igbt驱动电路原理 是什么?

查看: 3320|回复: 9
IGBT是什么?IGBT的工作原理和IGBT模块驱动电路,参数,特性作用
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
主题帖子精华
品质币40053
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
IGBT是什么?IGBT的工作原理和IGBT模块驱动电路, 绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor)特性和参数
IGBT是什么?IGBT,全称是Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管,是由MOSFET(绝缘栅型场效应管)和GTR(功率晶管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、开关电源、变频器、照明电路、牵引传动等领域。
010.gif (26.64 KB, 下载次数: 14)
IGBT是什么?IGBT的工作原理和IGBT模块驱动电路, 绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor) ...
14:21 上传
品质协会()备注:GTR是大功率晶体管,GTR饱和压降低,载流密度大,但驱动电流较大; MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了GTR和MOSFET两种器件的优点。
IGBT的工作原理:从上面的IGBT电子工作原理图可以看出,IGBT有3个极,门极(G),发射极(E)和集电极(C)。
IGBT的结构与MOSFET的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。
IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP(原来为NPN)晶体管提供基极电流,使IGBT导通。反之,加反向门极电压消除沟道,切断基极电流,使IGBT关断。
IGBT的驱动电路方法和MOSFET基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。当MOSFET 的沟道形成后,从P+ 基极注入到N 一层的空穴(少子),对N一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
主题帖子精华
品质币40053
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
IGBT静态特性
IGBT 的静态特性主要有伏安特性、转移特性和开关特性。
IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs 的控制,Ugs 越高, Id 越大。它与GTR 的输出特性相似.也可分为饱和区1 、放大区2 和击穿特性3 部分。在截止状态下的IGBT ,正向电压由J2 结承担,反向电压由J1结承担。如果无N+ 缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT 的某些应用范围。
IGBT 的转移特性是指输出漏极电流Id 与栅源电压Ugs 之间的关系曲线。它与MOSFET 的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT 处于关断状态。在IGBT 导通后的大部分漏极电流范围内, Id 与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。
IGBT 的开关特性是指漏极电流与漏源电压之间的关系。IGBT 处于导通态时,由于它的PNP 晶体管为宽基区晶体管,所以其B 值极低。尽管等效电路为达林顿结构,但流过MOSFET 的电流成为IGBT 总电流的主要部分。此时,通态电压Uds(on) 可用下式表示
Uds(on) = Uj1 + Udr + IdRoh
式中Uj1 —— JI 结的正向电压,其值为0.7 ~1V ;Udr ——扩展电阻Rdr 上的压降;Roh ——沟道电阻。
通态电流Ids 可用下式表示:
Ids=(1+Bpnp)Imos
式中Imos ——流过MOSFET 的电流。
由于N+ 区存在电导调制效应,所以IGBT 的通态压降小,耐压1000V的IGBT 通态压降为2 ~ 3V 。IGBT 处于断态时,只有很小的泄漏电流存在。
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
主题帖子精华
品质币40053
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
IGBT动态特性
IGBT 在开通过程中,大部分时间是作为MOSFET 来运行的,只是在漏源电压Uds 下降过程后期, PNP 晶体管由放大区至饱和,又增加了一段延迟时间。td(on) 为开通延迟时间, tri 为电流上升时间。实际应用中常给出的漏极电流开通时间ton 即为td (on) tri 之和。漏源电压的下降时间由tfe1 和tfe2 组成。
IGBT的触发和关断要求给其栅极和基极之间加上正向电压和负向电压,栅极电压可由不同的驱动电路产生。当选择这些驱动电路时,必须基于以下的参数来进行:器件关断偏置的要求、栅极电荷的要求、耐固性要求和电源的情况。因为IGBT栅极- 发射极阻抗大,故可使用MOSFET驱动技术进行触发,不过由于IGBT的输入电容较MOSFET为大,故IGBT的关断偏压应该比许多MOSFET驱动电路提供的偏压更高。
IGBT在关断过程中,漏极电流的波形变为两段。因为MOSFET关断后,PNP晶体管的存储电荷难以迅速消除,造成漏极电流较长的尾部时间,td(off)为关断延迟时间,trv为电压Uds(f)的上升时间。实际应用中常常给出的漏极电流的下降时间Tf由图中的t(f1)和t(f2)两段组成,而漏极电流的关断时间
t(off)=td(off)+trv十t(f)
式中,td(off)与trv之和又称为存储时间。
IGBT的开关速度低于MOSFET,但明显高于GTR。IGBT在关断时不需要负栅压来减少关断时间,但关断时间随栅极和发射极并联电阻的增加而增加。IGBT的开启电压约3~4V,和MOSFET相当。IGBT导通时的饱和压降比MOSFET低而和GTR接近,饱和压降随栅极电压的增加而降低。
正式商用的IGBT器件的电压和电流容量还很有限,远远不能满足电力电子应用技术发展的需求;高压领域的许多应用中,要求器件的电压等级达到10KV以上,目前只能通过IGBT高压串联等技术来实现高压应用。国外的一些厂家如瑞士ABB公司采用软穿通原则研制出了8KV的IGBT器件,德国的EUPEC生产的A高压大功率IGBT器件已经获得实际应用,日本东芝也已涉足该领域。与此同时,各大半导体生产厂商不断开发IGBT的高耐压、大电流、高速、低饱和压降、高可靠性、低成本技术,主要采用1um以下制作工艺,研制开发取得一些新进展。
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
主题帖子精华
品质币40053
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
IGBT是强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。虽然最新一代功率MOSFET 器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT 技术高出很多。较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
主题帖子精华
品质币40053
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
IGBT导通: IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。如等效电路图所示(图1),其中一个MOSFET驱动两个双极器件。基片的应用在管体的P+和 N+ 区之间创建了一个J1结。 当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率 MOSFET的方式产生一股电流。如果这个电子流产生的电压在0.7V范围内,那么,J1将处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET 电流); 空穴电流(双极)。
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
主题帖子精华
品质币40053
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
IGBT关断:当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。在任何情况下,如果MOSFET电流在开关阶段迅速下降,集电极电流则逐渐降低,这是因为换向开始后,在N层内还存在少数的载流子(少子)。这种残余电流值(尾流)的降低,完全取决于关断时电荷的密度,而密度又与几种因素有关,如掺杂质的数量和拓扑,层次厚度和温度。少子的衰减使集电极电流具有特征尾流波形,集电极电流引起以下问题:功耗升高;交叉导通问题,特别是在使用续流二极管的设备上,问题更加明显。
鉴于尾流与少子的重组有关,尾流的电流值应与芯片的温度、IC 和VCE密切相关的空穴移动性有密切的关系。因此,根据所达到的温度,降低这种作用在终端设备设计上的电流的不理想效应是可行的。
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
主题帖子精华
品质币40053
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
IGBT阻断与闩锁
当集电极被施加一个反向电压时,J1 就会受到反向偏压控制,耗尽层则会向N-区扩展。因过多地降低这个层面的厚度,将无法取得一个有效的阻断能力,所以,这个机制十分重要。另一方面,如果过大地增加这个区域尺寸,就会连续地提高压降。 第二点清楚地说明了NPT器件的压降比等效(IC 和速度相同) PT 器件的压降高的原因。
当栅极和发射极短接并在集电极端子施加一个正电压时,P/N J3结受反向电压控制。此时,仍然是由N漂移区中的耗尽层承受外部施加的电压。
IGBT在集电极与发射极之间有一个寄生PNPN晶闸管,如图1所示。在特殊条件下,这种寄生器件会导通。这种现象会使集电极与发射极之间的电流量增加,对等效MOSFET的控制能力降低,通常还会引起器件击穿问题。晶闸管导通现象被称为IGBT闩锁,具体地说,这种缺陷的原因互不相同,与器件的状态有密切关系。通常情况下,静态和动态闩锁有如下主要区别:
当晶闸管全部导通时,静态闩锁出现。 只在关断时才会出现动态闩锁。这一特殊现象严重地限制了安全操作区 。 为防止寄生NPN和PNP晶体管的有害现象,有必要采取以下措施: 防止NPN部分接通,分别改变布局和掺杂级别。 降低NPN和PNP晶体管的总电流增益。 此外,闩锁电流对PNP和NPN器件的电流增益有一定的影响,因此,它与结温的关系也非常密切;在结温和增益提高的情况下,P基区的电阻率会升高,破坏了整体特性。因此,器件制造商必须注意将集电极最大电流值与闩锁电流之间保持一定的比例,通常比例为1:5。
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
主题帖子精华
品质币40053
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
IGBT输出特性与转移特性
IGBT与MOSFET的对比:
MOSFET全称功率场效应晶体管。它的三个极分别是源极(S)、漏极(D)和栅极(G)。
主要优点:热稳定性好、安全工作区大。
缺点:击穿电压低,工作电流小。
IGBT全称绝缘栅双极晶体管,是MOSFET和GTR(功率晶管)相结合的产物。它的三个极分别是集电极(C)、发射极(E)和栅极(G)。
特点:击穿电压可达1200V,集电极最大饱和电流已超过1500A。由IGBT作为逆变器件的变频器的容量达250kVA以上,工作频率可达20kHz。
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
主题帖子精华
品质币40053
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
IGBT判断极性
首先将万用表拨在R×1KΩ挡,用万用表测量时,若某一极与其它两极阻值为无穷大,调换表笔后该极与其它两极的阻值仍为无穷大,则判断此极为栅极(G )其余两极再用万用表测量,若测得阻值为无穷大,调换表笔后测量阻值较小。在测量阻值较小的一次中,则判断红表笔接的为集电极(C);黑表笔接的为发射极(E)。
IGBT判断好坏
将万用表拨在R×10KΩ挡,用黑表笔接IGBT 的集电极(C),红表笔接IGBT 的发射极(E),此时万用表的指针在零位。用手指同时触及一下栅极(G)和集电极(C),这时IGBT 被触发导通,万用表的指针摆向阻值较小的方向,并能站住指示在某一位置。然后再用手指同时触及一下栅极(G)和发射极(E),这时IGBT 被阻断,万用表的指针回零。此时即可判断IGBT 是好的。
IGBT检测注意事项
任何指针式万用表皆可用于检测IGBT。注意判断IGBT 好坏时,一定要将万用 表拨在R×10KΩ挡,因R×1KΩ挡以下各档万用表内部电池电压太低,检测好坏时不能使IGBT 导通,而无法判断IGBT 的好坏。此方法同样也可以用于检测功率场效应晶体管(P-MOSFET)的好坏。变频器、软起动器、PLC、人机界面、低压电器、电气自动化工程、恒压供水设备、音乐喷泉控制系统、变频器维修等。
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
主题帖子精华
品质币40053
在线时间9396 小时
居住地广东省 深圳市 福田区 福田街道
IGBT模块的选择
IGBT模块的电压规格与所使用装置的输入电源即试电电源电压紧密相关。其相互关系见下表。使用中当IGBT模块集电极电流增大时,所产生的额定损耗亦变大。同时,开关损耗增大,使原件发热加剧,因此,选用IGBT模块时额定电流应大于负载电流。特别是用作高频开关时,由于开关损耗增大,发热加剧,选用时应该降等使用。
使用中的注意事项
由于IGBT模块为MOSFET结构,IGBT的栅极通过一层氧化膜与发射极实现电隔离。由于此氧化膜很薄,其击穿电压一般达到20~30V。因此因静电而导致栅极击穿是IGBT失效的常见原因之一。因此使用中要注意以下几点:
在使用模块时,尽量不要用手触摸驱动端子部分,当必须要触摸模块端子时,要先将人体或衣服上的静电用大电阻接地进行放电后,再触摸; 在用导电材料连接模块驱动端子时,在配线未接好之前请先不要接上模块; 尽量在底板良好接地的情况下操作。 在应用中有时虽然保证了栅极驱动电压没有超过栅极最大额定电压,但栅极连线的寄生电感和栅极与集电极间的电容耦合,也会产生使氧化层损坏的振荡电压。为此,通常采用双绞线来传送驱动信号,以减少寄生电感。在栅极连线中串联小电阻也可以抑制振荡电压。
此外,在栅极—发射极间开路时,若在集电极与发射极间加上电压,则随着集电极电位的变化,由于集电极有漏电流流过,栅极电位升高,集电极则有电流流过。这时,如果集电极与发射极间存在高电压,则有可能使IGBT发热及至损坏。
在使用IGBT的场合,当栅极回路不正常或栅极回路损坏时(栅极处于开路状态),若在主回路上加上电压,则IGBT就会损坏,为防止此类故障,应在栅极与发射极之间串接一只10KΩ左右的电阻。
在安装或更换IGBT模块时,应十分重视IGBT模块与散热片的接触面状态和拧紧程度。为了减少接触热阻,最好在散热器与IGBT模块间涂抹导热硅脂。一般散热片底部安装有散热风扇,当散热风扇损坏中散热片散热不良时将导致IGBT模块发热,而发生故障。因此对散热风扇应定期进行检查,一般在散热片上靠近IGBT模块的地方安装有温度感应器,当温度过高时将报警或停止IGBT模块工作。
保管时的注意事项
一般保存IGBT模块的场所,应保持常温常湿状态,不应偏离太大。常温的规定为5~35℃ ,常湿的规定在45~75%左右。在冬天特别干燥的地区,需用加湿机加湿; 尽量远离有腐蚀性气体或灰尘较多的场合; 在温度发生急剧变化的场所IGBT模块表面可能有结露水的现象,因此IGBT模块应放在温度变化较小的地方; 保管时,须注意不要在IGBT模块上堆放重物; 装IGBT模块的容器,应选用不带静电的容器。
IGBT模块由于具有多种优良的特性,使它得到了快速的发展和普及,已应用到电力电子的各方各面。因此熟悉IGBT模块性能,了解选择及使用时的注意事项对实际中的应用是十分必要的。
Powered by有的大中功率变频器驱动电路与IGBT之间的电路板有什么作用?_百度知道
有的大中功率变频器驱动电路与IGBT之间的电路板有什么作用?
1、驱动电路与IGBT之间的电路板一般是栅极保护板或者是驱动放大板,栅极保护板起到保护IGBT栅极,防止电压过高烧毁IGBT的作用。2、电路板的名称有:线路板,PCB板,铝基板,高频板,厚铜板,阻抗板,PCB,超薄线路板,超薄电路板,印刷(铜刻蚀技术)电路板等。电路板使电路迷你化、直观化,对于固定电路的批量生产和优化用电器布局起重要作用。3、变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。
其他类似问题
为您推荐:
提问者采纳
驱动放大板一般用在较大功率的变频器上,防止电压过高烧毁IGBT的作用不清楚你指的是那种具体的板,栅极保护板起到保护IGBT栅极,因此需要加一块驱动放大板,这就需要对驱动信号进行放大,一般的驱动电路无法驱动这么大功率的IGBT,这是以为大功率的变频器所使用的IGBT功率比较大,但是驱动电路与IGBT之间的电路板一般是栅极保护板或者是驱动放大板,起到增大驱动功率的作用
您可能关注的推广
驱动电路的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁Cntronics电子元件技术网的用户可以直接登录!
我爱方案网帐号:
我爱方案网密码:
不用再为安规设计犯难!2016电路保护产品选型指南,教你如何选对器件,设计好方案
你还在为高能效、待机低功耗的单灶眼炉具设计发愁吗?有了这个8位参考设计方案,再也不用担心了!
这款汽车连接器不仅仅尺寸小,性能高,最关键的是防水效果好。
IGBT(绝缘栅双极型晶体管)驱动电路是驱动IGBT模块以能让其正常工作,并同时对其进行保护的电路。IGBT在电力电子领域中已广泛,在实际使用中除IGBT自身外,IGBT 驱动器的作用对整个换流系统来说同样至关重要。IGBT驱动器的选择及输出功率的计&&---
标签:IGBT驱动电路|IGBT
IGBT驱动电路的设计技巧
IGBT驱动电路简介
IGBT(绝缘栅双极型晶体管)驱动电路是驱动IGBT模块以能让其正常工作,并同时对其进行保护的电路。IGBT在电力电子领域中已广泛,在实际使用中除IGBT自身外,IGBT 驱动器的作用对整个换流系统来说同样至关重要。IGBT驱动器的选择及输出功率的计算决定了换流系统的可靠性。驱动器功率不足或选择错误可能会直接导致 IGBT 和驱动器损坏。本词条将着重介绍IGBT驱动电路的设计技巧。
IGBT驱动电路设计时的器件型号选择
1)IGBT承受的正反向峰值电压
考虑到2-2.5倍的安全系数,可选IGBT的电压为1 200 V。
2)IGBT导通时承受的峰值电流。
额定电流按380 V供电电压、额定功率30 kVA容量算。
对于大功率IGBT,选择驱动电路基于以下的参数要求:器件关断偏置、门极电荷、耐固性和电源情况等。门极电路的正偏压VGE负偏压-VGE和门极电阻RG的大小,对IGBT的通态压降、开关时间、开关损耗、承受短路能力以及dv/dt电流等参数有不同程度的影响。门极驱动条件与器件特性的关系见表1。栅极正电压 的变化对IGBT的开通特性、负载短路能力和dVcE/dt电流有较大影响,而门极负偏压则对关断特性的影响比较大。在门极电路的设计中,还要注意开通特性、负载短路能力和由dVcE/dt 电流引起的误触发等问题(见表1)。
表1 IGBT门极驱动条件与器件特性的关系
由于IGBT的开关特性和安全工作区随着栅极驱动电路的变化而变化,因而驱动电路性能的好坏将直接影响IGBT能否正常工作。为使IGBT能可靠工作。IGBT对其驱动电路提出了以下要求。
1)向IGBT提供适当的正向栅压。并且在IGBT导通后。栅极驱动电路提供给IGBT的驱动电压和电流要有足够的幅度,使IGBT的功率输出级总处于饱和状态。瞬时过载时,栅极驱动电路提供的驱动功率要足以保证IGBT不退出饱和区。IGBT导通后的管压降与所加栅源电压有关,在漏源电流一定的情况下,VGE越高,VDS傩就越低,器件的导通损耗就越小,这有利于充分发挥管子的工作能力。但是, VGE并非越高越好,一般不允许超过20 V,原因是一旦发生过流或短路,栅压越高,则电流幅值越高,IGBT损坏的可能性就越大。通常,综合考虑取+15 V为宜。
2)能向IGBT提供足够的反向栅压。在IGBT关断期间,由于电路中其他部分的工作,会在栅极电路中产生一些高频振荡信号,这些信号轻则会使本该截止的IGBT处于微通状态,增加管子的功耗。重则将使调压电路处于短路直通状态。因此,最好给处于截止状态的IGBT加一反向栅压f幅值一般为5~15 V),使IGBT在栅极出现开关噪声时仍能可靠截止。
3)具有栅极电压限幅电路,保护栅极不被击穿。IGBT栅极极限电压一般为+20 V,驱动信号超出此范围就可能破坏栅极。
4)由于IGBT多用于高压场合。要求有足够的输人、输出电隔离能力。所以驱动电路应与整个控制电路在电位上严格隔离,一般采用高速光耦合隔离或变压器耦合隔离。
5)IGBT的栅极驱动电路应尽可能的简单、实用。应具有IGBT的完整保护功能,很强的抗干扰能力,且输出阻抗应尽可能的低。
驱动电路的设计
隔离驱动产品大部分是使用光电耦合器来隔离输入的驱动信号和被驱动的绝缘栅,采用厚膜或PCB工艺支撑,部分阻容元件由引脚接入。这种产品主要用于IGBT的驱动,因IGBT具有电流拖尾效应,所以光耦驱动器无一例外都是负压关断。
图1为M57962L内部结构框图,采用光耦实现电气隔离,光耦是快速型的,适合高频开关运行,光耦的原边已串联限流电阻(约185 &O),可将5 V的电压直接加到输入侧。它采用双电源驱动结构,内部集成有2 500 V高隔离电压的光耦合器和过电流保护电路、过电流保护输出信号端子和与TTL电平相兼容的输入接口,驱动电信号延迟最大为1.5us。
M57962L的结构框图
当单独用M57962L来驱动IGBT时。有三点是应该考虑的。首先。驱动器的最大电流变化率应设置在最小的RG电阻的限制范围内,因为对许多IGBT来讲,使用的RG 偏大时,会增大td(on )(导通延迟时间), t d(off) (截止延迟时间),tr(上升时间)和开关损耗,在高频应用(超过5 kHz)时,这种损耗应尽量避免。另外。驱动器本身的损耗也必须考虑。
如果驱动器本身损耗过大,会引起驱动器过热,致使其损坏。最后,当M57962L被用在驱动大容量的IGBT时,它的慢关断将会增大损耗。引起这种现象的原因是通过IGBT的Gres(反向传输电容)流到M57962L栅极的电流不能被驱动器吸收。它的阻抗不是足够低,这种慢关断时间将变得更慢和要求更大的缓冲电容器应用M57962L设计的驱动电路如下图。
IGBT驱动电路
电源去耦电容C2 ~C7采用铝电解电容器,容量为100 uF/50 V,R1阻值取1 k&O,R2阻值取1.5k&O,R3取5.1 k&O,电源采用正负l5 V电源模块分别接到M57962L的4脚与6脚,逻辑控制信号IN经l3脚输入驱动器M57962L。双向稳压管Z1选择为9.1 V,Z2为18V,Z3为30 V,防止IGBT的栅极、发射极击穿而损坏驱动电路,二极管采用快恢复的FR107管。
多路输出IGBT驱动电路的设计
附件介绍了大功率IGBT的驱动原理及工作特性,设计了一种高可靠可维护具有四路驱动信号输出的高电压大功率IGBT驱动电路,给出了电路的原理图和关键参数设计原理及相关波形。
多路输出的IGBT驱动电路的设计
驱动电路原理图及工作原理
根据实际需要设计的驱动电路如图4所示,其工作原理为:PWM控制芯片输出的两路反相PWM 信号经元件组成的功率放大电路放大之后,再经脉冲变压器隔离耦合输出4路驱动信号。4路驱动信号根据触发相位分为相位相反的两组。驱动信号1与驱动信号3同相位,驱动信号2与驱动信号4同相位。该电路采用脉冲变压器实现了被控IGBT高电压主回路与控制回路的可靠隔离,IGBT 的GE间的稳压管用于防止干扰产生过高的UGE而损坏IGBT的控制极。与MOSFET一样,负偏压可以防止母线过高du/dt造成门极误导通。但只要控制好母线电压瞬态过冲,可不需要IGBT的负偏压。此电路中,脉冲变压器次级接相应电路将驱动波形的负脉冲截去,大大减少了驱动电路的功耗。
关于IGBT驱动电路问答
Q1,请问IGBT的驱动电路一般是自己搭建还是买现成的?? 现在已经选好了一个IGBT模块,请问如果要自己搭建驱动电路的话,需要哪些原件??有没有统一的电路图??
答:大功率IGBT,需要大功率的驱动电路,一般要求能提供(+-)15V以上,电流1A以上,前后沿陡的控制信号,达不到要求,会发热或烧毁。要根据你的功率和频率设计驱动电路。
Q2,请问具体的电路图应该是怎么样的??有一般可以套用的形式么?
答:频率多少?电压多高?功率多大?电流几何?IGBT型号?
自己搭,可参照OCL电路,半桥推动,可用SP2110.(约10元)PWM,可有驱动模块(IGBT厂家有推荐)
Q3,用的是西门康的igbt模块SKM400GA123D 就是电流400A Vce 1200V的 然后频率能到百Khz就行了~~~
答:这么大的模块,如此高的频率,可能还是厂家推荐的好。自己做,有些难度。
Q4,你好 是不是指那些现成的IGBT驱动板??
答:是的,可能有点贵。
&&被下载次数 904次
IGBT(绝缘栅双极型晶体管)驱动电路是驱动IGBT模块以能让其正常工作,并同时对其进行保护的电路。IGBT在电力电子领域中已广泛,在实际使用中除IGBT自身外,IGBT 驱动器的作用对整个换流系统来说同样至关重要。IGBT驱动器的选择及输出功率的计
同仁的电子信箱:&多个邮箱之间请用 | 隔开
您的电子信箱:
本文链接:
查看全部评论
有人回复时发邮件通知我
‘IGBT驱动电路的设计技巧’相关内容
&&&&本文将针对目前国内使用的IGBT式感应加热电源所存在的缺陷,所进行的问题总结和简要分析,希望能够帮助工程师在研发的过程中更全面的完成系统设计,规避设计缺陷。
&&&&随着电力电子技术的快速发展,新型功率开关器件IGBT迅速占领了市场,我爱方案网小编为大家介绍如何实现基于IGBT的固态脉冲调制器设计?
&&&&功率半导体器件,特别是IGBT器件,是电力电子装置的关键部件,它的性能决定了电力电子装置的性能。 IGBT器件的供应长期被国外垄断,目前国内IGBT器件正在进入产业化,但是落后国外1到2代。不过,IGBT封装业的技术门槛相对较低。因此,中国企业可以从IGBT封装业入手,积累IGBT领域的知识与技能,逐步开发出可以打破国外供应商垄断的IGBT产品。此外,本次演讲还会涉及目前国外供应商正在大力发展的下一代宽带隙功率半导体器件,包括未来可能替代IGBT器件的SiC MOSFET。
&&&&本文在分析了中大功率IGBT 特性、工作原理及其驱动电路原理和要求的基础上,对EXB841、M57962AL、2SD315A 等几种驱动电路的工作特性进行了比较。并针对用于轻合金表面防护处理的特种脉冲电源主功率开关器件驱动电路运行中存在的问题对驱动电路提出了功能改进和扩展方案,进行了实验调试,并成功地应用于不同功率容量IGBT 模块的驱动,运行情况良好,提高了电源的可靠性。针对电源设备的进一步功率扩容要求,采用IGBT 模块串、并联运行方案。对并联模块的均流、同步触发、散热、布局、布线等问题进行了详细的分析和讨论,同时也讨论了串联模块的均压、驱动等问题,并用仿真电路对串并联模块的工作特性进行了仿真分析。最后将IGBT 串并联方案成功地应用于表面处理特种电源中,实际运行表明IGBT 模块的串并联扩容是可行的。
深圳市中电网络技术有限公司&版权所有 &&

我要回帖

更多关于 igbt驱动电路原理 的文章

 

随机推荐