如何计算风荷载作用下框架柱顶水平位移荷载

liuxing888
单层钢结构厂房有桥式吊车时,风荷载作用下的柱顶位移为1/400,那么地震水平作用下的柱顶位移也按此允许值控制吗?抗规里没有对这方面有明确的规定.如按此控制值进行控制时,计算结果的应力比非常小,用钢量太高了,如果不按此值控制,应该取多少?请指点,不胜感激!!!!!!!!!!!!
规范上没有明确厂房的在地震力下的柱顶位移,不过多高层钢框架的控制值是1/250,可以参考一下。1/400有点严了。
STS研发小组
没有1/400吧 我怎么记得吊车有分不同的种类来控制位移的比如有人在吊车里操作就要控制严格 需要1/400其他情况有其他控制比如吊车地面控制 我怎么记得位移只要满足 1/200左右就行了 楼主查查规范看看 我记得不清楚了 无吊车的那种普通板厂房我都控制到 1/80左右差不多了
liuxing888
回复 谢谢版主!!
回复 你说的那是门规里面的,都是风荷载标准值控制的楼主说的是地震力下的
STS研发小组如何计算风荷载作用下框架柱顶水平位移
集中力作用下的位移,均布荷载作用下的位移,会算吗你可以把风荷载简化成倒三角形的荷载作用在框架柱子上,这样会算了吧
为您推荐:
其他类似问题
扫描下载二维码PKPM中SATWE设计参数的合理选取策略(二)
5、调整信息:
5.1梁端负弯矩调幅系数:0.85
高规(JGJ3-2002)5.2.3条规定竖向荷载作用下,可考虑框架梁端塑性变形内力重分布,其调幅系数为:现浇框架梁取0.8-0.9;装配整体式框架梁取0.7-0.8;
程序实现:在竖向荷载作用下,钢筋混凝土框架梁设计允许考虑混凝土的塑性变形引起的内力重分布,适当减小支座处梁的负弯矩,相应增大跨中梁的正弯矩,使梁上下配筋比较均匀,框架梁端负弯矩调幅后,梁跨中弯矩按平衡条件相应增大。
操作要点:根据工程实际情况输入调幅系数。调幅系数取值范围0.8~1.0。初始值为0.85。
注意事项:(1)此项调整只针对竖向荷载,对地震力和风荷载不起作用。
(2)通常装配整体式框架梁端可取调幅系数0.7~0.8,现浇框架可取0.8~0.9。
(3)梁截面设计时,为保证框架梁跨中截面底部钢筋不至于过少,其正弯矩设计值不应小于竖向荷载作用下按简支梁计算的跨中弯矩的一半。
(4)程序内定钢梁为不调幅梁,如需要对钢梁调幅,可以再特殊构件设置时定义。
(5)通常实际工程中悬挑梁的梁端负弯矩不调幅。
对于现浇楼板,一般取0.8。另外,程序隐含钢梁为不调幅梁,若需调幅,应在特殊构件定义中人工交互修改。
5.2梁活载内力放大系数:1.0
在活荷载信息中考虑活荷载最不利布置时可填写1.0,如若未考虑活荷载不利布置建议取值1.1~1.2;
程序实现:版软件该参数为&&/span&梁设计弯矩增大系数&,程序通过此参数调整梁弯矩设计值,以作为安全储备。但由于梁弯矩放大系数是最后乘在组合后的弯矩设计值上,不仅放大活荷载,也将恒荷载、地震及风作用放大,显然不够合理,此外,活荷载不利布置不仅对弯矩有影响,对剪力也有影响,仅放大弯矩是不完善的。
新版软件该参数改为&&/span&梁活荷载内力放大系数&,该系数只对梁在满布活荷载下的内力(弯矩、剪力、轴力)进行放大。程序初始值为1。
操作要点:一般工程建议该系数取值1.1~1.2,如已输入梁活荷载不利布置楼层数,则应填1,初始值为1.0.
5.3梁扭矩折减系数:0.4
高规(JGJ3-2002)5.2.4条规定对于现浇楼板结构,应考虑楼板对梁抗扭的约束作用。程序通过对梁的扭矩进行折减达到减少梁的扭转变形和扭矩计算值,折减系数为0.4-1.0,一般取0.4。对不与刚性楼板相连或圆弧梁,此系数不起作用。
规范规定:《高规》5.2.4条规定,“高层建筑结构楼面梁受扭计算中应考虑楼盖对梁的约束作用。当计算中未考虑楼盖对梁扭转的约束作用时,梁的扭转变形和扭矩计算值往往过大,因此应对现浇楼板的梁扭矩折减。”
操作要点:对于现浇楼板结构,采用刚性楼板假定时,折减系数取值范围0.4~1.0,初始值为0.4。
注意事项:(1)若不是现浇楼板,或楼板开洞,或设定了弹性楼板,或有弧梁等情况,梁扭矩应不折减或少折减。
(2)程序没有自动搜索判断梁周围楼盖情况的功能,梁扭矩是否折减及折减系数的大小需要设计人员自行确定。
(3)若同一建筑中有的梁扭矩需要折减,有的梁不需要折减,可以分别设定梁的扭矩折减系数计算两次,分别取相应计算结果。
5.4托墙梁刚度放大系数:1
由于Satwe程序计算框支梁和梁上的剪力墙分别采用梁元和墙元两种不同的计算模型,造成剪力墙下边缘与转换大梁的中性轴变形协调,而与转换大梁的上边缘变形不协调,或者说,计算模型的刚度偏柔了。
为了真实反映转换梁刚度,使用该放大系数。一般取1,当为了使设计保持一定的富裕度,也可小考虑或不考虑该系数。
5.5实配钢筋超配系数:
该项针对9度抗震设防烈度的各类框架和一级抗震的框架结构,其余情况可忽略该项,取默认值;
5.6拖墙梁刚度放大系数:
该项主要考虑板对梁刚度的贡献,选取此项即梁刚度按《混规》5.2.4自动计算不同板厚对梁刚度的贡献;如若按老版PKPM采用自定义中梁放大系数,可不勾选此项,即可出现老版本PKPM的梁刚度放大系数界面,近似考虑时Bk可根据粱翼缘情况取1.3~2.0)
5.7薄弱层地震内力放大系数:1.25
5.8&框支柱调整系数上限:
程序默认5,可参看高规10.2.17
5.9调整与框支柱相连的梁内力:勾选
高规(JGJ3-2002)10.2.7条规定,框支柱按0.3Q0调整后,应相应调整框支柱的弯矩及柱端梁(不包括转换梁)的剪力和弯矩,框支柱轴力可不调整。
该参数目前不起作用。
5.10部分框支剪力墙结构底部加强区剪力墙抗震等级自动提高一级(高规表3.3.9、表3.9.4):
程序默认勾选
5.11连梁刚度折减系数:0.6
抗规(GB)6.2.13条规定折减系数不宜小于0.5,当连梁内力由风荷载控制时,不宜折减;高规(JGJ3-2002)5.2.1条条文说明指出,设防烈度低(6、7度)时可少折减(0.7),抗震烈度高时可多折减(0.5),折减系数不宜小于0.5,以保证连梁承受竖向荷载的能力。
程序通过该参数考虑连梁进入塑性状态后的连梁刚度。一般工程取0.7(并不小于0.55),位移由风载控制时取≥0.8。
该系数仅对地震作用下的连梁刚度进行折减,风荷载作用时不折减,与老版本PKPM不同,《高规》2010中5.2.1规定不宜小于0.5;
5.12&梁刚度放大系数按2010规范取值:勾选
5.13按抗震规范5.2.5条调整各楼层地震内力:
剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5,高规3.3.13。这个要求如同最小配筋率的要求,算出来的地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。&
剪重比不满足时的调整方法:&
1)程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。&
2)人工调整:如果还需人工干预,可按下列三种情况进行调整:&
a)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度;&
b)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标;&
c)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。
按抗规(5.2.5)调整各楼层地震内力:建议初步计算时不勾选此项方便判断各项指标,如若勾选软件会自动按《抗规》5.2.5条文说明将不满足剪重比的楼层及以上所有楼层地震剪力进行放大;该项与同界面中的地震作用调整功能类似,但地震作用调整只能将全楼地震作用放大;(注意:两项均选时是否重复放大,尚不明确)
5.14在内力与位移计算时,中梁刚度放大系数:2
高规(JGJ3-2002)5.2.2条:现浇楼面和装配整体式楼面可考虑翼缘作用对梁的刚度予以放大。
一般情况下,装配式楼板取1.0;装配整体式楼板取1.3;现浇楼板取2.0。程序自动处理边梁、独立梁及与弹性楼板相连梁的刚度不放大。另外,该系数对连梁不起作用。
抗规(GB)5.2.5条为强制性条文,必须执行。应注意的是6度区没有剪重比控制指标要求,宜按λ=0.008控制。该内容可在计算结果文本信息中查看。
操作要点:根据工程实际情况确定是否选择程序自动调整。初始值为选择。
注意事项:合理的结构设计应该自然满足楼层最小地震剪力系数的要求,如果不满足规范要求,建议:
(1)先不选择该项考察剪重比,如离规范要求相差较大,应首先优化设计方案,调整结构布置、增加结构刚度,绝不能仅靠调整剪重比完成设计。
(2)当设计方案合理,剪重比基本满足规范要求或相差不大时,在选择该项由程序自动调整地震力,以便完全满足规范对剪重比的要求。(3)对于6度区,由于《抗震规范》没有规定楼层最小地震剪力系数值,通常可以不控制。SATWE软件参照《抗震规范》表5.2.5中7、8、9度区数值的变化规律,给出6度区的取值为0.008,设计人员可以根据工程实际情况决定是否选择该项。
(4)程序计算书WZQ.OUT输出的是未经调整的原始值,而WWNL*.OUT输出的是调整后的值。
5.15指定的薄弱层(加强层)个数及其层号:根据具体情况选择
程序只是根据层间侧向刚度的比值来确定薄弱层,没有根据受剪承载力的比值确定薄弱层。通常情况下,如框支结构、刚度、承载力削弱层应人工定义为薄弱层层。
程序实现:程序要求设计人员输入薄弱层个数及薄弱层层号,程序自动对薄弱层构件的地震力乘以1.25的增大系数。
操作要点:根据规范要求和工程实际情况输入薄弱层个数和楼层号,当有多个薄弱层时,层号间用逗号或空格格开。薄弱层个数初始值为0。
注意事项:对规范提出的三种薄弱层情况,程序处理方法有所不同;
(1)对刚度比突变形成的薄弱层,程序自动计算刚度比,自动判断薄弱层,自动调整薄弱层的地震力。
(2)对承载力突变形成的薄弱层,程序自动计算承载力,需要人工判定薄弱层,人工指定薄弱层;
(3)队友转换构件形成的薄弱层,程序不能自动搜索转换构件,需要人工指定薄弱层。
(4)对十二层以下框架结构的简化薄弱层验算,程序可以自动进行,验算结果在计算书中输出。
5.16地震作用调整
5.16.1全楼地震作用放大系数:一般情况下可以不用考虑"全楼".特殊情况如采用弹性动力时程分析时计算出的大于振型分解法计算出的楼层剪力时,可填入此参数.
5.16.2顶塔楼地震作用放大起算层号:
起算层号按突出屋面部分最低层号填写,若无顶塔楼或不调整顶塔楼的内力,可将起算层号填为0(注:该系数仅放大顶塔楼的内力,并不改变位移)。计算振型为9-15及以上时,内力放大系数宜取1.0(不调整);计算振型为3时,可取1.5。
抗规(GB)5.2.4条:当采用底部剪力法计算地震剪力时,突出屋面的屋顶间、女儿墙、烟囱等的地震作用效应,宜乘以增大系数3;采用振型分解法时,可将突出屋面部分作为一个质点。
如果振型数取得足够多(按前述振型数),可不考虑顶塔楼地震作用放大,否则,应考虑鞭梢效应。
根据Satwe用户手册,计算振型数与放大系数的关系为:振型数小于12大于9时,取放大系数小于3.0;振型数小于15大于12时,取放大系数小于1.5。
5.17&&&0.2Q0调整的起始层号和终止层号:按实填入
仅用于框-剪结构和钢框架-支撑(剪力墙)结构体系,
可将起始层号填入负值(-m),表示取消程序内部对调整系数上限2.0限制。
0.2Q0调整也可以人工干预,实现分段、分塔0.2Q0的调整。具体方法为在前处理程序中选取“用户指定0.2Q0调整系数”(SatInput.02Q),按约定格式输入要修改的各层具体调整系数。
对框支剪力墙结构,当在特殊构件定义中指定框支柱后,程序自动按照高规(JGJ3-2002)10.2.7条实现0.2Q0或者0.3Q0的调整。
对于柱少剪力墙多的框架剪力墙结构,0.2Qo调整一般只用于主体结构,一旦结构内收则不往上调整。0.2Qo调整的放大系数只针对框架梁柱的弯矩和剪力,不调整轴力。
6、设计信息:
6.1结构重要性系数:1.0
混凝土结构设计规范(GB)3.2.1、3.2.3条,高规(JGJ3-2002)4.7.1条:对安全等级为一级或实际使用年限为100年及以上的结构构件,不应小于1.1;对安全等级为二级或使用年限为50年的结构构件,不应小于1.0;对安全等级为三级或设计使用年限为5年及以下的结构构件,不应小于0.9;在抗震设计中,不考虑结构构件的重要性系数。
注意事项:该系数主要是针对非抗震地区设置的。程序在组合配筋时,对非地震参与的组合乘以该放大系数。
6.2梁、柱保护层厚度:25,30
钢筋保护层厚度主要反映构件的耐久性指标,具体应用一般按照混凝土规范(GB)9.2.1条执行,对处于腐蚀环境中的混凝土构件,可参考混凝土耐久性设计规范的规定。
操作要点:梁保护层厚度初始值为25mm,柱保护层厚度为30mm设计人员应根据工程实际情况修改。
注意事项:(1)程序的保护层厚度是指构件外表面到钢筋中心的距离,与规范要求的边到边距离不同,设计人员应引起注意,如净保护层厚度为Cover,则一排钢筋的合理作用点到截面外缘的距离为Cover+12.5。因此,梁单排布筋实际保护层厚度为Cover+12.5mm;梁双排布筋实际保护层厚度为Cover+12.5+25mm
(2)当梁柱实配钢筋直径大于25mm时,应复核保护层厚度不小于钢筋直径。
(3)设置钢筋保护层厚度时还应考虑构件工作环境,如在地下室、露天或其他恶劣环境中的构件应按规范要求加大保护层厚度。
6.3考虑P-Δ效应:
高规(JGJ3-2002)5.4节给出由结构刚重比确定是否考虑重力二阶效应的原则;高层民用钢结构(JGJ99-98)5.2.11条给出对于无支撑结构和层间位移角大于1/1000的有支撑结构,应考虑P-Δ效应。
&&&&具体应用中由程序计算(Wmass.out)确定是否勾选。
6.4梁柱重叠部分简化为刚域:不选
高规(JGJ3-2002)5.3.4条:在内力和位移计算中,可以考虑框架或壁式框架梁柱节点区的刚域。
一般情况下可不考虑刚域的有利作用,作为安全储备。但异形柱框架结构应加以考虑;对于转换层及以下的部位,当框支柱尺寸巨大时,可考虑刚域影响。
刚域与刚性梁不同,刚性梁具有独立的位移,但本身不变形。程序对刚域的假定包括:不计自重;外荷载按梁两端节点间距计算,截面设计按扣除刚域后的长度计算。
程序实现:正常情况下,梁的长度为柱间形心的距离。当柱的截面面积较大时,可将梁柱重叠部分作为刚域考虑,此时程序对赖宁嘎进行如下的力学模型简化:
(1)梁的自重按扣除刚域后的梁长计算;
(2)梁上的外荷载仍按梁两端节点计算;
(3)截面设计按扣除刚域后的梁长计算。
l作为刚域:程序将梁柱重叠部分作为刚域计算,梁刚度大,自重小,梁端负弯矩小。
l不作为刚域:程序将梁柱重叠部分作为梁的一部分计算,梁刚度小,自重大,梁端负弯矩大。
l操作要点:根据工程实际情况设定梁柱重叠部分是否作为刚域,初始值不作为刚域。
l注意事项:大截面柱和异形柱应考虑选择此项
6.5按高规或高钢规进行构件计算:根据情况选择
高规(JGJ3-2002)1.02条给出混凝土高层建筑的适用范围为10层及以上或高度28m以上的民用建筑结构;高层民用钢结构规程(JGJ99-98)1.0.2条没有给出使用高度的下限,多层钢结构也可按照高钢规进行构件计算。
符合高层条件的建筑应勾选,多层建筑不勾选。是否选择按高规或高钢规进行构件计算的区别在于,荷载组合和构件计算适用的规范不同。
6.6钢柱计算长度系数按有侧移:有侧移
钢结构规范(GB)5.3.3条给出钢柱的计算长度按照钢结构规范附录D执行,主要考虑的因素为支撑的侧移刚度。
一般选择有侧移,也可考虑以下原则:楼层最大杆间位移小于1/1000(强支撑)时,按无侧移;楼层最大杆间位移大于1/1000且小于1/300(弱支撑)时,取1.0;楼层最大杆间位移大于1/300(弱支撑、无支撑)时,按有侧移计算。
程序实现:
l不选择此项,SATWE执行《混凝土规范》7.3.11-2条,按表7.3.11-2取用混凝土柱计算长度,对相交楼盖底层柱计算长度取1.0H,上层柱取1.25H。
l选择此项,SATWE自动判断水平弯矩占总弯矩的比值,如大于75%,混凝土柱计算长度执行《混凝土规范》7.3.11-3条的计算公式(7.3.11-1/-2)否则,同上一条。
操作要点:根据工程实际情况决定是否选择此项,初始值为不选。
注意事项:(1)鉴于程序增加了自动判断功能,建议尽可能选择该项;
(2)为避免计算错误,程序内定混凝土柱长度系数上限为2.5,钢柱为6.0;
(3)程序可以正确考虑越层柱的计算长度(地下室除外);
(4)工业厂房排架柱的计算长度,需要设计人员按《混凝土规范》7.3.11-1条的规定设定。
(5)柱计算长度系数修改后应立即退出,不要再执行参数定义和数据检查,否则柱长度系数又恢复为初始值。
6.7剪力墙构造边缘构件的设计执行高规7.2.16-4条:勾选
6.8框架梁端配筋考虑受压钢筋:
用户选择该项参数,原来只对地震作用组合进行该项控制,10版对所有组合下的框架梁支座进行相对受压区高度验算,一级抗震&x小于等于0.25h0,其他都是x小于等于0.35h0,不满足时会按此限值重新计算受拉及受压钢筋。
针对高规6.3.3条,梁端支座抗震设计时,如果受压钢筋配筋率不小于受拉钢筋的一半时,梁端最大配筋率可以放宽到2.75%(原来为2.5%),当选择该项时,同时执行这一条,否则还是按最大配筋率2.5%来控制。
6.9结构中的框架部分轴压比限值按照纯框架结构的规定采用:一般不选,少墙框架等应选择此项;
6.10柱配筋计算原则:按单偏压计算,双偏压复核
单偏压计算只考虑平面内的弯矩和轴力,在同一组设计内力中,当两个方向的弯矩都很大时,可能配筋不足。
双偏压计算同时考虑平面内和平面外的弯矩和相应的轴力,但结果不唯一。
程序按照双偏压计算时,按照第一组组合内力进行计算,初步给定角筋和腹筋,从第二组组合内力起,验算初步配筋,并按照先角筋后腹筋或按弯矩比例增大的方式给出配筋结果。程序计算没有考虑配筋优化,故配筋可能偏大。
具体应用宜按单偏压计算,并对计算结果按双偏压校核。对于异形柱框架结构中的异形柱和特殊构件定义的角柱,程序自动按照双偏压计算。
操作要点:初始值为单偏压计算,推荐采用以下方式:
(1)单偏压计算,双偏压验算(推荐);
(2)双偏压计算,调整个别配筋偏大的柱;
(3)考虑双向地震时,采用单偏压计算。
注意事项:(1)对异形柱结构程序自动采用双偏压计算。
(2)对单偏压和双偏压计算结果应进行认真复核,因为两种计算方式都有可能出现不合理的计算结果,如发现错误应予以调整。
7、配筋信息:
7.1梁柱及边缘构件箍筋强度
箍筋的选择依据同上。
混凝土构件的箍筋的主要作用有:
1)抗剪,提供混凝土构件的抗剪承载力,其衡量指标为构建的面积配箍率;
2)约束混凝土,提供混凝土竖向构件的横向约束,其控制指标为配箍特征值确定的构件体积配箍率。
3)约束钢筋,提供纵向钢筋的侧向支撑,防止钢筋压屈。
通常情况下根据梁柱受剪承载力和配箍特征值的大小以及保证混凝土对钢筋的握裹选择钢筋品种。对于框支梁柱及约束边缘构件宜采用HRB400钢筋,对于一般框架梁柱和构造边缘构件选择HPB235钢筋。
操作要点:根据工程实际情况选择构件构件箍筋及分布钢筋强度。初始值梁、柱、墙箍筋,边缘构件箍筋强度都为210 N/mm2。
注意事项:此处设置的钢筋强度应与PMCAD建模时设置的相同。
7.2梁柱及边缘构件主筋强度
Satwe进行构件计算时,按照本参数取得主筋的强度,不同于PM模型输入时的钢筋型号选择,后者用于出图时的钢筋符号表示。输入时建议必须将二者对应起来。
主筋的选择应考虑以下几个因素:
1)符合建筑用钢材的标准,尽量选用规范推荐的钢筋品种;
2)考虑构件的受力情况,使所选用的钢筋强度能充分利用;
3)考虑混凝土对钢筋的握裹能得到保证;
4)考虑钢筋的锚固长度得到充分的保证;
5)市场供应情况;
5)尽可能减少结构成本。
综合以上因素,通常情况下,应按如下原则选择钢筋:
1)受力较大的构件,如大跨度的梁、板构件,框支梁、柱构件,约束边缘构件等,宜采用HRB400钢筋;
2)小跨度的梁,普通框架柱及混凝土墙的构造边缘构件宜宜采用HRB335钢筋。
3)地下室钢筋混凝土外墙,通常情况下由裂缝控制,宜采用HRB335钢筋。
4)楼板应采用HRB400钢筋,楼梯等根据跨度、荷载大小采用HRB400钢筋或HRB335钢筋。
操作要点:根据工程实际情况选择构件主筋强度。初始值梁、柱主筋强度为300N/mm2,墙为210 N/mm2。
注意事项:此处设置的配筋参数应与PMCAD建模时设置的相同
7.3墙分布筋强度
一般情况下,墙的竖向分布筋由规范规定的最小配筋率确定,故宜选择HPB235钢筋,以降低钢筋成本。一般部位的混凝土墙的水平分布筋,HPB235钢筋也能能够满足墙受剪承载力的要求。
对于复杂高层和筒体结构的特殊部位,因受力复杂,以考虑HRB400钢筋作为墙分布筋。
混凝土墙的水平分布筋和竖向分布筋应采用同一品种,且都应符合最小配筋率的要求。
7.4梁、柱箍筋间距:100
通常情况下为100,当抗震设计时,本参数为加密区的间距。
混凝土规范(GB)10.2.10条规定了非抗震设计时梁箍筋最大间距要求,根据梁的高度和剪压比大小取100-400;10.3.2条规定了非抗震设计时柱箍筋最大间距要求为Min(400、柱短边尺寸、15倍柱纵筋最小直径)。
抗规(GB)6.3.3、6.3.8条和高规(JGJ3-2002)6.3.2、6.4.3条规定了抗震设计时梁、柱箍筋加密区的最大间距要求。当个别梁构件因高度(h/4)或个别梁柱因其纵筋最小直径(6d或8d)造成箍筋加密区间距小于100时,应在画图时人工修改以满足规范要求。
7.5墙水平分布筋间距及竖向分布筋配筋率:200、0.25%
混凝土规范(GB)6.4.3条、高规(JGJ3-2002)7.2.18条及高规(JGJ3-2002)10.2.15条规定:一、二、三级混凝土竖向和横向分布钢筋的最小配筋率均不应小于0.25%,四级抗震时不应小于0.2%,钢筋最大间距不大于300,最小直径不应小于8;部分框支剪力墙结构的底部加强部位,竖向和横向分布钢筋的最小配筋率均不应小于0.3%(非抗震设计时不应小于0.25%),钢筋间距不大于200。
混凝土规范(GB)6.5.2条、高规(JGJ3-2002)8.2.1条:框架-抗震墙结构的抗震墙的竖向和横向分布钢筋配筋率,抗震设计时均不应小于0.25%,非抗震设计时均不应小于0.2%。
高规(JGJ3-2002)4.9.2条规定:抗震等级为特一级的筒体、剪力墙一般部位的水平和竖向分布钢筋的最小配筋率应取为0.35%,底部加强部位应取为0.4%。
高规(JGJ3-2002)7.2.20条:房屋顶层剪力墙及长矩形平面房屋的楼梯间和电梯间剪力墙、端开间的纵向剪力墙、端山墙的水平及竖向分布筋的最小配筋率不应小于0.25%,钢筋间距不大于200。
高规(JGJ3-2002)10.4.5条:错层处平面外受力的剪力墙,其截面厚度抗震设计时不应小于250(非抗震设计时200),抗震等级提高一级。错层处剪力墙的混凝土强度等级不小于C30,水平和竖向分布筋的配筋率,非抗震设计时不小于0.3%,抗震设计时不小于0.5%。
根据以上规范要求,通常情况下取墙水平分布筋的间距为200,竖向分布筋的配筋率为0.25%,特殊情况根据规范要求调整。混凝土墙分布筋的配筋率为水平、竖向两排或几排钢筋面积和的配筋率。
注意事项:此处设置的配筋参数应与PMCAD建模时设置的相同。
7.6结构底部需要单独指定墙竖向分布筋的层数及其配筋率:顶层加强部位最高层号,0.3%;
本参数用于设定不同部位的混凝土墙分布筋的配筋率,可按照上述规范要求调整,如底部加强部位和非加强部位;框筒结构核心筒剪力墙的配筋率等。
板配筋宜采用HRB400钢筋,并可采用塑性方法计算板配筋;
另外,除受力钢筋外的其它构造钢筋、分布钢筋宜采用HPB235钢筋。
8、荷载组合:一般按默认值计算
8.1荷载分项系数:恒载:1.2(1.35);活载(含吊车荷载):1.4;风荷载:1.4
按照荷载规范(GB)3.2.5条、高规(JGJ3-2002)5.6.2条规定执行。
8.2活荷载组合值系数:0.7
荷载规范(GB)4.1.1条、4.3.1、6.1.5条:一般的民用建筑、工业建筑活荷载及屋面雪荷载的组合值系数为0.7;荷载规范(GB)4.4节规定了屋面积灰荷载的组合值系数为0.9或1.0(高炉临近建筑的屋面积灰荷载);荷载规范(GB)5.4节规定了吊车荷载的组合值系数,除硬钩吊车和工作级别A8的软钩吊车为0.95外,其它软钩吊车的荷载组合值系数均为0.7。荷载规范(GB)7.1.4条规定风荷载的组合值系数为0.6。
高规(JGJ3-2002)5.6.1条:无地震作用组合时,当永久荷载起控制作用时,楼面活荷载和风荷载的组合值系数取0.7(书库、档案库、通风机房、电梯机房取0.9)和0.0;当可变荷载起控制作用时应分别取1.0和0.6或者0.7(书库、档案库、通风机房、电梯机房取0.9)和1.0。
高规(JGJ3-2002)5.6.3条:有地震作用组合时,风荷载的组合值系数取0.2。
8.3活载重力代表值系数:0.5
抗规(GB)5.1.3条、高规(JGJ3-2002)3.3.6条规定了活载重力代表值系数,雪荷载及一般民用建筑楼面等效均布活荷载取0.5,屋面活荷载和软钩吊车荷载取0,硬钩吊车取0.3,藏书库、档案库为0.8,按实际情况计算的楼面活荷载取1.0。
8.4地震作用分项系数:水平地震作用:1.3、竖向地震作用:0.5。
按高规(JGJ3-2002)5.6.4条执行。
8.5特殊风荷载分项系数:1.4
按荷载规范(GB)3.2.5条执行。
8.6温度荷载分项系数:1.2
参照金属与石材幕墙工程技术规范(JGJ133-2001)5.1.6条的规定,取1.2,同时温差效应组合值系数取0.8。
8.7采用自定义组合及工况:不勾选
直接按规范要求执行,一般不采用另外的组合。
9、地下室信息:
9.1回填土对地下室约束的相对刚度比:3
该参数通过填入与地下室侧移刚度的相对刚度比模拟基础回填土对结构约束作用。填0认为回填土对结构没有约束作用,上部结构嵌固于基础上;若该参数大于5,则认为地下室基本上没有侧移,上部结构在地下一层顶嵌固(但竖向变形没有约束)。
若填入负数(-m),则相当于在地下室在-m层顶的顶板嵌固,这时根据抗规(GB)6.1.14条的规定,应保证地下室的剪切刚度大于一层剪切刚度的2倍。
若地下室不考虑嵌固作用,地下室信息中回填土对地下室约束的相对刚度比一般为3,模拟约束作用为70-80%。
9.2外墙分布筋保护层厚度:50
根据地下工程防水规范(GB)4.1.7条的规定,结构混凝土迎水面的钢筋保护层厚度不小于50mm,当不考虑结构防水时,应按照混凝土规范(GB)9.2.1条依据环境类别选用,并适当加大(可按相应环境类别柱的保护层厚度选用)。该参数用于地下室外墙的配筋计算。
9.3扣除地面以下几层的回填土约束:0
本参数指从第几层地下室考虑基础回填土对结构的约束作用,一般可不扣除,当地下室不完整时,可以考虑扣除相应的地下室层数。
9.4地下室外墙侧土水压力参数:按实际填写
用于计算地下室外墙的土压力,应按实填写,室外地面附加荷载取4.0~10.0KN/m2。
9.5人防设计信息:按实际填写
用于人防地下室外维护结构计算,根据人防地下室设计规范(GB)按实际填写。
10砌体结构信息:
10.1砌块类别、容重:均按实填写
10.2底部框架层数:按实填写
10.3底框结构空间分析方法:按规范算法
通常情况下选择规范算法,以满足规范要求;对一些特殊的复杂砌体结构,可以选取有限元整体算法计算结构中的局部梁柱构件内力。
10.4配筋砌块砌体结构:按实勾选
勾选后,程序按相应的规范进行分析和构件设计。
第二节特殊构件与特殊荷载设置
11特殊构件补充定义:
11.1特殊梁定义
1)按照混凝土高规(JGJ3-2002)7.1.8条,根据跨高跨比确定连梁(&5)或框架梁(&=5),连梁可以进行刚度折减,框架梁不折减,但框架梁考虑刚度放大。
2)程序自动对梁两端的支撑情况判断,当梁两端的支座均为混凝土墙或柱时,隐含定义为调幅梁,否则为不调幅梁;
混凝土规范(GB)第5.3.1条:房屋建筑中的钢筋混凝土连续梁和连续单向板,宜采用考虑塑性内力重分布的分析方法,其内力值可由弯矩调幅法确定;框架、框架-剪力墙结构以及双向板等,经过弹性分析求得内力后,也可对支座或节点弯矩进行调幅,并确定相应的跨中弯矩;对直接承受动力荷载的构件及要求不出现裂缝或处于腐蚀环境等情况的结构,不应考虑塑性内力重分布。
高规(JGJ3-2002)5.2.3条只规定框架梁在竖向荷载作用下,可考虑框架梁端塑性变形内力重分布对梁端负弯矩乘以调幅系数进行调幅。
通常情况下框架梁一般支座弯矩大,实际配筋困难,而且是实际塑性铰形成的点,所以应该进行调幅。多跨连续梁一般荷载较小,调幅的意义不大。对于梁端内力较大的多跨连续梁,按照规范规定,也可以调幅,实际操作时可灵活掌握。
3)根据实际情况指定框支梁。注意转换次梁和托柱梁也应指定为框支梁,使得程序可以自动对其调整抗震等级并进行内力调整。
4)根据计算结果可以将个别超筋或配筋率大的梁端定义为铰接梁,并在设计图纸中规定相应的构造措施。
5)滑动支座梁、门式钢梁、耗能梁、组合梁根据实际情况指定;梁的抗震等级、材料强度、刚度系数、扭转系数、调幅系数根据需要单独调整个别梁的相关参数。
(1)程序不能自动搜索转换梁等特殊梁,必须由设计人员指定。
(2)值得注意的是,程序可以根据规范的有关规定,对某些特殊结构的特殊构件自动提高抗震等级,但人工设定优先于程序设定,所以设计人员单独定义构件抗震等级后,程序不再自动提高这些构件的抗震等级。PKPM软件参数设定的优先级别为:
l人工设定优先于程序设定;
l程序设定优先于初始设定;
l后边设定优先于前边设定;
(3)特殊构件定义、设置及显示颜色参看SATWE用户手册。
11.2特殊柱定义
1)根据柱的布置位置判断并定义角柱、框支柱,程序根据指定自动进行相关的内力调整和抗震等级的调整。
2)其它如铰接柱(上端、下端)、门式钢柱根据实际情况指定;柱的抗震等级、材料强度、剪力系数(广东规范)根据需要单独调整个别柱的相关参数。
11.3特殊墙、特殊支撑:
根据需要指定或修改相关参数。
11.4弹性楼板:
程序以房间为单元指定进行定义。程序将楼板划分为四类:
1)刚性楼板,平面内无限刚,平面外刚度为0。程序默认楼板为刚性楼板。
2)弹性楼板3,平面内无限刚,平面外有限刚。适用于厚板转换。厚板转换PM建模时,与板柱结构一样布置虚梁,将厚板高度一分为二,分别加在上下楼层的层高上。
3)弹性楼板6,壳元计算真实反映平面内、平面外的刚度。适用于板-柱或板柱-剪力墙结构,按照混凝土高规(JGJ3-2002)5.3.3条的要求执行。
4)弹性膜,应用应力膜单元真实反映板平面内、外的刚度,同时忽略平面外刚度。适用于转换层、楼板开大洞、楼板弱连接的情况。
提示:(1)未设定弹性楼板程序默认为刚性楼板,假定楼板平面内无限刚,楼板平面外刚度为0,刚性板假定使用于大多数常规工程。
(2)弹性楼板设定是以房间为单元进行的,用光标点取房间内的任意点,房间内显示一个带数字的圆圈(数字为板厚),表示该板已设定为弹性楼板。
(3)SATWE程序对楼板作了四种假定:
l假定楼板整体平面内无限刚,适用于多数常规结构。
l假定楼板分块平面内无限刚、适用于多塔和错层结构;
l假定楼板分块平面内无限刚,并有弹性板带相连,适用于楼板局部开大洞形成狭长板带,连体多塔结构的连接体楼板;
l假定楼板为弹性板,适用于板柱结构、厚板转换结构和框支剪力墙转换结构等。
强制刚性楼板仅用于位移比的计算,构件设计则不应选择强制刚性楼板&,因此需要进行两次计算。
12温度荷载定义:
超长结构需进行温度荷载定义。
计算结构的温度荷载,应指定相应楼层为弹性楼板(为了计算梁板内力);然后根据30年一遇的夏季最高日平均气温与夏季空调设计温度(26)的差以及30年一遇的冬季最低日平均气温与冬季采暖设计温度(18)的差确定最高升温和最低降温值,升温为正,降温为负,不考虑季节性温度变化温差。
13特殊风荷载
所谓特殊风荷载是指风荷载作用不是水平方向的,例如竖向风荷载。点击【定义梁】,弹出输入梁风荷载对话框,输入竖向风荷载,布置到梁上。
注意:(1)特殊风荷载仅能布置在梁和节点上,不能布置在楼板上,需要时可以将板荷载折算到梁或节点上。
(2)另一种特殊风荷载用于排架厂房,为上部门式刚架的框架结构的设置风荷载。
14弹性支座、支座位移定义:
根据需要按照Satwe用户手册定义。
15多塔定义:
15.1多塔的计算方式
多塔结构应采用拆分建模和整体建模分别计算,对于后者,必须定义为多塔。
周期比计算必须采用拆分单塔模型;位移比、剪重比、刚度比、承载力比的计算可以采用拆分单塔模型或者整体多塔模型。
结构内力分析及构件配筋的计算可以按照多塔整体建模分析(节点数满足软件限制的前提下)或拆分单塔计算,最好采用两种模型包络设计(因本工程裙房层数较少,当裙房层数较多时,应按照整体建模分析)。
15.2多塔结构离散方式
目前,多塔结构离散模型主要有三种模式如下:
1)对于底盘为地下室,且地下室面积相对塔楼面积较大时,沿塔楼周围向两个方向取地下室层高的两倍范围内的构件;
2)对于塔楼层数较多且相对底盘布置对称,底盘层数相对较少时,沿45度剖分线范围内的构件;
3)对于底盘作为上部结构嵌固部位时,单独将塔楼从底盘中取出,在底部嵌固,另外计算底盘的周期比,验算时将各塔楼质量加在底盘顶相应位置。
15.3多塔结构定义
设缝多塔应进行遮挡定义。折线围区可以重叠,但同一构件不能同时属于两个不同的区域。最好是从最高楼层编起。
16用户指定0.2Q0调整系数:
根据需要,一般不指定。如需指定0.2Q0调整系数,在弹出的文本文件中按照提示编辑文件,填写时行首不要填入字符“C”,否则该行为注释行,不起作用。
17修改构件计算长度系数:
一般不需要修改。当程序给出的计算长度系数不符合规范要求,明显不合理时,可修改梁(平面外)、柱、支撑的计算长度系数。
18其他信息设定:
选择SATWE前处理菜单第8、9、10页,可以设定构件计算长度系数,水平风荷载查询与修改,指定0.2Q0调整系数等操作。
注意:这几项参数修改厚,应直接退出前处理菜单进行后续计算,不要再执行第1、7项,否则修改的参数全部丢失。
19图形和数据文件的检查与修改:
SATWE前处理的最后两项,是有关工程图形和数据文件检查与修改的,再数据传递和检查出错时,应仔细检查有关的图形和数据文件,以便发现问题及时修改。
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

我要回帖

更多关于 位移荷载 的文章

 

随机推荐