已知不等式akx2;+(1-k2)x-k...

当前位置:
>>>已知kx2-(3k-2)x+1是关于x的二次三项式,且(7k-6)的相反数为3k2,..
已知kx2-(3k-2)x+1是关于x的二次三项式,且(7k-6)的相反数为3k2,那么k的值为______.
题型:填空题难度:偏易来源:不详
∵(7k-6)的相反数为3k2,∴7k-6=-3k2,3k2+7k-6=0,(3k-2)(k+3)=0,3k-2=0,k+3=0,k1=23,k2=-3,∵kx2-(3k-2)x+1是关于x的二次三项式,∴k≠0,-(3k-2)≠0,k≠23,∴k=-3,故答案为:-3.
马上分享给同学
据魔方格专家权威分析,试题“已知kx2-(3k-2)x+1是关于x的二次三项式,且(7k-6)的相反数为3k2,..”主要考查你对&&一元二次方程的解法&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
一元二次方程的解法
一元二次方程的解: 能够使方程左右两边相等的未知数的值叫做方程的解。 解一元二次方程方程: 求一元二次方程解的过程叫做解一元二次方程方程。 韦达定理:一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)一般式:ax2+bx+c=0的两个根x1和x2关系:x1+x2= -b/ax1·x2=c/a一元二次方程的解法: 1、直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。 直接开平方法适用于解形如的一元二次方程,根据平方根的定义可知,x+a 是b的平方根,当时,;当b&0时,方程没有实数根。 用直接开平方法求一元二次方程的根,一定要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数,零的平方根是零,负数没有平方根。2、配方法 配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。 配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有 。 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程 的求根公式:求根公式是专门用来解一元二次方程的,故首先要求a≠0;有因为开平方运算时,被开方数必须是非负数,所以第二个条件是b2-4ac≥0。即求根公式使用的前提条件是a≠0且b2-4ac≥0。4、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
发现相似题
与“已知kx2-(3k-2)x+1是关于x的二次三项式,且(7k-6)的相反数为3k2,..”考查相似的试题有:
122623461887504014416274520777500266已知不等式kx2;+(1-k2)x-k>0,且|x|≤2,求适合条件的所有实数k的值
令f(x)=kx²+(1-k²)x-k Δ=(1-k²)²+4k²=(1+k²)²>01.若k=0,不成立2.若k<0时,抛物线开口向下,画出图像可以发现要满足题目条件,只需f(-2)>0且f(2)>0解得:k不存在3.若k>0,开口向上,对称轴有3类位置:①位于-2左边②位于2右边③介于-2与2之间 .结合Δ>0可知③种情况不可能成立.对称轴x=(k²-1)/2k.故:① x=(k²-1)/2k<-2且f(-2)>0 ②x=(k²-1)/2k>2且f(2)>0 .解得-2+√5<k<2综上可得:-2+√5<k<2
为您推荐:
其他类似问题
﹙1﹚k=0,原式化为1>0,对任意x成立,故k=0成立﹙2﹚k≠0时因式分解得﹙kx+1﹚﹙x-k﹚>0
①k>0时解得∶x<﹣1/k或x>k ,又|x|≤2
②k<0时解得∶k<x<﹣1/k,又|x|≤2
∴得﹣2≤k≤﹣1/2
综上﹣2≤k≤﹣1/2或k=...
扫描下载二维码已知关于x的不等式k²-kx>x+2的解为x>-1/2,求实数k的值
(k+1)x<k²-2
∵x>-1/2
x>(k²-2)/(k+1)
(k²-2)/(k+1)=-1/2
2k²+k-3=0
(2k+3)(k-1)=0
k1=-3/2,
∴k=-3/2.
为您推荐:
其他类似问题
扫描下载二维码当前位置:
>>>已知方程x2+y2+kx+2y+k2=0所表示的圆有最大的面积,则直线y=(k-1..
已知方程x2+y2+kx+2y+k2=0所表示的圆有最大的面积,则直线y=(k-1)x+2的倾斜角α=______.
题型:填空题难度:中档来源:不详
r=12k2+4-4k2≤1,当有最大半径时有最大面积,此时k=0,r=1,∴直线方程为y=-x+2,设倾斜角为α,则由tanα=-1且α∈[0,π)得α=3π4.故答案为:3π4.
马上分享给同学
据魔方格专家权威分析,试题“已知方程x2+y2+kx+2y+k2=0所表示的圆有最大的面积,则直线y=(k-1..”主要考查你对&&直线的倾斜角与斜率,圆的标准方程与一般方程&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
直线的倾斜角与斜率圆的标准方程与一般方程
直线的倾斜角的定义:
x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°。
直线的斜率的定义:
倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率。直线的斜率常用k表示。即k=tanα。斜率反映直线与x轴的倾斜程度。直线斜率的性质:
当时,k≥0;当时,k<0;当时,k不存在。 直线倾斜角的理解:
(1)注意“两个方向”:直线向上的方向、x轴的正方向; (2)规定当直线和x轴平行或重合时,它的倾斜角为0度。
直线倾斜角的意义:
①直线的倾斜角,体现了直线对x轴正向的倾斜程度;②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;③倾斜角相同,未必表示同一条直线。
直线斜率的理解:
每条直线都有倾斜角,但每条直线不一定都有斜率, 斜率不存在;当 也逐渐增大; 且逐渐增大。圆的定义:
平面内与一定点的距离等于定长的点的集合是圆。定点就是圆心,定长就是半径。
圆的标准方程:
圆的标准方程,圆心(a,b),半径为r;特别当圆心是(0,0),半径为r时,圆的标准方程为。
圆的一般方程:
圆的一般方程当>0时,表示圆心在,半径为的圆; 当=0时,表示点; 当<0时,不表示任何图形。 圆的定义的理解:
(1)定位条件:圆心;定形条件:半径。(2)当圆心位置与半径大小确定后,圆就唯一确定了.因此一个圆最基本的要素是圆心和半径.
圆的方程的理解:
(1)圆的标准方程中含有a,b,r三个独立的系数,因此,确定一个圆需三个独立的条件.其中圆心是圆的定位条件,半径是圆的定形条件.(2)圆的标准方程的优点在于明确显示了圆心和半径.(3)圆的一般方程形式的特点:a.的系数相同且不等于零;b.不含xy项.(4)形如的方程表示圆的条件:a.A=C≠0;b.B=0;c.即
&几种特殊位置的圆的方程:
发现相似题
与“已知方程x2+y2+kx+2y+k2=0所表示的圆有最大的面积,则直线y=(k-1..”考查相似的试题有:
567448842356837947788961884836435069知识点梳理
1.&一般在试卷中,数字综合题以压轴题形式出现。2.&数学综合题大致可分为代数综合题、几何综合题以及代数、几何综合题三类。3.&求解数学综合题的基本原则是:先拆分成几个比较熟悉的数学小题分别求解,再根据题意,找出它们之间的联系,综合解之。
【一元二次根与系数的关系】如果&{{ax}^{2}}+bx+c=0(a≠0)的两个根是&{{x}_{1}},{{x}_{2}},那么&{{x}_{1}}{{+x}_{2}}=-{\frac{b}{a}},{{x}_{1}}o{{x}_{2}}={\frac{c}{a}}(隐含&a≠0).特别地,当一元二次方程的二次项系数为&1&时,设&{{x}_{1}},{{x}_{2}}&&是方程&{{x}^{2}}+px+q=0&&的两个根,则&{{x}_{1}}{{+x}_{2}}=-p,{{x}_{1}}o{{x}_{2}}=q.【一元二次方程根与系数关系得逆用】如果实数&{{x}_{1}},{{x}_{2}}&&满足&{{x}_{1}}{{+x}_{2}}=-{\frac{b}{a}},{{x}_{1}}o{{x}_{2}}={\frac{c}{a}}&,那么&{{x}_{1}},{{x}_{2}}&&是一元二次方程&{{ax}^{2}}+bx+c=0()的两个根.以两个实数&{{x}_{1}},{{x}_{2}}&&为根的一元二次方程(二次项系数为&1)是&{{x}^{2}}-\left({{{x}_{1}}{{+x}_{2}}}\right){{x+x}_{1}}o{{x}_{2}}=0&.【一元二次方程根与系数的应用】(1)不解方程,利用根与系数的关系求关于&{{x}_{1}},{{x}_{2}}&&的对称式的值,如&{{{{x}_{1}}}^{2}}+{{{{x}_{2}}}^{2}}=\left({{{x}_{1}}+{{x}_{2}}}\right){{}^{2}}{{-2x}_{1}}o{{x}_{2}}&,&\left({{{x}_{1}}-{{x}_{2}}}\right){{}^{2}}=\left({{{x}_{1}}+{{x}_{2}}}\right){{}^{2}}-4{{x}_{1}}o{{x}_{2}},&{{|x}_{1}}{{-x}_{2}}|=\sqrt[]{\left({{{x}_{1}}+{{x}_{2}}}\right){{}^{2}}-4{{x}_{1}}o{{x}_{2}}},&{\frac{1}{{{x}_{1}}}}+{\frac{1}{{{x}_{2}}}}={\frac{{{x}_{1}}{{+x}_{2}}}{{{x}_{1}}{{x}_{2}}}},&{\frac{1}{{{{{x}_{1}}}^{2}}}}+{\frac{1}{{{{{x}_{2}}}^{2}}}}={\frac{\left({{{x}_{1}}{{+x}_{2}}}\right){{}^{2}}-2{{x}_{1}}{{x}_{2}}}{\left({{{x}_{1}}{{x}_{2}}}\right){{}^{2}}}}.(2)根的符号的讨论.利用根与系数的关系可以讨论根的符号,设一元二次方程&{{ax}^{2}}+bx+c=0(a≠0)的两个根&{{x}_{1}},{{x}_{2}}&.i)Δ≥0,且&{{x}_{1}}{{x}_{2}}>0&时,两根同号.&\left\{{\begin{array}{l}{Δ≥0,}\\{{{x}_{1}}{{x}_{2}}>0,}\\{{{x}_{1}}{{+x}_{2}}>0.}\end{array}}\right&&&两根同正.&\left\{{\begin{array}{l}{Δ≥0,}\\{{{x}_{1}}{{x}_{2}}>0,}\\{{{x}_{1}}{{+x}_{2}}<0.}\end{array}}\right&&&两根同负.ii)Δ≥0,且&{{x}_{1}}{{x}_{2}}<0&时,两根异号.&\left\{{\begin{array}{l}{Δ≥0,}\\{{{x}_{1}}{{x}_{2}}0.}\end{array}}\right&&&两根异号且正根的较大.&\left\{{\begin{array}{l}{Δ≥0,}\\{{{x}_{1}}{{x}_{2}}<0,}\\{{{x}_{1}}{{+x}_{2}}<0.}\end{array}}\right&&&&两根异号且负根的绝对值较大.(3)其他结论.①&设一元二次方程&{{ax}^{2}}+bx+c=0(a≠0)的两个根&{{x}_{1}},{{x}_{2}}&(其中&{{x}_{1}}≥{{x}_{2}}&),若&m&为实数,当&Δ≥0&时,一般会有以下结论存在:i)\left({{{x}_{1}}-m}\right)\left({{{x}_{2}}-m}\right)<0
{{x}_{1}}>m,{{x}_{2}}<m&.ii)\left({{{x}_{1}}-m}\right)\left({{{x}_{2}}-m}\right)>0&且&\left({{{x}_{1}}-m}\right)+\left({{{x}_{2}}-m}\right)>0&& {{x}_{1}}>m,{{x}_{2}}>m&.iii)&\left({{{x}_{1}}-m}\right)\left({{{x}_{2}}-m}\right)>0&且&\left({{{x}_{1}}-m}\right)+\left({{{x}_{2}}-m}\right)<0&& {{x}_{1}}<m,{{x}_{2}}<m&.②&若有理系数一元二次方程有一个根是&a+\sqrt[]{b},则必有另一个根为&a-\sqrt[]{b}&.③&若&ac<0,则方程&{{ax}^{2}}+bx+c=0(a≠0)必有两个实数根.④&逆用构造一元二次方程辅助解题:当已知等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理.以上利用韦达定理求出一元二次方程中待定系数后,一定要验证方程的&Δ,一些考试中,往往利用这一点设置陷阱.
整理教师:&&
举一反三(巩固练习,成绩显著提升,去)
根据问他()知识点分析,
试题“已知关于x的方程x2+(2k-1)x+k2=0的两根x1、x...”,相似的试题还有:
已知关于x的方程x2+(2k-1)x-2k=0的两个实数根x1、x2满足x1-x2=2,试求k的值.
已知:x1,x2是关于x的方程x2-(m-1)x+2m=0的两根,且满足x12+x22=8,求m的值.
关于x方程x2-(k+2)x+2k+1=0的两实数根为x1与x2,若x12+x22=11,求实数k的值.

我要回帖

更多关于 已知不等式a 的文章

 

随机推荐