1 变频调速器电机上恒功率是0-100H...

永磁变频调速电机和普通电机绕组一样吗_百度知道
永磁变频调速电机和普通电机绕组一样吗
不一样的变频电动机的特点
1、电磁设计
对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下:
1) 尽可能的减小定子和转子电阻。
减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增
2)为抑制电流中的高次谐波,需适当增加电动机的电感。但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。
3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。
2、结构设计
再结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,旦俯测谎爻荷诧捅超拉一般注意以下问题:
1)绝缘等级,一般为F级或更高,加强对地绝缘和线匝绝缘强度,特别要考虑绝缘耐冲击电压的能力。
2)对电机的振动、噪声问题,要充分考虑电动机构件及整体的刚性,尽力提高其固有频率,以避开与各次力波产生共振现象。
3)冷却方式:一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动。
4)防止轴电流措施,对容量超过160KW电动机应采用轴承绝缘措施。主要是易产生磁路不对称,也会产生轴电流,当其他高频分量所产生的电流结合一起作用时,轴电流将大为增加,从而导致轴承损坏,所以一般要采取绝缘措施。
5)对恒功率变频电动机,当转速超过3000/min时,应采用耐高温的特殊润滑脂,以补偿轴承的温度升高。变频电机主要特点变频专用电动机具有如下特点:B级温升设计,F级绝缘制造。采用高分子绝缘材料及真空压力浸漆制造工艺以及采用特殊的绝缘结构,使电气绕组采用绝缘耐压及机械强度有很大提高,足以胜任马达之高速运转及抵抗变频器高频电流冲击以及电压对绝缘之破坏。平衡质量高,震动等级为R级(降振级)机械零部件加工精度高,并采用专用高精度进口轴承,可以高速运转。强制通风散热系统,全部采用进口轴流风机超静音、高寿命,强劲风力。保障马达在任何转速下,得到有效散热,可实现高速或低速长期运行。经AMCAD软件设计的YP系列电机,与传统变频电机相比较,具备更宽广的调速范围和更高的设计质量,经特殊的磁场设计,进一步抑制高次谐波磁场,以满足宽频、节能和低噪音的设计指标。具有宽范围恒转矩与功率调速特性,调速平稳,无转矩脉动。与各类变频器均具有良好的参数匹配,配合矢量控制,可实现零转速全转矩、低频大力矩与高精度转速控制、位置控制及快速动态响应控制。YP系列变频专用电机可配制刹车器,编码器供货,这样即可获得精准停车,和通过转速闭环控制实现高精度速度控制。采用“微电机+变频专用电机+编码器+变频器”实现超低速无级调速的精准控制。YP系列变频专用电机通用性好,其安装尺寸符合IEC标准,与一般标准型电机具备可互换性。变频电机的构造原理电动机的调速与控制,是工农业各类机械及办公、民生电器设备的基础技术之一。随着电力电子技术、微电子技术的惊人发展,采用“专用变频感应电动机+变频器”的交流调速方式,正在以其卓越的性能和经济性,在调速领域,引导了一场取代传统调速方式的更新换代的变革。它给各行各业带来的福音在于:使机械自动化程度和生产效率大为提高、节约能源、提高产品合格率及产品质量、电源系统容量相应提高、设备小型化、增加舒适性,目前正以很快的速度取代传统的机械调速和直流调速方案。由于变频电源的特殊性,以及系统对高速或低速运转、转速动态响应等需求,对作为动力主体的电动机,提出了苛刻的要求,给电动机带来了在电磁、结构、绝缘各方面新的课题。变频电机的应用变频调速目前已经成为主流的调速方案,可广泛应用于各行各业无级变速传动。
其他类似问题
您可能关注的推广回答者:
变频调速电机的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁 下载
 收藏
特此声明: 1 本账号发布文档来源于互联网和个人收集,仅用于技术分享交流,版权为原作者所有,如对资料感兴趣,请购买正版的资料或资源。 2 如有侵犯原您的版权,请提出指正,本人将立即删除相关资料。
 下载此文档
正在努力加载中...
GBT 8 起重及冶金用变频调速三相异步电动机技术条件第1部分:YZP系列起重及.
下载积分:100
内容提示:
文档格式:PDF|
浏览次数:38|
上传日期: 17:41:42|
文档星级:
该用户还上传了这些文档
GBT 8 起重及冶金用变频调速三相异步电动机技术条件第1部分.PDF
官方公共微信※ 发信息,认准云同盟加入云同盟,让我们生活更轻松!搜索YVP160L-4-15KW变频电机使用YVP160M-4-11KW变频电机的功率等级与安装尺寸、机座中心高均符合国际IEC标准,其对应关系与Y系列(IP44)三相异步电动机相一致,互换性通用性强。本系统电动机为笼型结构、运行可靠、维修方便,并装有独立的冷却风机、保证电机在不同的转速下、均具有较好的冷却效果。台州恒富电机厂生产的电机系列产品主要有:Y2系列和Y系列交流电机,YEJ系列刹车电机(电磁制动电机),YVP160M-4-11KW变频电机,YCT系列电磁调速电机,YD系列双速电机(变极调速电机,变极多速电机,变极多速三相异步电动机),并可定制生产各种特殊电压,特殊轴(如轴上台阶有要求)等。产品被广泛用于食品机械、木工机械、机床、水泵、风机、压缩机、运输机、搅拌机、纺织机械、农业机械、矿山机械、清洁机械、遥控门、库房等小型机械设备等。台州恒富电机厂是一家专业从事各类三相异步电动机批发的厂家和批发商,欢迎随时垂询选购。具体请参考公司网站: 联系QQ:联系电话:服务热线:7传真:7联系人:谢先生YVP160M-4-11KW变频调速电机的特性变频调速范围(标准系列):5-50HZ(或6-60HZ)恒转矩调速;50-100HZ恒功率调速。在矢量控制条件下,调速范围还可扩大。1、额定转矩TH=9550 PH/NS(N·m)式中:PH--额定功率(KW)NS--同步转速(50Hz时)2、系统运行时应选择比较合理的V--F特性。3、用户要求大于1:10恒转矩和大于1:2恒功率双速电机时请在订货时说明。4、用户要求比三速电机变频调速时本单位亦能供货。YVP160M-4-11KW变频调速电机吸取了国外先进国家产品这技术,应用CAD设计。低速时(频率<50HZ)能在1:10范围内作恒转矩调速运行且运行平稳,无转矩脉动现象,并具有较高的起动转矩和较小的起动电流。电动机高速能输出恒功率特性。本系列电动机调速范围宽、振动小、噪声低、能与国内外各种SPWM变频装置(如:日本富士、三菱)相配套,构成交流变频无级调速系统。YVP160M-4-11KW变频调速电机SPWM变频装置构成的调速系统与其他调速方式相比,具有节能效果明显、调速性能好、调速比宽、快速响应性优良、应用范围广、性能价格比高等优点,是目前交流调速方案中最先进的系统之一。可广泛用于数控机床的主轴传动、纺织、化工、冶金等行业的恒转矩、恒功率调速以及风机水泵等场合的节能调速,并具有计算机控制接口,有助于实现调速系统的自动化控制、是国家目前重点推广的高新产品。[] -----(本主题点击给于2财富加分)
查看: 886|回复: 0
(334182号)
帖数13 个收听数个人主页精华0听众数相册帖子分享日志好友记录UID334182积分19魅力19 点财富43 点主题威望0 点贡献点0 点阅读权限20注册时间收到鲜花0 朵活动点0 点当月幸运0 点在线时间4 小时最后登录
海川小学2年级, 积分 19, 距离下一级还需 1 积分
升级 
当前用户组为 海川小学2年级升级可点击顶部"财富换魅力升级"链接 把财富换成魅力 1魅力=1积分当前积分为 19, 升到下一级还需要 1 点。
& 帖子魅力19 点财富43 点威望0 点贡献点0 点当月幸运0 点收到鲜花0 朵注册时间在线时间4 小时最后登录
& && & (1) 大功率节能调速的合理电压等级
  大中功率风机和泵采用变频调速可节约大量电能,大部分功率在0.2-2MW范围内。我们现在200KW以上的电机多是中压,电压等级多为10KV,少量为6KV。选用10KV “直接”变频,从技术和经济角度看都不合理。所有的“直接”变频都不是真正的直接变频,在其输入侧都有变压器,因此电机和变频器没有必要和电网电压一致。本文讨论不同功率段的合理电压等级。
  (2) 高性能调速系统中的矢量控制和直接力矩控制
  高性能调速系统中的矢量控制发明于70年代末,商品化于80年代,至今仍然为多数公司所采用。直接力矩发明于80年代后期,部分公司采用,商品化于90年代初,被广泛宣传为新一代技术。本文介绍作者对这两种系统的看法。
  (3) 有速度(位置)传感器和无速度(位置)传感器系统
  在矢量控制和直接力矩控制系统开发的初期都要求装设速度(位置)传感器(编码器)。有些场合安装编码器困难,所以又开发出无速度(位置)传感器系统,它的性能不如前者,但优于V/f开环系统。现在有些宣传说,无编码器系统的低速起动性能已达到有编码器系统水平,此提法有模糊之处。本文讨论什么时候应装编码器,何时可以不装编码器。
  2 大功率节能调速传动的合理电压等级
  大中功率风机和泵采用变频调速可节约大量电能,大部分功率在200-2000KW范围中。我们现有的交流电动机200KW是个界限,200KW以下是低压380V,200KW以上为中压:3KV、6KV 和10KV。电力部门从减小线损的角度出发,希望提高供电电压,3KV已取消,6KV正在淘汰中,大力推行10KV,将来还可能提至20KW。用户从简化配置出发,很自然的提出要求,希望200KV以上的电机和变压器也都采用10KV,不幸这合乎情理的要求技术上实现困难,经济上价高,因为:
  A. 10KV电机从制造角度并不困难,但随着电压升高,绝缘等级提高,电机重量和价格也增加,以YJS系列4极560KW电机为例:380V重3.6T,价11万;6KV重3.9T,价15万;10KV重4.4T,价20万。
  B. 受电力电子器件电压及电机允许的dv/dt限制,10KV变频器必须多电平,多器件串联。造成线路复杂,价格昂贵,可*性差。对于10KV变频器若使用 1700V IGBT器件,需10串,三相共120支器件。若使用3300V器件,也需5串共60支器件,数量巨大。另一方面电流小,器件的电流能力得不到充分利用,仍以560KW为例,10KV电机电流仅40A左右,现1700V的IGBT电流已达2400A,3300V器件电流达1600A,有大电流器件不采用,偏要用大量小电流器件串联,极不合理。即使电机功率达2000KV,电流也只有140A左右,仍很小。
  为了电平隔离,改善输入电流波形及减小谐波,现在所有的中压“直接变频”器都不是真正的直接变频,其输入侧都装有输入变压器,这种安排短时间内不会改变。既然输入侧有变压器,变频器和电机的电压就没有必要和电网一样,非用10KV和6KV不可,因此就有了变频器和电机的合理电压等级问题。另外,过去电机中低压的200KW分界是考虑电机直接起动,起动电流7-8倍额定电流,10KV/380V电力变压器容量2000KVA,短路阻抗6%左右,电机起动时380V母线压降限制在 5%左右而定的。再加大变压器,短路电流太大,低压开关难以承受。采用变频器调速后,起动电流被限制在额定值内,中低压分界条件也应随之变化。现在660V低压电机容量已达KW,它也为讨论合理电压等级提供了基础。
  本文分析合理电压等级的出发点是:
  A. 低压变频器采用1200V或1700V IGBT,器件额定电流小于A,并联数不大于2。并联再多实现麻烦,就不如改为多电平串联,中压变频。
  B. 中压变频采用器件种类及电压等级很多,相应线路方案也不同。本文基于目前市场上流行的产品,它们是基于1700V IGBT的分离直流电源多重化(H桥串联)方案(SDM)及基于3300V,4500V和6000V的IGBT或IGCT或IEGT三电平方案(THL)。
  文献[1]对合理由电压等级进行了分析,这里不再重复,只把几点看法列于下面:
  A.800-1200KW以下的变频调速宜选用380V或660V电压等级。它线路简单,技术成熟,可*性高,dv/dt小,价格便宜。仍以560KW 电机为例,630KW 660V的低压变频器约50万,而同容量2300V的中压变频器约90万。实现的方法有低-低,低-高,高-低和高-低-高等几种形式。由于电机、变压器的价格远低于变频器,即使更换电机、变压器也合理。
  B.KW以上的调速可以用中压变频
  国外的中压变频器有多个电压等级:1.1KV,2.3KV, 3KV, 4.2KV, 6KV,它们主要由电力电子器件的电压等级所确定。在THL中器件不串及SDM中桥不串联情况下,器件电压与变频器电压间的关系示于表1。
  表1 在不串联情况下,器件电压与变频器电压间的关系
  器件电压(V) 00 6000
  变频器电压(KV) 1.1 2.3 3 4.2
  目前器件最高6000V,在不串情况下变频器最高电压4.2KV。6KV变频器必须串联,线路复杂,器件多,可*性受影响。国外很少做6KV变频器, 10KV基本不做。从原理上说SDM通过H桥单元串联,变频器输出电压不受器件电压限制,可以较高,但提高电压的代价是器件大量增加,可*性降低。对于同样输出功率的变频器,使用较高电压较多单元串联所花的代价大于用较低电压,较少数量,电流较大单元的代价,也就是说在器件电流允许条件下应选用尽可能低的电压等级。
  许多应用场合都要求旁路功能,即在变频器故障时将电机旁路,直接接入电网恒速工作。为降低变频器造价,电机电压低于电网电压后,如何旁路是一个需要解决的问题。这问题可以解决,对于不同的变频器旁路方法不同,变频器的旁路指在变频器出现故障时将电机直接接入电网,恒速工作。如果电机电压和电网电压一致,旁路不成问题。为了降低变频器造价,电机电压低于电网电压后,如何旁路,是这里所要讨论的问题。
  如果采用低压变频,变频器输入交流电压与额定输出电压一样,电机可以绕过变频顺直接接低压380V或660V电源。
  如果采用THL中压变频,可以把输入变频器两副边串联起来向电机供电,参见图1。当三个转换开关接“1”时,变频器工作;当三个开关接“2”时旁路,输入变压器的两组副边线电压各等于1.5Vm/2(Vm为电机额定输入电压),并互差300,把它们串起来后电压为1.5Vm cos150= 1.01Vm,正好供电机恒速工作。
  如果采用SDM变频器,输入变频器副边太多,无法通过改变接线来旁路变频器,只能旁路出故障的单元,经触点将故障单元输出短路,单元中IGBT封锁。在这类变频器设计时已考虑了旁路单元的工况。如果一定要旁路变频器,只能另加一台备用降压变压器,这对于在一个电网上挂有多套变频器时是合理的。
  设计旁路电路时需注意校验电机直接起动时的起动转矩。例如变压器短路阻抗为6%,容量为1.1倍变频器容量,电机起动电流为7倍,则电机起动电压为 0.72Vm,起动转矩为0.52倍额定起动转矩,它应大于负载转矩。若起动转矩不够,只能加大变压器容量或选用小短路阻抗变压器。
  3 高性能调速系统中的矢量控制和直接力矩控制
  调速系统的任务是控制速度,速度通过转矩来改变,调速系统的性能取决于转矩控制的好坏,矢量控制(VC)和直接力矩控制(DTC)的任务都是实现高性能转矩控制,它们的速度调节部分相同。
  异步机的转矩等于磁链矢量和定子电流矢量的矢量积。磁链不能直接测量,需要通过定子电压电流及电机参数算得。
  由于定子电压电流都是交流量,处理起来较麻烦,所以在VC控制系统中,借助于坐标变化,把它们变成dq坐标系的直流量,计算得到的控制量再经反变换变回交流坐标轴系去产生PWM信号。为了在高速和低速均能取得好的性能,必须用电压电流两个模型,涉及到电机参数较多。
  在DTC系统中用交流量直接计算力矩和磁链,然后通过力矩、磁链两个Band-Band控制器产生PWM信号,省去了坐标变换。在研制DTC的初期没有考虑低速运行工况,并以定子磁链为基础,涉及电机参数只有Rs一个,因此DTC的供货商大力宣传DTC计算简单,涉及电机参数最少,精度高等。实际上在考虑低速运行工况后,DTC也必须引入电流模型,也要用到转子磁链,涉及的电机参数和VC一样多,所以精度也一样。DTC没坐标变换,计算公式简单,但为了实现Band-Band控制,必须在一个开关周期中计算很多次,要求计算速度快,以ABB公司的ACS600系列为例,它的计算周期是25μs。在VC中测量电压电流在一个开关周期内的平均值,然后一周期计算一次,对计算速度要求低,以Siemens公司的6SE70系列为例,他计算周期是400μs,相差16倍。矢量变换计算只不过4个乘法和两个加法,以现在处理器的能力看,它算不了什么。另外以定子磁链为基础也不是DTC的专利,有的VC系统也以定子磁链为基础。根据产品样本,ACS600(DTC)转矩控制响应时间是5ms,6SE70(VC)也是5ms,再快的响应机械也受不了。
  有人认为,DTC利用磁链幅值的Band-Band控制得到近似圆形磁场,磁链幅值的波动会导致转矩波动,而VC是连续控制,磁链幅值不变,无转矩波动。这种看法也欠妥,DTC中由于存在转矩Band-Band控制,转矩平均值不会受磁链变化影响而波动,磁链变化只影响电流波形;对于VC,由于变频器按 PWM模式工作,在一个开关周期内是不可控制,也不是连续控制,同样存在电流脉动并导致转矩脉动的问题,6SE70的转矩脉动为2%。
  综上所述,作者认为这两种系统无本质区别,只不过在实现转矩控制时走了不同的路,不存在谁优于谁,谁取代谁的问题。
  4 有速度(位置)传感器和无速度(位置)传感器系统
  在矢量控制和直接力矩控制系统开发的初期都要求在电机轴上装设编码器,测取速度(位置)信号,有些场合安装编码器困难,所以又开发了无速度传感器系统。无速度传感器系统现在是热门话题,方法很多,但真正用于工业产品的都基于同样原理--电压、电流模型法。
  电压模型使用电机参数较少,在速度高于5-10%(高速)时,计算精度较高,低于5-10%(低速)时,由于电压太小,计算误差大。电流模型使用电机参数多,特别是受转子电阻变化影响大,计算误差略大,但这误差与转速无关。在有速度传感器的系统中,高速时使用电压模型,控制精度高;低速时使用电流模型,精度虽不如高速时,但仍能正常运行。在无速度传感器系统中,高速时转速角速度*比较电压电流模型计算结果辨识得到,因此只能达到有速度传感器系统的低速时水平;低速时由于电压模型不准,基准没了,无法辨识 ,系统只能抛弃矢量控制,改为开环工作。现在市场上的无速度传感器矢量控制系统在低速时都是开环系统,性能差。它们只适合用于无长期低速运行工况,且高速时调速精度要求不高的场合。
  有的公司宣称它的无速度传感器矢量控制系统在静止时也能产生满力矩,这话没错,但也有宣传成分。因为在静止时,速度为零是已知的,不需辨识,但一转起来,长期低速运行就不行了。
  在表2中列出了6SE70系列变频器在有、无编码器时的性能。
  6 结论
  1) 大功率节能调速一律采用6kv,10kv“直接变频”不合理,应根据功率选择合理电压等级。大功率的变频器采用高电压,尽量采用电流大的器件,降低器件的串联个数。
  2) 矢量控制和直接力矩控制各有优缺点,只是不同公司走了不同路,并无谁优于谁,谁取代谁的问题。
  3) 无速度传感器系统只适用于无长期低速工况,高速时性能要求不高的场合。
  4) 200kw-315kw功率档次的电机,国内的实际情况是380v电压等级占很大一部分。
  5) vc和dtc的优劣,商业宣传成分较大让他们去争论吧。
  6) 从性价比角度考虑变频电压等级选择的合理性,315kw以下可选380v,250-800kw可选用660v,500kw以上可选用6kv高-高变频或6kv、10kv高-低-高变频。
  7) 高-高产品价格高。高-低-高产品占变压器的位置本身功耗略高,但可*性好价格也好。
学习了,我们正在为选变频器发愁呢
资料文件共享
总评分: 财富 + 8 
魅力 + 1 
1、本主题及回复中所有言论和图片、内容纯属会员个人意见,仅供参考,与本站立场无关
2、本内容由该帖子作者发表,帖子作者须承担一切因本内容发表而直接或间接导致的民事或刑事法律责任
3、如作者的言论侵犯到任何版权或争议问题 第三方负面信息,请立即告知本站并举证,本站将予与删除 管理员信箱:
Powered by
内容发布人须承担一切因不当内容发表而导致的全部责任
有任何不妥请与管理员
联系,未经本站许可,禁止转载本站内容

我要回帖

更多关于 变频调速器 的文章

 

随机推荐