丨1-1/丨x 1丨 丨x 2丨 2+丨1/2-1/3丨+丨...

当丨x-1丨+丨y-3丨=0时,探究并计算:1/xy+1/(x+2)(y+2)+1/(x+4)(+4)+1/(x+6)
肝胆相照Bnx
∵丨x-1丨+丨y-3丨=0∴x-1=0 y-3=0∴x=1 y=3∴原式=1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)×=1/2(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9)=1/2(1-1/9)=1/2×8/9=4/9
为您推荐:
其他类似问题
扫描下载二维码丨a-1丨+丨b+3丨=0,求b-a-1/2的值,为什么这么做,
哈哈VC99WX47
丨a-1丨+丨b+3丨=0说明丨a-1丨=0丨b+3丨=0a = 1b = -3b-a-1/2 = -3 -1 - 0.5 = -4.5
为您推荐:
其他类似问题
一楼正解,补充下思路:因为绝对值是大于等于0的,两个绝对值相加等于0,只有当这两个绝对值都等于0时才成立.所以就得到:丨a-1丨=0丨b+3丨=0
首先解析第一个等式。由于绝对值都为大于或等于零,所以2个绝对值相加等于零,只有一个结果,那就是2个绝对值都为零。所以|a-1|=0且|b+3|=0。各么 (a-1)=0
且 (b+3)=0所以a=1且b =-3所以b-a-1/2= -3-1-1/2= -9/2
因为绝对值是一个非负数,而两个非负数相加要得零,则两个数必须同时为零,那么则有a-1=0
b=-3所以b-a-1/2=-3-1-1/2=-4.5
扫描下载二维码使用while循环语句计算1+1/2!+1/3!+...1/20!之和,请看看程序是否对。
[问题点数:40分,结帖人wolcott2387]
使用while循环语句计算1+1/2!+1/3!+...1/20!之和,请看看程序是否对。
[问题点数:40分,结帖人wolcott2387]
不显示删除回复
显示所有回复
显示星级回复
显示得分回复
只显示楼主
2015年5月 Java大版内专家分月排行榜第二2013年5月 Java大版内专家分月排行榜第二
2011年5月 Java大版内专家分月排行榜第三2011年1月 Java大版内专家分月排行榜第三
2012年1月 其他开发语言大版内专家分月排行榜第二2011年5月 其他开发语言大版内专家分月排行榜第二2010年12月 其他开发语言大版内专家分月排行榜第二2009年2月 其他开发语言大版内专家分月排行榜第二2008年9月 其他开发语言大版内专家分月排行榜第二2008年8月 其他开发语言大版内专家分月排行榜第二2008年5月 其他开发语言大版内专家分月排行榜第二2007年11月 其他开发语言大版内专家分月排行榜第二
2011年4月 其他开发语言大版内专家分月排行榜第三2011年1月 其他开发语言大版内专家分月排行榜第三2009年6月 其他开发语言大版内专家分月排行榜第三2009年4月 其他开发语言大版内专家分月排行榜第三2009年1月 其他开发语言大版内专家分月排行榜第三2008年11月 其他开发语言大版内专家分月排行榜第三2008年7月 其他开发语言大版内专家分月排行榜第三2008年6月 其他开发语言大版内专家分月排行榜第三2006年9月 其他开发语言大版内专家分月排行榜第三
2012年1月 其他开发语言大版内专家分月排行榜第二2011年5月 其他开发语言大版内专家分月排行榜第二2010年12月 其他开发语言大版内专家分月排行榜第二2009年2月 其他开发语言大版内专家分月排行榜第二2008年9月 其他开发语言大版内专家分月排行榜第二2008年8月 其他开发语言大版内专家分月排行榜第二2008年5月 其他开发语言大版内专家分月排行榜第二2007年11月 其他开发语言大版内专家分月排行榜第二
2011年4月 其他开发语言大版内专家分月排行榜第三2011年1月 其他开发语言大版内专家分月排行榜第三2009年6月 其他开发语言大版内专家分月排行榜第三2009年4月 其他开发语言大版内专家分月排行榜第三2009年1月 其他开发语言大版内专家分月排行榜第三2008年11月 其他开发语言大版内专家分月排行榜第三2008年7月 其他开发语言大版内专家分月排行榜第三2008年6月 其他开发语言大版内专家分月排行榜第三2006年9月 其他开发语言大版内专家分月排行榜第三
2012年1月 其他开发语言大版内专家分月排行榜第二2011年5月 其他开发语言大版内专家分月排行榜第二2010年12月 其他开发语言大版内专家分月排行榜第二2009年2月 其他开发语言大版内专家分月排行榜第二2008年9月 其他开发语言大版内专家分月排行榜第二2008年8月 其他开发语言大版内专家分月排行榜第二2008年5月 其他开发语言大版内专家分月排行榜第二2007年11月 其他开发语言大版内专家分月排行榜第二
2011年4月 其他开发语言大版内专家分月排行榜第三2011年1月 其他开发语言大版内专家分月排行榜第三2009年6月 其他开发语言大版内专家分月排行榜第三2009年4月 其他开发语言大版内专家分月排行榜第三2009年1月 其他开发语言大版内专家分月排行榜第三2008年11月 其他开发语言大版内专家分月排行榜第三2008年7月 其他开发语言大版内专家分月排行榜第三2008年6月 其他开发语言大版内专家分月排行榜第三2006年9月 其他开发语言大版内专家分月排行榜第三
本帖子已过去太久远了,不再提供回复功能。计算:丨1/3-1/2丨+丨1/4-1/3丨+丨1/5-1/4丨+…+丨1/1丨 明天交
moxiaomu180404
丨1/3-1/2丨+丨1/4-1/3丨+丨1/5-1/4丨+…+丨1/1丨=1/2-1/3+1/3-1/4+1/4-1/5+.+1/2=1/2-1/2012=
为您推荐:
其他类似问题
扫描下载二维码1-2+3-4+5…… 是否等于 1/4? 1+2+3+4+5+6+7....是否等于 -1/12 ?
按投票排序
关于这个问题,大概两年前我写过一篇讨论的文章。这里贴出来,仅供大家讨论。如果文中有不准确之处,欢迎指出。=============================我是分割线===============================◆ 惊人的等式就在前几天吧,Numberphile的两期节目在人人上很是火了一阵。缘由无非是这两个视频给出了两个看似匪夷所思的等式。第一期告诉我们格兰迪(Grandi)级数等于1/2。第二期的结论似乎更惊悚,全体自然数之和等于-1/12!第二期的结论似乎更惊悚,全体自然数之和等于-1/12!怎么可能?That is impossible!相信这是大多数人的第一反应。然而视频中甚至拿出了Joseph Polchinski所著的《STRING THEORY》一书为证,用来告诉我们这个式子的结论着实广泛应用于物理相关领域。虽然我不懂物理,但这本书看上去不太像是一个民间科学家自己在家倒腾然后所著的,那么姑且可以把我们的态度从不屑一顾上升到将信将疑吧~现在,不妨从头梳理一遍,让我们看一看,这期间究竟隐藏着怎样的数学内幕。◆ 看似简洁易懂的推导姑且先把两个结论正确与否的讨论放下,我们先来看看视频里是怎样让我们相信这两个等式是正确的。首先是格兰迪级数S1:过程一目了然。接下来是全体自然数之和,可能稍微麻烦一点:证明分为两个步骤,第一步先求了一个中间级数S2的值第二步便是我们需要的结果看上去轻松愉快的证明,小学生都能看懂。简直是无懈可击……吗?◆ 非民科们的抨击没错,这是一个小学生都能看的懂的证明,不过我相信一个中学文化水平的人就已经能察觉到充斥在证明过程中的别扭感了。当然,如果你是一个大学生,并且在微积分的课堂上还算听过课,那么一定能一针见血的指出视频中这些证明的一个巨大的bug:在无穷级数中,只有绝对收敛的无穷级数才可以重新排列各项而不改变收敛值。也就是说,对于非绝对收敛的无穷级数,不能任意更改求和次序!这也就是黎曼(Riemann)级数定理,也叫黎曼重排定理。可以说,视频中的证明过程充斥着民科的味道。从S1=1/2的证明开始,无时不刻不在肆意改变着级数求和的次序,用一些看起来精巧的“移项变号”、“错位相减”的手法,得到了一个似乎正确的让人信服的结果。可惜的是,从严谨的数学角度上看,上面所有的证明过程,完全不成立。确实,各种论坛里最常见的对待该问题的论调大致到此为止:格兰迪级数是一个发散的级数,不能求和,从S1=1/2开始,所有的论证都是错的,后面的没必要看了。看上去好像是一群国外的深井冰在试图糊弄着愚笨的欧洲人民,可惜流传到中国,中国学生的数学底蕴远远超乎那群英国佬的想象,一眼看破真相。民科再一次被火眼金睛的我们所识破,一切都是一个笑话罢了。然而,真的到此为止了吗?这群英国佬当真只是无聊深井冰?貌似视频里的那个Tony还是诺丁汉大学的物理学家。啊呀呀,这么大的来头只是为了开个大众玩笑么?如果是错的,为什么这个式子会在物理学上有着深刻的影响与应用?我们应该更冷静的思考一下,这式子的背后究竟是什么。◆ 我们在求什么事实上,就像在中学时,老师为了向学生们说明为什么圆锥的体积是同底等高圆柱体积的三分之一时,只是用一个圆锥型容器装了三次水然后正好倒满一个同底等高的圆柱型容器一样。中学老师不会真正给你讲述重积分的计算,Tony也不会真正告诉你全体自然数求和的数学背景。这些看上去是充满漏洞,其实只是为了给你演示这个结论的存在,而非严格意义上的证明。为了追根溯源,我们应当先理解一个本质上的问题:我们在求什么?看上去又是一个咬文嚼字的问题,但如果只是玩文字游戏扣定义细节,那我也没有写这些的必要了。没错,我们是在求“和”,这个答案显而易见。然而,“和”的概念是怎样而来的呢?对于有穷个数的相加,“和”的确定是无可争议的——加起来得到什么就是什么。然而一旦被加数的项数变成了无穷大,我们就很难直接把我们要求的这个“和”给立马拎出来,而是需要用到极限的思想,去对我们的“和”进行一个逼近。在大多数人接触到的传统的数学中,无穷级数的和是由这个级数前n项和来逼近的。换句话说,对于一个级数我们对它的前n项进行求和,得到一个数列{An},其中是这个级数的前n项和,如果数列{An}收敛于A则我们说该级数和为A。以上,我们严格的给出了一个级数求和的方式:用级数的前n项和去逼近其真实的值。按这种方式,我们得到的和是所谓的柯西(Cauchy)和。我们有理由相信按照柯西和的方式求得的“和”是正确且严谨的,但是,我们有什么理由相信,就不存在其它的同样正确而严谨的途径,来求得无穷级数的“和”呢?意大利数学家切萨罗(Cesàro),就提出了另一种方式去让我们求得无穷级数的“和”,同样利用极限去逼近,但切萨罗却是利用前n项的部分和的平均来完成这件事。切萨罗定义了一个新的数列{Cn},其中是这个级数的前n项部分和的平均,如果数列{Cn}收敛于C则我们说该级数的和为C。可以证明,如果级数在柯西和下求得结果为α,那么在切萨罗和下结果与柯西保持一致,也为α。关于切萨罗和与柯西和的比较,我们暂且绕开计算复杂度不表,仅仅从数学的严谨性上来看,我们完全找不到一个理由去说:柯西和优于切萨罗和。我们应该认为,这两种求和的方式,起码在数学地位上是平等的。无独有偶,对于无穷级数“和”的定义,除了切萨罗和外,还有阿贝尔(Abel)和、拉玛努金(Ramanujan)和等等,切萨罗还对上述求和进行推广,给出了广义切萨罗求和的概念。我们不应该在我们仅仅了解柯西和的情况下去否认这些各式各样的“和”的正确性。但似乎切萨罗这群数学家们在干一件费力不讨好的事情,柯西和的定义不仅直观而且便于计算,得到的结果也不算糟糕,那么,刚刚说到的这些人们,是不是只是在做无用功呢?◆ 一二三四,再来一次了解了我们在求什么,我们重新回到最开始的问题上。这次我们用理性的,科学的方式重新对刚刚那几个级数求一次和。首先是格兰迪级数S1:显然,柯西和似乎在这里并不适用了,格兰迪级数的前n项和An是在1、0之间摆动的一个数列,并没有收敛于某个数。如果我们手头只有柯西和这个工具,那么我们也只能对这个看似简单的级数束手无策,悻悻作罢。这个时候,如果用切萨罗的方法求和又会怎样呢?我们来分别计算一下{An}与{Cn},看看能得到怎样的结果:可以看到,虽然柯西和不存在,但是切萨罗平均得到的数列却拥有极限1/2。所以,我们可以说,格兰迪级数具有切萨罗和为1/2。我们发现,切萨罗求和比柯西和不仅是相容的(即柯西和若存在,则切萨罗和存在且与柯西和相同),而且在柯西和无法解决的发散级数中,切萨罗和也有着用武之地。不仅仅是切萨罗和,前文提到的阿贝尔和、拉玛努金和等等求和,都可以处理格兰迪级数,并且得到一致的结果——1/2。就好像无理数将有理数域扩充为实数域,虚数将实数域扩充为复数域。各式各样新的求和方式让我们对级数的本质有了更深刻的认识,对于发散级数那无穷个加号背后蕴含的东西,我们终于可以去进行理论计算,而非望洋兴叹。现在,我们再来看看S2,这个呈增幅趋势正负摆动的级数是不是又像视频中所说,等于1/4呢?如果你拿出纸笔计算一下,你会遗憾的发现,级数S2做切萨罗平均后得到的数列{Cn}并不收敛。我们似乎又碰到了麻烦。难道S2就真的无法求和了吗?广义切萨罗求和再一次帮助我们解决了这个问题。这次我们是用前n项的部分和的平均的平均来逼近数列的和。为了不使文章充斥太多的符号和计算过程而显得晦涩难懂,在这里就不进行具体的计算,有兴趣的同学可以在切萨罗求和的维基百科中看到相关的定义(我承认是太懒不想算这么多复杂的通项,但确实目测加估计过了= =不要在意这些细节)。在二阶切萨罗平均数列的逼近下,我们的的确确的求得了一个极限——1/4,这个和正是视频中给出的答案。同样,阿贝尔和、拉玛努金和也均一致得到这个正确的结论。最后,就到了最让人不能接受的那个等式——自然数之和等于-1/12。如果你动手算了,你会沮丧的发现,无论是柯西和、切萨罗和、广义切萨罗和(哪怕推广到无穷阶)还是阿贝尔和,对于全体自然数相加这个级数,居然都无能为力——似乎无论用什么办法去逼近这个和,得到的都是发散的结果。然而拉玛努金和,却给出了这个正确的结果:-1/12。求的拉玛努金和的具体过程,艰深而复杂。无法在文章中给出证明,但我们已经知道,-1/12这样一个数字,并不是靠一个简单的数学把戏凭空捏造的,这其中涉及到相当有趣且深奥的数学理论。◆ 想更多一点这篇小文章的最后,让我们再想多一点点。在第一个视频中,视频的制作者留下了一个有趣的问题:假设房间里有一盏灯,一分钟之后将它打开,30秒后关上,15秒再打开,以后每次操作时间减半,那么2分钟时,灯处于什么状态?忽略普朗克时间等因素不做讨论,我们从纯思维上的去考虑这个问题,就会发现,格兰迪级数的切萨罗和1/2反映的不正是反应了一个物理上的叠加态吗?又如视频中所说,全体自然数之和等于-1/12,物理上确实已经有相应的实验从统计量角度验证了这个等式的成立,并且该结论被广泛应用于弦论当中。(好吧,我物理真的不好如果说错了求别打脸。)另外关于这个等式,还有很多种证明,其中最简明的应该是黎曼ζ函数在-1处的解得延拓。说到物理,我想起昨天一位朋友说了这样一段话:“物理总是通过一些方法使数学尽量满足和服务于他,而数学应该是严谨的有理有据的吧。”我却不能赞同这样的说法。我认为数学美于物理,不是因为数学比物理更严谨,而是数学比物理更清晰。数学建立于干净简明的公理体系之上,而物理建立于突兀生硬的宇宙物理常数之上。我相信物理的世界同样严谨而自洽。这就好像马赛克铺成的地板一样无缝,但我更喜欢整块的大理石瓷砖。◆ 一些参考两个视频连接:第一期:第二期:维基百科:格兰迪级数:切萨罗求和:拉玛努金求和:黎曼ζ函数:
题主应该问如何理解 1+2+3...=-1/12 的意义,而不应该问是否等于。如果问是否等于,那这取决于”等于“的定义。这个式子是 ramanujan 求和,在”某个“定义下成立。所以,我想题主大概真正想问的也许这类式子背后的意义是什么? 初等数学/初等物理/其他学科 里都应该不会接触到需要这个式子的场景,要理解动机并不容易。我下面给一个尽可能简单的解释,这需要你对泰勒级数以及初等物理有一点了解。在最前沿的物理理论中,我们想要描述的物理系统往往是非常复杂的,复杂到我们仅仅只知道如何去”微绕计算“。意思是,这个物理系统包含某个参量 λ,然后系统有一系列的可观测量。我们的理论仅仅知道,当 λ 很小的时候,可观测量可以写成 λ 的泰勒级数,然后我们知道如何去逐阶的计算泰勒级数的系数。注意,这和工程上的逐级近似计算是不同的。你把泰勒级数用于工程近似计算,那个理论本身是完全知道的,理论的定义是清晰的。而我上面说这种情况,是 理论本身 就是在逐级展开的意义下,我们把这种理论叫做微扰论( perturbative theory )。那么精确的理论是什么?比如,如果 λ 并不小,我们如何计算对应的物理量? 很抱歉,没人确切的知晓,这是个悬而未决的大问题,也是理论物理中引导人们思考的中心问题(如果你解决了,可以从 clay institution 得到一百万美元)。注意,我说的是”没人确切的知晓“,而不是”一无所知“。事实上,我们有种种推测方式。例如,如果我们知道 λ 很小的时候,某个物理量是 1+λ+λ^2+λ^3.... 。那么,当 λ 并不小,例如, 当 λ=2 的时候,这个物理量会是多少呢?如果我们直接去计算,会得到 1+2+4+... 发散。但我们确信物理量是不可能发散的。那么很有可能,其实精确解(exact,而不是 accurate) 是 1/(1-λ),然后由于我们的无能,我们的理论仅仅只能定义在泰勒展开的意义下,所以理论在定义之初就做了一个错误的 泰勒展开,所以我们得到发散的结果。但,发散的结果并非没有意义。如果你计算常见的初等函数的泰勒级数,你会发现除了 1/(1-λ) 之外,没有哪个函数能给出 1+λ+λ^2+λ^3... 这个表达式。事实上,数学定理( uniqueness of analytic continuation)保证了“解析”函数之中,只有 1/(1-λ) 具有这样的展开式。所以,我们的推测很有可能是靠谱的。上面这个故事真正的启示就是,发散级数中存在“信息”。如果我们足够聪明,我们就可以从这些蛛丝马迹中提取出真相。总结成一句话,就是Series don't d it is not a capricious thing. The divergence ofa series must reflect its cause.
---M. V. Berry回到楼主这个问题。假设你在某个理论中计算一个物理量,比如能量 E,得到一个表达式 E=1+2+3... 。你如何知道,这个式子就是真正精确(exact,而非 accurate)的呢?事实上,我们知道这不可能是精确的,因为能量不可能发散。那么,说不定真正精确的表达式也许是E=1^s+2^s+3^s+...然后我们的理论仅仅只关注了 s-&1 这个极限?! 假设如此,则我们一开始就犯了个错误,因为这个式子的求和与取极限并不能交换。先极限后求和,结果发散。而先求和,结果是 zeta(-s),再取极限,得到 -1/12。你也许会问,为什么精确解会是E=1^s+2^s+3^s+... , lim s-&1为什么不是E=1^(1+s)+2^(1+2s)+3^(1+3s)+... , lim s-&0呢?其实你可以构造出无数个式子,其先极限后求和的结果是 1+2+3+... 。如果先求和后极限,他们可能会得到不同的结果(发散级数可能有不同的求和方式)。 那么,我们如何知道 E=1^s+2^s+3^s+... , lim s-&1 这个式子是对的呢?事实上,大部分时候我们不知道。玩这种游戏的时候,结果往往只是种推测。但这种推测可以引导我们去分析问题。例如,1+2+3...=-1/12 这个式子用于弦论在 lightcone 量子化框架下计算能量,之后人们发现可以用另一个框架 BRST 量子化计算能量。后者无需 1+2+3...=-1/12 也仍然得到和前者一样结果。通常而言,诉诸于这类危险操作得到的单个结果并不完全可信。但我们会从不同的框架去判断,有时会和实验/数值模拟对比,如果相互之间的结果都自洽,那我们就相信这是对的。这就是物理学家的思考方式。
虽然增加一些定义可以得到自然数之和等于-1/12,但是证明过程却不是像上面的那样,一个cauchy不收敛的级数错位相加无论怎样都是不可取的,因为那可以得到无数个结果。这是个人看到的写得最好的答案了,转至链接如下:发散级数在其它意义下的求和(需要普通微积分水平的背景知识)视频开头这个问题依赖于数列极限的定义。考虑 Cauchy 的数列极限定义:如果部分和数列()收敛于有限数,则对于任意,存在正整数,当时,。即加的项数足够多以后,部分和与“要多接近有多接近”。在上面的定义下级数是不收敛的。这可以通过Cauchy收敛定理加以说明:任何收敛的级数其通项必须趋于。显然这个交错级数不满足这一性质。其实从上面的定义中可以看出部分和在和之间来回震荡,不可能稳定于某个。数学家为了让这样的数列收敛,就修改了数列收敛的定义。其中一个就是 Cesaro 平均收敛。所谓平均收敛, 只要求收敛即可,即相当于对求平均值。在这个意义下级数收敛:在和之间来回震荡,它的平均值是。所以收敛与否,归根结底是我们对“和”的定义不同。但要指出,Cesaro 和与 Cauchy 和的定义是相容的:如果一个数列在 Cauchy 和的意义下收敛于,则在 Cesaro 和的意义下也收敛于,但反之不然。有关发散级数在其他定义下的“和”还有很多:比如 Abel 和定义为。容易证明 Abel 和比 Cesaro 和更弱:如果一个数列在 Cesaro 和的意义下收敛于,则在 Abel 和的意义下也收敛于,但反之不然。一个反例是,可以证明这个数列在 Abel 和下收敛于,但不能 Cesaro 求和。其他一些例子可以参考 Wikipedia:。所有自然数的和这个级数在 Cesaro 和 Abel 和的意义下都不收敛。因此为了得到我们还需要更进一步的看法。有关错位相加视频之后的计算几乎是毫无道理的。条件收敛的级数不能随便改变求和顺序,更不必谈原本就发散的级数。所以错位相加肯定是错误的。举一个例子:考虑级数,,这两个级数显然都是发散的。但是我们将其错位相加:如果错一位得到的结果便是(或,取决于你错位的方法),错两位便是(或)。不同的错位方法得到的结果不同,错位相加自然不是一个合理的计算方法。Casimir effect 与权重因子(最好能有量子场论的背景知识)所有自然数之“和”是这个结论曾经出现在 A.Zee 的《Quantum Field Theory in a Nutshell》关于
的推导中。具体可以参考 1.9 Disturbing the vacuum 一节。在弦论中也出现过很多类似的求和。这也就是说,这个奇怪的结果有确实可观测的物理效应。这已经不是单纯利用定义的不同所可以解释的了。在 A.Zee 的关于 Casimir effect 的推导中,所用的解释是板振动的频率不可能无限高,高于某个截止频率以后的项都要忽略最终得到这样的结果。他所采用的方法是为配了一个的“权重因子”,再对权重因子求和,当时展开保留第一项,这是一种常见的方法。下面的这段计算来源于 Polchinski 的《String Theory》的书后习题:它在附近的 Laurent 展开是。在 Casimir effect 中第一项被真空中的零点能抵消,所以只剩下。真空中的零点能也出现在弦论中,而且弦论中类似的计算中第一项也会被消去。这种找到无穷大的方法实际就是量子场论中的正规化(regularization),而扔掉它则对应着重整化(renormalization)的想法。因此实际上被物理学家解读为在附近的 Laurent 展开的零阶项的系数。函数与解析延拓(需要复分析或者复变函数水平的背景知识)注意到这样一个幂级数展开。如果在上式中令,似乎就得到了的结果。但要注意上式只有在的区域内收敛,令实际上是对相当是对作解析延拓到全平面(除了)的结果。因此所有自然数之“和”是其实还有一种更简单的看法。注意到的定义是。所谓所有自然数之“和”便是。在解析延拓的意义下,。解析延拓很不直观,这个结果和我们之前有关的结论能否对应?答案是肯定的。在陶哲轩的博文 The Euler-Maclaurin formula, Bernoulli numbers, the zeta function, and real-variable analytic continuation 中,便提到解析延拓和光滑渐进形式的联系。在第一部分陶哲轩把一个级数改写成 smoothing sum 的形式并且估计 smoothing sum 的余项。第二部分用这个渐进形式可以得到和解析延拓的关系。这篇文章答主并没有仔细阅读过,感兴趣的同学可以自行阅读。博文网址:总结我认为这个问题的来源于对数学中定义的滥用,以及人们对定义的误解。数学家是这个世界上最严谨的一批人,他们谈论什么都有据可循。事实上,数列极限本身就是一个有严格定义的概念(可见答案最开始处的定义)。所有学过微积分的同学不妨问自己中这个等号的意义是什么,和中的等号是否意义相同?一个严肃的数学家绝对不会轻易写下“”,而是可能会告诉你这是在 Cesaro 和意义下的结果或是解析延拓意义下的结果,这里等号的意义已不是中的等号或是等号的意义。至于在解析延拓的意义下这个式子为何会有物理上的效应,这是另外一个问题。粗略地说是因为解析延拓可以反映求和的某些渐进行为。而这背后蕴含的则是物理中正规化的方法和重整化的思想。
没记错的话,这是拉马努金求和约定下 才有的结果。数学没有前提,都是扯淡。
看到很多回答说不收敛,或者推导不严密后果很严重,甚至说不自洽,其实没那么夸张。我的观点和某个回答一样,确实是因为,而这点之所以能够成立,其最基本的原因是解析延拓。这时候我们是把这个级数看作一个整体,如果按照通常的部分和的定义方式,这就是个发散级数。这复变函数里面,存在着收敛圆的概念,这点严重限制了级数的定义范围。但是如果级数对应的函数是解析函数的话,那么就可以根据函数在一个开域的取值来进行延拓,从而达到扩大定义域的目的。这点能够成立的最关键因素是解析函数具有刚性,在某个域的值取定了之后,其他域的值就不能随便取了,只能根据这个域的值“自然生长”。当然有时候会出现延拓路径不同,值就不同的情况,这时候可以认为我们得到了多值函数。举个例子,,它的收敛域是,这是因为有两个奇点。但是我们只要注意到在收敛域内,那么我们就立即能把定义域推广到全复平面除了。(例子取自Visual Complex Analysis,有中文版《复分析:可视化方法》。)对于函数也是一样,观察它最原始的定义式,它的定义域是。但是通过函数方程,可以将函数的定义域扩展到全平面除去。函数的解析延拓是单值的。所以,计算一下可得由于解析延拓是唯一的,所以这个值是有意义的而且是自洽的。但要注意你不能对这个级数进行其他的操作,比如加减,否则会得出矛盾。能得出结论的只是这个级数可以在解析延拓的意义下有一个值,仅此而已。
这个回答真的展示了现在反智主义多么严重。我在回答中反反复复强调了,这个“证明”是非常规的,需要定义增补。但不是没有意义,每一种方式,都是非平凡(non-trivial)的。每一种方式,都在复分析,量子场论或者弦理论中有不同程度的应用。我不知道有多少人上来看都不看,凭着直觉给我点反对和没有帮助。我第一次看到这个等式,我也是惊讶,然后慢慢思考是不是各种推导方式哪里有问题。当然,这些推导都做出了非常规的假设,但是这些假设都是合理的增补延拓,而且他们在实际学科中有着应用。我最近看了比较多的资料,这些到达-1/12的“操作”,很多数学家有研究,目前为止,没有一个是well defined的,但是这里罗列的,也没有一个是完全被证明不自洽的。数学家们也认为,这些“操作”值得研究完善。况且,它们在很多应用中已经显示了实际意义。举个例子,现代物理,很多计算,算到最后,都设计发散数列,求和,物理学家都在等待自己的“黎曼”,外科手术式的切除“无穷大”,给这些计算赋予有意义的值。从某种意义上,物理学家们在等待数学的发展。这时候,数学家们冷着脸说,别等了,毫无意义的,我们的科学将的未来将是多么的灰暗?那些急着把这些操作扔进垃圾桶的知友,且慢。题里面的某位答主,我真的劝你静下心来,做好功课,别看到一个和你直觉不符合的事物就斥其为异端,毕竟数学不是宗教。照你这个态度,非欧几何没法诞生,透视几何也没办法诞生,负数也不能开平方,都是“数学玩笑”。另外,你反驳我的那个等式,说我暗示了
“ 1+无穷=2+无穷”。
再仔细看看那个“证明”,没有哪个地方能得到这个式子,“无穷"根本就不在正整数集合里面,它从来就没有出现在计算中,我更加没有暗示等式两边可以约掉正无穷,我看倒是你做了许多“想当然”,然后把结论塞到我嘴里指控我。这样真的合适么?我看到很多的知友,言辞激烈的讽刺我误人子弟。我给你造成了不好的映像,惹你们生气,我道歉,我也会注意修改自己答案。但是我已经尽可能的使用中立的词汇,处处标明了这里那里做改动的危险性。在修改答案的过程中,我用我自己的业余时间做做这方面的research,也和一些数学系的朋友讨论,有新的启示,我会及时更新在答案里。我真诚的希望大家在讨论数学问题的时候,不要一副卫道士的姿态。在科学上,改编星际迷航的一句话:Science: the final frontier. Its mission: to explore strange new worlds, to seek out answers and new explanations, to boldly go where no man has gone before.--------------------------------------------------------------------------------------------------结论:是的(kind of)第一个解释涉及一些高等数学的知识,中途一些证明我也跳过了,有兴趣的同学可以自己百度;缺乏这样知识的同学,或者没耐性的,请看第二个,当然,第二个证明有“耍滑头”的嫌疑。-------------------------严肃的分割线---------------------------黎曼Zeta函数:Riemann zeta functionζ(s) :考虑:取s=-1得到:得到:这个结论在 弦物理 量子场论中是有应用的。据我所知,波色弦论(bosonic string theory)里的临界维度26,就是根据这个结论计算出来的,(下面是相关论文链接,可能需要高校IP才可以下载,并注意学校包库需要早至1980)这是一本关于弦理论的教材:截取中间阐释临界维度26的部分:(我本人不是专家,所以加上了物理标签。希望了解的知友补充介绍下,有人给换成了钓鱼标签,我真不知道是什么心态。你无知,希望大家都和你一样无知么?)--------------------------脑洞的分割线-----------------------下面这个“证明”也许说明不了太多,但是至少说明了一件事:“无穷”大这个概念是多么的古怪,我们很难在这个概念上理清头绪。另外一点需要说明的是,这个证明更像是一个数字游戏,大家不要太严肃,但是里面确实蕴含着一些值得思考的事情。数学大神知友们别急着抨击我。不收敛不能求和、级数不能错位相加,这些我也都是明白的。但是这些公设本身,做定义增补会有问题么?这是个值得考虑的问题。请注意,“正无穷”本身并不在正整数集合中,所以序列中有“无穷多项”,但是不包含“正无穷”这个数,因为它根本就不是一个“数”。这个“证明”中需要作出假设,需要修改公设,但是不是类似做出1+1=1这样根本性的修改,而是增加性的修改。例如平面欧式几何规定了平行线永远不相交,但是我们给平面增加一个点“无穷远点”,规定平行的直线相交于“无穷远点”,我们就并没有对欧式几何进行实质性的颠覆,只是发展了另外一套系统,透视几何(perspective geometry),相当于是对欧式几何的扩充(generalization)。原先,透视几何指导绘画,然而现在几乎是所有计算机视觉技术的基础。所以,不要急着说这个增补定义没意义嘛!说不定啥时候就有用了。比如现在,我把这个等式叫做:“永生的诅咒”(LOL)考虑等式的值,的值,得到:得到:考虑等式考虑等式的值,的值,得到:得到:令:考虑:考虑:得到:得到:这种推导在一定程度上讲,是很危险的。但至于有评论武断地说,在这个对于“加法”概念增补是完全“不自洽”的评论,我是不赞同的,我相信你也没仔细思考过这个问题。我同意这样的增补会导致一定程度的不自洽,比如在任意位置插入0,这样的加法就失效了,但是我认为这只能说明这个加法定义增补是不完整的。我认为适当的完善定义,不仅仅这个加法可以自洽,而且可能和正常的体系连续起来。参考:,。
万物收敛于61.35 (手动滑稽
不是有一个定理吗…
非要解释的话,可以这么理解,因为黎曼zeta函数在-1处取值为-1/12。
不是。其实应该等于42。
已有帐号?
无法登录?
社交帐号登录

我要回帖

更多关于 丨x 1丨 丨x 2丨 2 的文章

 

随机推荐