fawn on-hooded rats 是什...

Epigenetic mechanisms of pulmonary hypertension on JSTOR
You may be interested in finding more content on these topics:
Fetching Epigenetics description...
Show more topics
Fetching Methylation description...
Fetching Histones description...
Fetching DNA description...
You are not currently logged in.
Access JSTOR through your library or other institution:
Epigenetic mechanism...
Journal Article
Epigenetic mechanisms of pulmonary hypertension
Gene H. Kim, John J. Ryan, Glenn Marsboom and Stephen L. Archer
Pulmonary Circulation
Vol. 1, No. 3 (July 2011), pp. 347-356
Published by:
on behalf of
DOI: 10.32.87300
Stable URL: http://www.jstor.org/stable/10.32.87300
Page Count: 10
You can always find the topics here!
Were these topics helpful?
Thumbs up. These topics are helpful.
Thumbs down. These topics are not helpful.
Select the topics that are inaccurate.
Epigenetics
Methylation
Gene expression
Acetylation
Right ventricular hypertrophy
Pulmonary hypertension
Cite This Item
Copy Citation
Export Citation
(For EndNote, ProCite, Reference Manager, Zotero…)
(For BibTex)
Note: Always review your references and make any necessary corrections before using. Pay attention to names, capitalization, and dates.
Article Tools
You have javascript disabled.
To read this item, please
We're having trouble loading this content.
Page Thumbnails
AbstractEpigenetics refers to changes in phenotype and gene expression that occur without alterations in DNA sequence. Epigenetic modifications of the genome can be acquired de novo and are potentially heritable. This review focuses on the emerging recognition of a role for epigenetics in the development of pulmonary arterial hypertension (PAH). Lessons learned from the epigenetics in cancer and neurodevelopmental diseases, such as Prader-Willi syndrome, can be applied to PAH. These syndromes suggest that there is substantial genetic and epigenetic cross-talk such that a single phenotype can result from a genetic cause, an epigenetic cause, or a combined abnormality. There are three major mechanisms of epigenetic regulation, including methylation of CpG islands, mediated by DNA methyltransferases, modification of histone proteins, and microRNAs. There is substantial interaction between these epigenetic mechanisms. Recently, it was discovered that there may be an epigenetic component to PAH. In PAH there is downregulation of superoxide dismutase 2 (SOD2) and normoxic activation of hypoxia inducible factor (HIF-1α). This decrease in SOD2 results from methylation of CpG islands in SOD2 by lung DNA methyltransferases. The partial silencing of SOD2 alters redox signaling, activates HIF-1α) and leads to excessive cell proliferation. The same hyperproliferative epigenetic abnormality occurs in cancer. These epigenetic abnormalities can be therapeutically reversed. Epigenetic mechanisms may mediate gene-environment interactions in PAH and explain the great variability in susceptibility to stimuli such as anorexigens, virus, and shunts. Epigenetics may be relevant to the female predisposition to PAH and the incomplete penetrance of BMPR2 mutations in familial PAH.
Notes and References
This item contains 76 references.
References
['Archer SL, Marsboom G, Kim GH, Zhang HJ, Toth PT, Svensson EC, et al. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: A basis for excessive cell proliferation and a new therapeutic target. Circulation 1–71.']
['Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA 3rd, Loyd JE, et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet –4.']
['Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Human Genet –44.']
['West J, Cogan J, Geraci M, Robinson L, Newman J, Phillips JA, et al. Gene expression in BMPR2 mutation carriers with and without evidence of pulmonary arterial hypertension suggests pathways relevant to disease penetrance. BMC Med Genomics .']
['Nagaoka T, Muramatsu M, Sato K, McMurtry I, Oka M, Fukuchi Y. Mild hypoxia causes severe pulmonary hypertension in fawn-hooded but not in Tester Moriyama rats. Respir Physiol –60.']
['Wideman RF Jr, Hamal KR. Idiopathic pulmonary arterial hypertension: An avian model for plexogenic arteriopathy and serotonergic vasoconstriction. J Pharm Toxicol Methods –95.']
['Julian RJ. Physiological, management and environmental triggers of the ascites syndrome: A review. Avian Pathol –27.']
['Goto Y, Shinjo K, Kondo Y, Shen L, Toyota M, Suzuki H, et al. Epigenetic profiles distinguish malignant pleural mesothelioma from lung adenocarcinoma. Cancer Res 3–82.']
['Esteller M, Fraga MF, Paz MF, Campo E, Colomer D, Novo FJ, et al. Cancer epigenetics and methylation. Science 7–8; discussion 1807–8.']
['Ho SM. Environmental epigenetics of asthma: An update. J Allergy Clin Immunol –65.']
['Beaudet AL. Allan Award lecture: Rare patients leading to epigenetics and back to genetics. Am J Hum Genet 4–8.']
['Grafodatskaya D, Chung B, Szatmari P, Weksberg R. Autism spectrum disorders and epigenetics. J Am Acad Child Adolesc Psychiatry –809.']
['Lalande M, Calciano MA. Molecular epigenetics of Angelman syndrome. Cell Mol Life Sci –60.']
['Glenn CC, Deng G, Michaelis RC, Tarleton J, Phelan MC, Surh L, et al. DNA methylation analysis with respect to prenatal diagnosis of the Angelman and Prader-Willi syndromes and imprinting. Prenat Diagn –6.']
['Holliday R. Epigenetics: An overview. Dev Genet –7.']
['Sawan C, Vaissière T, Murr R, Herceg Z. Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res –13.']
['Bird AP. CpG-rich islands and the function of DNA methylation. Nature –13.']
['Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: Epigenetics joins genetics. Trends Genet –74.']
['Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics –59.']
['Wild L, Flanagan JM. Genome-wide hypomethylation in cancer may be a passive consequence of transformation. Biochim Biophys Acta –7.']
['De Smet C, Loriot A. DNA hypomethylation in cancer: Epigenetic scars of a neoplastic journey. Epigenetics official journal of the DNA Methylation Society –13.']
['Daskalos A, Nikolaidis G, Xinarianos G, Savvari P, Cassidy A, Zakopoulou R, et al. Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. International journal of cancer. Int J Cancer –7.']
['Guerrero-Preston R, Santella RM, Blanco A, Desai M, Berdasco M, Fraga M. Global DNA hypomethylation in liver cancer cases and controls: A phase I preclinical biomarker development study. Epigenetics: official journal of the DNA Methylation Society –6.']
['Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature –32.']
['Illingworth R, Bird A. CpG islands: “a rough guide.” FEBS Lett 3–20.']
['Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science 8–70.']
['Aoyama T, Okamoto T, Nagayama S, Nishijo K, Ishibe T, Yasura K, et al. Methylation in the corepromoter region of the chondromodulin-I gene determines the cell specific expression by regulating the binding of transcriptional activator Sp3. J Biol Chem 89–97.']
['Handy DE, Castro R, Loscalzo J. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation 5–56.']
['Griffiths E, Gore S. MicroRNA: mIR-ly regulators of DNMT? Blood \t9–70.']
['Svedru?i? ?. Dnmt1 structure and function. Prog Mol Biol Transl Sci –54.']
['Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell –57.']
['Jenuwein T, Allis C. Translating the histone code. Science 4–80.']
['Bartel D. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell –97.']
['Huang Y, Zou Q, Song H, Song F, Wang L, Zhang G, et al. A study of miRNAs targets prediction and experimental validation. Protein Cell –86.']
['John B, Sander C, Marks D. Prediction of human microRNA targets. Methods Mol Biol –13.']
['Agirre X, Vilas-Zornoza A, Jiménez-Velasco A, Martin-Subero JI, Cordeu L, Gárate L, et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res 3–53.']
['Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M, et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 9–23.']
['Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 05–10.']
['Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis –76.']
['Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setién F, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 4–29.']
['Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res R–9R.']
['Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 1–8.']
['Bravard A, Sabatier L, Hoffschir F, Ricoul M, Luccioni C, Dutrillaux B. SOD2: A new type of tumor-suppressor gene? Int J Cancer –80.']
['Hitchler M, Oberley L, Domann F. Epigenetic silencing of SOD2 by histone modifications in human breast cancer cells. Free Radic Biol Med 3–80.']
['Hurt E, Thomas SB, Peng B, Farrar WL. Molecular consequences of SOD2 expression in epigenetically silenced pancreatic carcinoma cell lines. Br J Cancer 6–23.']
['Hitchler MJ, Oberley LW, Domann FE. Epigenetic silencing of SOD2 by histone modifications in human breast cancer cells. Free Radic Biol Med 3–80.']
['Hitchler MJ, Wikainapakul K, Yu L, Powers K, Atatippaholkun W, Domann FE. Epigenetic regulation of manganese superoxide dismutase expression in human breast cancer cells. Epigenetics –71.']
['Huang L, Arany Z, Livingston DM, Bunn HF. Activation of hypoxia-inducible transcription factor depends primarily upon redoxsensitive stabilization of its alpha subunit. J Biol Chem 53–9.']
['Bowers R, Cool C, Murphy RC, Tuder RM, Hopken MW, Flores SC, et al. Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med –9.']
['Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thébaud B, Bonnet S, et al. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 30–41.']
['Farha S, Asosingh K, Xu W, Sharp J, George D, Comhair S, et al. Hypoxia-inducible factors in human pulmonary arterial hypertension: a link to the intrinsic myeloid abnormalities. Blood 5–93.']
['Fijalkowska I, Xu W, Comhair SA, Janocha AJ, Mavrakis LA, Krishnamachary B, et al. Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am J Pathol 0–8.']
['Barker DJ, Osmond C, Simmonds SJ, Wield GA. The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ –6.']
['Painter RC, Roseboom TJ, Bleker OP. Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol –52.']
['Rexhaj E, Bloch J, Jayet PY, Rimoldi SF, Dessen P, Mathieu C, et al. Fetal programming of pulmonary vascular dysfunction in mice: role of epigenetic mechanisms. Am J Physiol Heart Circ Physiol 7–52.']
['Therese P. Persistent pulmonary hypertension of the newborn. Paediatr Respir Rev 5–6.']
['Hernandez-Diaz S, Van Marter LJ, Werler MM, Louik C, Mitchell AA. Risk factors for persistent pulmonary hypertension of the newborn. Pediatrics 2–82.']
['Hoehn T, Preston AA, McPhaden AR, Stiller B, Vogel M, Bührer C, et al. Endothelial nitric oxide synthase (NOS) is upregulated in rapid progressive pulmonary hypertension of the newborn. Intensive Care Med 7–62.']
['Xu XF, Ma XL, Shen Z, Wu XL, Cheng F, Du LZ. Epigenetic regulation of the endothelial nitric oxide synthase gene in persistent pulmonary hypertension of the newborn rat. J Hypertens 7–35.']
['Fish J, Marsden P. Endothelial nitric oxide synthase: insight into cell-specific gene regulation in the vascular endothelium. Cell Mol Life Sci –62.']
['Chan Y, Fish JE, D’Abreo C, Lin S, Robb GB, Teichert AM, et al. The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation. J Biol Chem 87–100.']
['Gan Y, Shen YH, Wang J, Wang X, Utama B, Wang J, et al. Role of histone deacetylation in cell-specific expression of endothelial nitric-oxide synthase. J Biol Chem 67–75.']
['Piao L, Marsboom G, Archer SL. Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. J Mol Med (Berl) 1–20.']
['Rich S, Pogoriler J, Husain AN, Toth PT, Gomberg-Maitland M, Archer SL. Long-term effects of epoprostenol on the pulmonary vasculature in idiopathic pulmonary arterial hypertension. Chest 4–9.']
['Cho YK, Eom GH, Kee HJ, Kim HS, Choi WY, Nam KI, et al. Sodium valproate, a histone deacetylase inhibitor, but not captopril, prevents right ventricular hypertrophy in rats. Circ J –70.']
['Bogaard HJ, Mizuno S, Hussaini AA, Toldo S, Abbate A, Kraskauskas D, et al. Suppression of histone deacetylases worsens right ventricular dysfunction after pulmonary artery banding in rats. Am J Respir Crit Care Med 2–10.']
['Kong Y, Tannous P, Lu G, Berenji K, Rothermel BA, Olson EN, et al. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 9–88.\t']
['Kreymborg K, Uchida S, Gellert P, Schneider A, Boetger T, Voswinckel R, et al. Identification of right heart-enriched genes in a murine model of chronic outflow tract obstruction. J Mol Cell Cardiol –605.']
['Herceg Z, Ushiima T. Introduction: Epigenetics and cancer. Adv Genet –23.']
['Eberl HC, Mann M. Vermeulen M. Quantitative proteomics for epigenetics. Chembiochem –34.']
['Herceg Z. Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis –103.']
['Jepsen K, Solum D, Zhou T, McEvilly RJ, Kim HJ, Glass CK, et al. SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature –9.']
['Huang YW, Kuo CT, Stoner K, Huang TH, Wang LS. An overview of epigenetics and chemoprevention. FEBS Let 9–36.']
['Pray-Grant M, Daniel JA, Schieltz D, Yates JR 3rd, Grant PA. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature –8.']
['Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 9–43.']
['Bártová E, Krejcí J, Harnicarová A, Galiová G, Kozubek S. Histone modifications and nuclear architecture: a review. J Histochem Cytochem –21.']
JSTOR is part of ITHAKA, a not-for-profit organization helping the academic community use digital technologies to preserve the scholarly record and to advance research and teaching in sustainable ways.
& ITHAKA. All Rights Reserved. JSTOR&, the JSTOR logo, JPASS&, and ITHAKA& are registered trademarks of ITHAKA.
Processing your request...运动训练与脑内一氧化氮关系的研究进展_文档库
文档库最新最全的文档下载
当前位置: & 运动训练与脑内一氧化氮关系的研究进展
运动训练与脑内一氧化氮关系的研究进展
动过程中NO对中枢神经系统影响的研究未见人体实验。建议从训练理论与运动实践紧密结合的实际原理出发,更多地以人体尤其是运动员为研究对象,探索运动过程中NO与中枢神经系统的关系,为中枢性疲劳机制和运动性适应的研究提供一定的理论依据。参考文献:
[1]曹电康,刘鸿宇,续俊,姚晋宏,白莉芳.运动性疲劳对大鼠海马一氧化氮合成酶活性的影响[J].北京体育大学学报,):.
[2]LiHuige,WallerathThomas,FolrstermannUlrich.Physiol-ogical
mechanismsregulatingtheexpressionofendothelial-typeNOsynthase[J].NitricOxide,):132-147.
[3]潘同斌,施永凡,王瑞元.慢性低氧及运动训练对大鼠血清一氧化氮含量及一氧化氮合酶活力的影响[J].西安体育学院学报,):83~85.
[4]HermanJP,CullinanWE.Neurocircutryofstress:centralControlof
hypothalamo-pituiary–adrenocorticalaxis[J].TrendsNeurosc,i~84.
ZONGSHUBAOGAO
[5]曹电康,刘鸿宇,等.运动性疲劳对大鼠海马一氧化氮合成酶活性的影响[J].北京体育大学学报.):.[6]马强,王静,刘洪涛,晁福寰.体力运动减缓慢性应激对海马的损伤作用[J].生理学报.):427~430.
[7]Y.-H.KU,L.TAN,L.-S.LI.et.a.lRoleofCorticotropin-Releasing
FactorandSubstancePinPressorResponsesofNucleiControllingEmo?tionandStress[J].Peptides,(4):677-682.
[8]LodgeDJ,LawrenceAJ.TheeffectofchronicCRF1receptorBlock?
adeonthecentralCCKsystemsofFawn-Hoodedrats[J].Regulato?ryPeptides,-3):27-33.
[9]OtukonyongEE,OkutaniF,TakahashiS.Effectoffooddep-riva?
tionandleptinrepletionontheplasmalevelsofestrogen(E2)andNADPH–dreactivityintheventromedialandarcuatenucleiofthehy?pothalamusinthefemalerats[J].BrainRes,):70-79.[10]刘鸿宇,刘定一,等.运动性疲劳对大鼠杏仁体一氧化氮合酶表达
的影响[J].体育科学,):79-81.
[11]孙颖,房冬梅,等.运动对大鼠大脑皮质MDA及NO代谢的影响
[J].安徽体育科技,-60.
(上接第127页)2.4?有运动损伤史的不同气质类型的学生运动项目分布特征在调查的246名有运动损伤史的学生共7项运动项目中,每个项目都存在着不同人数的运动损伤,各种气质类型的学生都有。通过表4可知,田径项目上发生的损伤次数最多,总共79人,损伤学生气质类型主要分布在多血质、粘液质这两种气质类型上。在篮球项目上有50名学生发生损伤,主要集中在多血质、粘液质、胆汁质-多血质混合型的气质类型上,各为20人、5人、5人。其余项目如体操、足球、排球、武术、健美操中由于损伤人数较少,气质类型分布无明显的规律特征,但仍可看出,多血质、粘液质气质类型发生运动损伤的人数较多。
表4?有运动损伤史的不同气质类型的学生运动项目
分布特征统计(单位:人)
气质类型多血质粘液质胆汁质抑郁质多-粘粘-抑胆-多-粘胆-多胆-抑篮球田径体操足球排球武术健美操其他总计
类型上。这是因为,多血质气质类型的学生表现为注意力不稳
定且易分散,兴趣容易转移,情绪容易变换,求之过急,缺乏持久力。心理不健康时,神经过敏加剧,随之会出现缄默、忧虑、急躁、悲观、自信心丧失等症状。粘液质气质类型的学生不够灵活,常有学习上的心理障碍,身心机能很难即刻发动。与这两种气质类型相关的混合型的气质类型也具有这两种的特点。而体育教学、训练自身的特点决定,学生在进行专业技术技能学习和教学比赛时,身体和心理机能都应尽快适应当时的运动要求。如果不能达到这种要求,就会导致动作变形,出现运动损伤。可见,这些气质类型学生的性格特点决定了其是易损伤人群,教学中应采取相应措施加以防范。要有针对性地加强克服学生气质弱点的专门性训练。如,平时要加强多血质气质类型学生集中注意力的训练,粘液质气质类型学生的反映能力训练等等。在运动损伤学生的气质类型中,抑郁质气质类型最少,这可能是因为抑郁质气质类型的学生办事心细、谨小慎微、与世无争的特征决定的。参考文献:
[1]张文普,史海现,毛卫国.有运动损伤史的学生气质类型分布特征的调查研究[J].广州体育学院学报,):51-52.
[2]方敏.体育专业学生神经类型与急性损伤的关系[J].四川体育科学,,32.
[3]张文普.体育专业学生严重运动损伤的现状与分析[J].四川体育科学,):16-17.
[4]刘晓莉,张琴.体育专业在校生运动损伤情况调查与分析[J].中国体育科技,):46-47.
3?结果与分析
无论是运动损伤学生气质类型的总体分布特征、性别分布特征、损伤程度分布特征还是损伤项目分布特征,主要集中于多血质、粘液质、胆汁质、多血质-粘液质混合型这4类气质
Word文档免费下载:
综述报告 ZONGSHUBAOGAO 运动训练与脑内一氧化氮关系的研究进展 Study on Relationsh i p bet w een Exercise Training and N itric Ox ide in Brai n 马春伟...一氧化氮与运动和学习记忆的关系研究新进展_专业资料。采用文献综述法,概述了一...运动训练与脑内一氧化氮... 5人阅读 2页 ¥1.00 运动诱导海马内IGF-1的...运动训练与脑内一氧化氮关... 暂无评价 2页 1.00元 一氧化氮与运动和学习...一氧化氮与运动疲劳关系的研究进展熊正英1 , 曲洪刚2 ( 11 陕西师范大学运动...更多&&目的:探讨一氧化氮与运动之间关系的研究进展。资料来源:应用计算机检索Pubmed 6—01收录的一氧化氮与运动之间相互作用的相关文章,检索词“nitric ...血浆一氧化氮水平和脑血管反应性与进展性卒中的关系研究_专业资料。目的探讨一氧化氮(NO)和脑血管反应性(CVR)与进展性卒中(SIP)的关系。方法对发病24h内住院经头...? 6 ? 4 中国 中 医急 症210 1年 1月第 2 O卷第 1期 JTM.a.01V12N.ECJn21,o.0,o1 ? 证治研究 ? 一 氧化氮与中医“ 在脑血管病 中的关系...2型糖尿病胰岛素抵抗与一氧化氮关系的研究进展 胰岛素抵抗(IR)是2型糖尿病的重要病理基础之一,IR也是导致血管内皮损伤和功能障碍而发生动脉粥样硬化性心脏病等血管...一氧化氮的生理作用与心血管疾病关系的研究进展 隐藏&& 维普资讯
20年第l02 4卷第1期 蛇志 JOURNAO NA LFSKE Vo-4No102l1.,20 ...胰岛素抵抗与血管内皮细胞释放一氧化氮关系的研究进展_专业资料。胰岛素抵抗(IR)是产生2型糖尿病、心血管疾病、高脂血症、高尿酸血症及代谢综合症的共同病理基础。...21 ,No. 3 运动与内皮细胞内皮素和一氧化氮分泌的研究进展金其贯1 冯美云2 1 扬州大学体育学院 ( 扬州 225002) 北京市体育局 2 由于内皮细胞分泌的内皮素...

我要回帖

更多关于 fawn on 的文章

 

随机推荐