挤压用铝合金中加入0.015%~0.03%锶,使铸锭中β-AlFeSi相变成汉字形α-AlFeSi相,减少了铸锭均匀化 时间60%~70%,提高材料力学性能和塑性加工性;改善制品表面粗糙度。对于高硅(10%~13%)变形铝合金中加入0.02%~0.07%锶元素,可 使初晶减少至最低限度,力学性能也显著提高,抗拉强度бb&&由233MPa提高到236MPa,屈服强度б0.2由204MPa提 高到210MPa,延伸率б5由9%增至12%。在过共晶Al-Si合金中加入锶,能减小初晶硅粒子尺寸,改善塑性加工性能,可顺利地热轧和冷轧。
锆也是铝合金的常用添加剂。一般在铝合金中加入量为0.1%~0.3%,锆和铝 形成ZrAl3化合物,可阻碍再结晶过程,细化再结晶晶粒。锆亦能细化铸造组织,但比钛的效果小。有锆 存在时,会降低钛和硼细化晶粒的效果。 在Al-Zn-Mg-Cu系合金中,由于锆对淬火敏感性的影响比铬和锰的小,因此宜用锆来代替铬和锰细化再结晶组织。
稀土元素加入铝合金中,使铝合金熔铸时增加成分过冷,细化晶粒,减少二次晶间距,减少合金中的气体和夹杂,并使夹杂相趋于球化。还可降低熔体表面张力,增加流动性,有利于浇注成锭,对工艺性能有着明显的影响。 ,Q;X'LQ!J!m
各种稀土加入量约为0.1%at%为好。混合稀土(La-Ce-Pr-Nd等混合)的添加,使Al-0.65%Mg-0.61%Si合金时效GoP区形成的临界温度降低。含镁的铝合金,能激发稀土元素的变质作用。
杂质元素的影响& &
y!NPO7~mY3f
钒在铝合金中形成VAl11难熔化合物,在熔铸过程中起细化晶粒作用,但比钛和锆的作用小。钒也有细化再结晶组织、提高再结晶温度的作用。 rW F
Z,O^ `-\f
钙在铝合金中固溶度极低,与铝形成CaAl4化合物,钙又是铝合金的超塑性元素,大约5%钙和5%锰的铝合金具有超塑性。钙和硅形成CaSi,不溶于铝, 由于减小了硅的固溶量,可稍微提高工业纯铝的导电性能。钙能改善铝合金切削性能。CaSi2不能使铝合金热处理强化。微量钙有利于去除铝液中的氢。
铅、锡、铋元素是低熔点金属,它们在铝中固溶度不大,略降低合金强度,但能改善切削性能。铋在凝固过程中膨胀,对补缩有利。高镁合金中加入铋可防止钠脆。
锑主要用作铸造铝合金中的变质剂,变形铝合金很少使用。仅在Al-Mg变形铝合金中代替铋防止钠脆。锑元素加入某些Al-Zn-Mg-Cu系合金中,改善热压与冷压工艺性能。
铍在变形铝合金中可改善氧化膜的结构,减少熔铸时的烧损和夹杂。铍是有毒元素,能使人产生过敏性中毒。因此,接触食品和饮料的铝合金中不能含有铍。焊接材料中的铍含量通常控制在8ug/ml以下。用作焊接基体的铝合金也应控制铍的含量。
钠在铝中几乎不溶解,最大固溶度小于0.0025%,钠的熔点低(97.8℃),合金中存在钠时,在凝固过程中吸附在枝晶表面或晶界,热加工时,晶界上的 钠形成液态吸附层,产生脆性开裂时,形成NaAlSi化合物,无游离钠存在,不产生“钠脆”。当镁含量超2%时,镁夺取硅,析出游离钠,产生“钠脆”。因 此高镁铝合金不允许使用钠盐熔剂。防止“钠脆”的方法有氯化法,使钠形成NaCl排入渣中,加铋使之生成Na2Bi进入金属基体;加锑生成Na3Sb或加 入稀土亦可起到相同的作用。pandeqi 发表于
[quote]ZL101A与ZL101的区别我没记错的话101A含0.08--0.2的钛其余一样
硅量6.5--7.5%镁0.25%~0.45%是一定要分析的还有一下杂质含量5O\/U{
FH'n&{)X\'v
都是不大于 铜0.2 (重点的锰0.5 ) 锌0.3 锡0.01铅0.05 铁0.6 ...
[size=2][color=#999999]范恋雪 发表于
21:50[/color] [url=/redirect.php?goto=findpost&pid=4253&ptid=2430][img]/images/common/back.gif[/img][/url][/size][/quote]Q)e3TEV
k f)hX
两者的区别在于含铁量不同,ZL101A需要铁含量低于0.2%;wxdnp 发表于
Mg的含量必须根据需要有所选择,因为它会影响合金的延伸率.caster 发表于
[b] [url=/redirect.php?goto=findpost&pid=4316&ptid=2430]5#[/url] [i]王全武[/i] [/b].Jj3moJ0M'r@;p!^
M;`%H+R:_B9|~J;S3x
3.1.3.1从淬火到人工时效之间停留时间的影响
研究发现,某些铝合金如Al-Mg-Si系合金在室温停留后再进行人工时效,合金的强度指标达不到最大值,而塑性有所上升。如ZL101铸造铝合金,淬火后在室温下停留一天后再进行人工时效,强度极限较淬火后立即时效的要低10~20Mpa,但塑性要比立刻进行时效的铝合金有所提高。B8SM&T?+P Ei$x
这是哪里的资料?谁做过这方面的实验或研究,能介绍一下么?
Powered by-产品/服务
-文章或作者
& 选择展区 &&
灰铸铁的组织和几种合金元素的影响
作者:中国铸造协会 李传栻
欢迎访问e展厅
过去半个世纪中,灰铸铁的熔炼和孕育处理有了很大的进展,对于铸铁的合金化、生核和凝固以及固态的相变都作了不少研究。在材料科学日新月异的今天,灰铸铁仍能作为一种结构材料而具有相当的竞争能力,是与这些研究工作分不开的。目前,许多重要的机器零件,如机床床身、内燃机缸体、缸盖、壳体、歧管、压缩机缸体和液压阀等,都是用灰铸铁制成的。当然,对灰铸铁性能的要求也越来越高了。既要保证强度高,又要有良好的加工性能和厚、薄截面组织的一致性;还要求铸铁的刚度高(弹性模量大),铸件的尺寸稳定。
生产高牌号灰铸铁件,进行有效的孕育处理,是至关重要的,但是,正确地确定化学成分,必要时配加少量合金元素,也是不可忽视的条件。如处理得当,选定化学成分和孕育处理可以有相辅相成的叠加效果。
这里,我们要扼要地讨论有关控制灰铸铁化学成分的一些问题,将不涉及孕育处理。
一.灰铸铁的组织和合金元素的影响
灰铸铁的强度和综合质量,决定于其最终的显微组织,生产高牌号灰铸铁件,控制其显微组织的目标,大致有以下几方面:
◆ 有较多的初生奥氏体枝状晶;
◆ 无游离渗碳体和晶间渗碳体;
◆ 石墨细小而且是A型;
◆ 基体组织95%以上为珠光体,游离铁素体不多于5%;
◆ 珠光体细小。
上述5项目标中,前3项要在铸铁凝固过程中建立,后2项则要通过控制铸铁的固态转变来达成。
1.铸铁的凝固过程
要分析铸铁的凝固过程,不能不回顾一下铁-碳合金的相图。铁-碳合金的相图是双重的,有稳定的铁-石墨系和介稳定的铁-渗碳体系。制成高性能的灰铁件,当然不希望出现游离的渗碳体,所以要使铸铁按稳定的铁-石墨系凝固。
图1中简略地表示了铁-碳合金相图的共晶部分,并表示了一些合金元素对铁-石墨系和铁-渗碳体系共晶温度的影响。
图1 合金元素对铁-石墨系和铁-渗碳体系平衡共晶温度的影响铁-石墨系的共晶温度高于铁-渗碳体系的共晶温度,如果共晶成分的铁水冷却到铁-石墨共晶温度以下,同时又在铁-渗碳体的共晶温度以上,此时,对铁-石墨系而言铁水已经有了过冷度,可以进行石墨加奥氏体(γ)的共晶结晶,对铁-渗碳体系而言,则系统的自由能仍较高,设有进行渗碳体加奥氏体共晶结晶的可能。这样,得到的是没有游离渗碳体的灰铸铁。
但是,对于只含碳而不含其他合金元素的铸铁,铁-石墨共晶结晶温度与铁-渗碳体共晶温度之间的间隔只有6℃,要实现上述凝固条件,实际上几乎是不可能的。在铁-碳合金中加入硅,可以使铁-石墨共晶温度与铁-渗碳体共晶温度之间的间隔显著扩大,见图2。含硅量为2%时,此间隔大于30℃,要制得不含游离渗碳体的铸铁,就非常方便了。所以,所有的灰铸铁中都含有大量的硅,硅是灰铸铁中必不可少的,极为重要的合金元素。正因为所有的灰铁中都含有硅,司空见惯,许多人反而不视其为合金元素了。
图2 硅对铁碳合金平衡共晶温度的影响各种常用的合金元素,对两共晶温度间隔的影响,概略地在图1中表示了。一些有数据可供参考的合金元素的作用见表1。① 对于铁-石墨系共晶成分,将表列数据乘以元素含量的百分数。
②在稳定条件下凝固时,固、液界面处合金元素在固相中的含量与其在液相中的含量的比。
* — 尚缺可用的数据。
(1)初生奥氏体析出
灰铸铁大都是亚共晶铸铁,共凝固过程从自液相中析出初生奥氏体枝晶开始。即使是共晶成分的铸铁,也会产生一些初生奥氏体,因为诱发共晶反应有赖于石墨的生核,石墨生核又需要一定的过冷度,这就有利于析出初生奥氏体。
共晶反应前析出的初生奥氏体枝晶的量愈多,铸铁的强度愈高,初生奥氏体枝晶的多少,取决于铸铁的化学成分。碳含量是决定奥氏体枝晶析出量的主要因素,碳含量比共晶碳含量(4.3%)低得愈多,奥氏体枝晶析出量就愈多。大多数合金元素,都改变铸铁的共晶碳含量,从而改变初生奥氏体枝晶的析出量。使铸铁共晶碳含量降低的元素,通常称为石墨化元素;使共晶碳含量提高的元素,称为渗碳体稳定元素。
硅和磷是作用强的、降低铸铁共晶碳含量的元素,灰铸铁中含有硅和磷时,其共晶碳含量见下式:
共晶碳含量(%)= 4.3%-1/3(%Si+%P)
一些常用合金元素的影响见表1。硫降低共晶碳含量的作用大于硅和磷,其在灰铸铁中作用的机制比较复杂,以后会较详细地谈到。铝降低共晶碳含量的作用也很强,但铝主要用于高铝耐热铸铁,一般灰铸铁中都不含铝。
如果灰铸铁的含碳量不变,加入降低共晶碳含量的合金元素,就会使铸铁的碳当量增高,从而会使初生奥氏体枝晶的析出量较少,共晶凝固的液相较多。
如果保持灰铸铁的碳当量不变,适当地提高含硅量,降低含碳量(即采用较高的硅碳比),却可以稍稍增加奥氏体枝晶量,同时减少石墨析出量。这样,就可以相应提高铸铁的强度和弹性模量。
(2)共晶凝固
随着初生奥氏体枝晶的析出,剩余液相中的碳当量不断提高,到其值达到4.3%时,即发生共晶转变。
共晶凝固从石墨生核开始。液相中微细的未熔石墨颗粒和高熔点的非金属夹杂物都可以是石墨结晶的核心。石墨晶核形成后,很快就生长成片状分枝,邻近石墨的液相中碳含量减少,促使奥氏体在石墨之间析出。奥氏体析出,又使邻近的液相富碳,促进石墨继续生长。这样相互促进,并向周围液相不断生长的奥氏体-石墨共生晶粒,我们称之为共晶团。液相中很多这样的共晶团,各自径向长大,结晶前沿大致接近于球形。每一个共晶团中的石墨片又都是相互连接的。
共晶凝固终了时,各共晶团相互间、共晶团与初生奥氏体枝晶。间互相接触。共晶团晶界上常聚集有较多的夹杂物,一些元素,(如磷、硫)与铁、碳组成的低熔点共晶体也可能析出于共晶团之间。有时,由于合金元素的偏析,还可能导致在共晶团之间析出渗碳体,这种渗碳体称之间晶间渗碳体。
石墨片的形态和尺寸,主要决定于凝固温度,冷却速率和液相中生核的情况。比较理想的石墨组织是散乱分布的、长度相近的石墨片(即A型石墨)。如铁水中生核状况良好,在略低于平衡共晶温度的适当过冷度下发生共晶反应,就可得到A型石墨。如果铁水中的生核条件不好,在比平衡温度低得多的温度下(过冷度大)凝固,则石墨片的长大速率和分枝速率都很高,则得到分布于枝晶间的细小石墨片,通常称之为过冷石墨(D型石墨)。除在特殊条件下使用的铸铁件外,一般不希望产生这种石墨组织。
增加共晶团数量(即共晶团尺寸减少),可使铸铁的强度较高,所以也是制造高牌号铸铁的目标。孕育处理是增加共晶团数的有效方法,但是,许多研究工作表明,一些偏析于液相并使固相线温度降低的合金元素,会阻碍共晶团的长大,从而使铸铁的共晶团数增加。现已知道,铸铁中加入钼、钒、铬、磷和铋,都可使共晶团数增加。
2.对灰铸铁凝固过程的分析
对于研究铸铁的凝固过程,冷却曲线是很有价值的。分析冷却曲线的特点,就可以预测铸铁的组织和性能。亚共晶灰铸铁的典型凝固冷却曲线如图3所示。
图3 亚共晶灰铸铁的典型凝固冷却曲线铁水冷却到液相线以下,即有初生奥氏体枝状晶析出,冷却曲线上出现一个小平台。此后,冷却到铁-石墨共晶温度以下,到达一定的过冷度,就发生共晶反应,即先有石墨生核,然后以此为基础长成共晶团。共晶反应释放的熔化热,又使过冷的液相温度回升,通常称之为“再辉”。最后,由于不断经铸型散热,系统的温度下降,在铁-渗碳体共晶温度以上凝固终了。在此种条件下,铸铁中石墨为A型,无游离渗碳体。
一些我们不希望其出现的组织及其产生的条件如下:
(1)过冷石墨
如果铁水冷到铁-石墨共晶温度以下,而石墨生核的条件不好,推迟了共晶团的形成和长大,产生较大的过冷度,石墨就细小,成为B型及至D型。如果共晶反应的起始和终了都在铁-渗碳体共晶温度以上,则铸铁中仍不存在游离渗碳体,只是石墨的形态为过冷石墨,参见图4。
图4 生核不足、过冷度大的铸铁的凝固冷却曲线(2)麻口组织
铸铁中的碳,一部分以渗碳体的形态存在,一部分为石墨,断口上可见白色部分和灰色部分搀杂相间,通常称为麻石组织。有时也出现在外围白口和中心灰口之间的过渡部位。
如铸件的冷却速率很高,铁水很快就冷到铁-渗碳体共晶温度以下,在薄壁处和角上就会有渗碳体和奥氏体析出。同时,石墨也能生核并长大。发生两种共晶反应所释放的热,又使液相的温度回升到铁-渗碳体共晶温度以上,铁-渗碳体共晶反应停止,限制了游离渗碳体的析出。在这样的条件下,铸铁可在两共晶温度之间完全凝固,(见图5)得到麻口组织。
图6 白口铸铁的凝固冷却曲线产生白口组织的条件,主要有以下三项。
a.冷却速率很高。发生共晶反应以前,铁水就冷却到铁-渗碳体共晶温度以下。造成冷却速率过高的工艺因素有:
◆ 铸件壁薄;
◆ 浇注温度太低,在凝固以前加热型腔的作用差,铸件与铸型间的温差大;
◆ 铸型的导热能力强。
b.铸铁的碳当量太低。凝固过程中析出的初生奥氏体枝晶多,剩下的共晶成分的液相不多,发生共晶反应时,释放的热量不足以使温度升高到铁-渗碳体温度以上。
c.合金元素的影响,大多数合金元素都会影响共晶碳含量,使碳当量改变,从而促成白口。此外,合金元素还会改变共晶温度,影响铁-石墨系和铁-渗碳体系共晶温度之间的间隔。一些渗碳体稳定元素(如Cv,V和Ti),在降低铁-石墨共晶温度的同时又提高铁-渗碳体共晶温度,铁水当然就容易过冷到铁-渗碳体共晶温度以下。还有一些合金元素(如Mn和Mo等),既降低铁-石墨共晶温度,也降低铁-渗碳体共晶温度,对白口倾向就没有明显的影响。
(4)晶间渗碳体
前面已经谈到,共晶凝固初期形成的渗碳体会造成白口组织或麻口组织,在共晶凝固后期析出的游离渗碳体,则分散于共晶团之间,通常称为晶间渗碳体。
在进行共晶凝固时,释放的熔化热一般都会使剩余液相的温度升高。如果在凝固后期,释放的热量消减,一些残留在共晶团之间的剩余的液相又冷却到铁-渗碳体共晶温度以下,就会产生晶间渗碳体,参见图7。
图7 形成晶间渗碳体时的凝固冷却曲线铸铁凝固过程中,合金元素在液相和固相之间的偏析,也可能导致晶间渗碳体出现。一般说来,石墨化元素多偏析于固相中,碳化物稳定元素则多偏析于液相中。
在铸铁中加有合金元素时,凝固过程中,剩余液相中铬和钒之类的元素逐渐富集,而硅和镍之类的元素逐渐减少。结果,剩余液相的铁-渗碳体共晶温度逐渐提高,铁-石墨共晶温度逐渐降低,两者之间的间隔不断缩小。最后凝固的液相中的碳,就可能以渗碳体的形式析出。图8示意地说明了这种情况。
图8 共晶凝固时合金元素偏析对凝固冷却曲线的影响(形成晶间渗碳体)合金铸铁中析出晶间渗碳体,可能与铸件的截面尺寸无关。实际上,有证据表明,缓慢凝固反而可能促成晶间渗碳体的析出,因为缓冷可能造成有利于合金元素偏析的条件。
避免出现此种晶间渗碳体,关键往往不在于提高石墨化元素的含量,因为石墨化元素偏析于固相中,未必能明显影响最后凝固的液相。解决的措施可以是:降低铬、钒等元素的含量,并加速共晶凝固过程。
(5)磷共晶
铸铁中含磷量超过0.02%,就可能出现晶间磷共晶。磷在奥氏体中的溶解度很小,铸铁凝固时,磷基本上都留在液相中。共晶凝固接近完成时,共晶团之间剩余的液相的成分接近三元共晶成分(Fe-2%、 C-7%、P)。此液相约在955℃凝固。
铸铁凝固时,钼、铬、钨和钒都偏析于富磷的液相中,使磷共晶的量增多。铸铁中含磷量高时,除磷共晶本身的有害作用外,还会使金属基体中所含的合金元素减少,从而减弱合金元素的作用。
磷共晶液体在凝固长大的共晶团周围呈糊状,凝固收缩很难得到补给,铸件出现缩松的倾向较大。
3.共析转变(奥氏体转变)
为了得到高强度的灰铸铁,我们希望奥氏体转变时不产生铁素体,金属基体全部为珠光体,而且要力求得到细小的珠光体。
灰铸铁中,合金元素的主要作用是控制奥氏体的转变。有些合金促成珠光体,有些合金促成铁素体,有些合金可以使珠光体细化。
为了更好地了解合金元素对灰铸铁奥氏体转变的影响,有必要先分析一下灰铸铁的平衡相图。含硅2%的铁碳合金比较接近一般的灰铸铁,其平衡相图的相关部分见图9。图9中,最值得注意的是铁素体(α)、奥氏体(γ)和石墨同时存在的三相区。三相区上面的界限是铁素体转变温度αT,下面的界限是共析温度A1。铁-碳合金二元相图中,没有这样的三相区,这是由于含有硅而特有的。
(1)平衡条件下的转变
在平衡条件下缓慢冷却时,奥氏体转变为铁素体和石墨。在固相线温度,奥氏体中大约含碳1.5%(A点),冷却过程中,碳在奥氏体中的溶解度不断下降。自A点冷却到B点,约有1%的碳自奥氏体析出。在αT温度以下的冷却过程中,还会发生石墨化,冷却到A1温度(C点),所有的奥氏体都已转变为铁素体和石墨。
奥氏体转变为铁素体和石墨时,共析石墨都沉积在共晶团的石墨片上,使之增厚。固相中形成新的石墨核心是非常困难的。
石墨片增厚需要的两条件:一是奥氏体中的碳原子扩散到石墨片上;二是石墨长大前沿的铁原子离开奥氏体/石墨界面。奥氏体中铁原子的排列最紧密,每一原子周围有12个相邻的原子,原子的移动主要靠晶格中的空隙。要使铁原子不断自石墨化前沿移开,就需要奥氏体中远处的空隙不断石墨化前沿扩散。如果冷却快,不能给原子扩散以足够的时间,就不能实现这种转变。
所以,上述平衡条件下的转变只能发生于冷却非常缓慢的情况下。全部铁素体基体的灰铸铁,实际上是非常少见的。
(2)珠光体的形成——非平衡条件
如果铸件冷却较快,奥氏体过冷到共析温度A1以下,就会转变为珠光体。
发生珠光体转变时,首先是渗碳体在奥氏体与石墨或其他夹杂物的界面上生核并成长。由于渗碳体的长大,其附近的奥氏体含碳量降低,于是在渗碳体的两侧析出铁素体。铁素体的析出,又使其附近的奥氏体富碳,又为渗碳体的析出创造了条件。这样的不断发展,就会形成由大体上互相平行的铁素体和渗碳体片层组成的珠光体团。每个奥氏体晶粒内,都会有若干珠光体团生长,直到其相互接触而终止。
进行这种转变,碳原子和铁原子扩散移动的距离比较短,不需要很长的扩散时间(缓慢冷却)。
(3)合金元素对共析转变的影响
硅是灰铁中最重要的合金元素,正因为含有2%左右的硅,灰铸铁的组织中才可以不含游离渗碳体。但是,硅对灰铸铁的力学性能也有其负面作用。首先,硅使铸铁的相图中产生铁素体、奥氏体和石墨共同存在的三相区,从而有利于铁素体形成。此外,硅还降低碳在奥氏体中的溶解度,增加铁素体长大的速率。
可以通过加入其他元素来抵消硅的负面作用,使铸铁具有完全的珠光体基体。合金元素可以通过不同的方式影响奥氏体的稳定性。有些元素,如锡、锑、砷和铜,易于聚集在石墨-奥氏体界面上,阻止碳向石墨扩散,使碳固溶于奥氏体,从而促进形成珠光体。
有些元素,如锰和镍,使αT和A1温度下降,扩大奥氏体区。由于碳的扩散速率随温度的下降而降低,在低温下形成铁素体的速率下降。因此,奥氏体中的含碳量较高,产生珠光体的倾向增大。
一些碳化物形成元素,如锰和铬,使碳在奥氏体中的溶解度增大。这类元素与碳的亲和力强,在冷却到αT温度期间,使碳保持固溶状态;在αT温度以下,则阻碍石墨化,阻碍形成游离铁素体,从而增加铸铁基体中的珠光体量。还有些碳化物形成元素(如钼)对奥氏体稳定性的影响不大,但能使层状珠光体细化,从而显著地增强珠光体。
(4)合金元素细化珠光体的作用
合金元素最重要的影响,是其对奥氏体转变为珠光体、贝氏体和马氏体的动力过程的影响,从热处理的角度来看,就是合金元素对可淬硬性的影响。连续冷却时,可淬硬性增强表现为将奥氏体转变的起始点推迟到较低的温度。在较低的温度下形成的珠光体较细,强度和硬度也都较高。
在影响奥氏体转变方面,合金元素的作用并不相同。有些合金元素阻碍形成游离铁素体的作用较强,有些合金元素推迟珠光体形成的作用较强。铸铁中加入锡、锑、砷之类的合金元素,有促成珠光体的作用,而在细化珠光体方面实际上没有作用。铬、铜和镍的作用不强,需加入较大的量才能明显地细化珠光体。锰促成珠光体的作用中等,但其用量往往因为要保持合适的Mn/S比而受到制约。钒和钼的促硬能力最强,加入较小的量就有可观的增强作用。
在中、低碳钢中,硅确有促进硬化的作用,其机制是延缓珠光体反应,冷却时易于得到马氏体。但是,在灰铸铁中,可认为硅在这方面有负面的作用,硅使A1温度提高,促进形成游离铁素体。硅还使珠光体在较高的温度下形成,即使得到珠光体,其强度和硬度也都较低。
钼的作用很特别,其推迟珠光体转变的作用强,但阻止铁素体形成的作用则很小。所以,加入钼可推迟珠光体转变,但碳扩散的时间较长,形成的铸素体也较多,在未加其他合金元素的灰铸铁中加入钼,可能使铸件厚截面处的铁素体量增多。所以,如要得到完全珠光体组织,在加入钼的同时,常要配加其他珠光体促成元素,如铜、锡和铬等。
灰铸铁中单加一种合金元素可以有明显的细化珠光体的作用,但是,将两种或多种合金元素配合使用往往有叠加的增强效果(即1+1>2的效果)。有些合金的配合作用是特别有效的,如Mo+Ni,Mo+Cu和Cr+Mo。合金的配合使用可以使加入的合金总量减少,从而能降低成本。但是,在消除铁素体方面,目前还不知道合金配合使用有叠加效果的情况。(end)
文章内容仅供参考
查看更多铁/铸钢/粉末冶金相关文章:
· 王晋生 ()· 三江航天集团 王德跃 王华侨 张杰 ()· newmaker ()· newmaker ()· newmaker ()· newmaker ()· newmaker ()· newmaker ()· newmaker ()· 中国铸造协会 李传栻 ()
查看相关目录:
我要为佳工机电网留言:
留言不能少于8个字符,广告性质的留言将被删除。
对 铁/铸钢/粉末冶金 有何见解?请到
畅所欲言吧!
佳工机电网·嘉工科技 Email:

我要回帖

更多关于 地壳含量最高的元素 的文章

 

随机推荐