如何用尺规作怎么用正方形纸折心?

【静思·水】用尺规作图绘制正方形_洛阳二十六中静思班吧_百度贴吧
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&签到排名:今日本吧第个签到,本吧因你更精彩,明天继续来努力!
本吧签到人数:0成为超级会员,使用一键签到本月漏签0次!成为超级会员,赠送8张补签卡连续签到:天&&累计签到:天超级会员单次开通12个月以上,赠送连续签到卡3张
关注:15贴子:
【静思·水】用尺规作图绘制正方形收藏
我知道已经没人了尺规作图画正方形也很简单,不过看起来很有bigger高(di)端水几何原本镇楼
处女星号邮轮由上海出发前往大阪,畅享大阪自然美景和饕餮美食
首先画一个圆,随便作一条直径。
在yuanshabg
以C为圆心,BC长为半径作弧,延长AC与弧交于D
分别以B和D为圆心,以BC或CD为半径作弧交于E点,连接DE,BE,四边形CBED为正方形。结束
证明是正方形很容易就不说了
默默地水一贴支持克强
登录百度帐号推荐应用
为兴趣而生,贴吧更懂你。或【作图】如何用尺规做出给定变长的正方形_数学吧_百度贴吧
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&签到排名:今日本吧第个签到,本吧因你更精彩,明天继续来努力!
本吧签到人数:0成为超级会员,使用一键签到本月漏签0次!成为超级会员,赠送8张补签卡连续签到:天&&累计签到:天超级会员单次开通12个月以上,赠送连续签到卡3张
关注:417,466贴子:
【作图】如何用尺规做出给定变长的正方形收藏
RT,是为了精确做正五边形的。
初二数学一对一-数学名师亲自辅导-1对1辅导-快速提升成绩.初二数学一对一-上海数学辅导-费用合理-收费透明.
过线段的一点做垂直
尺规作图……
正五边形也要结合三角函数才能知道怎么作..当年小学还想半天
就是尺规作图而且还是基本作图...
双向延长线段,以其中一个端点A为圆心以半径a画圆,交线段于CD两点,分别以CD为圆心作半径为b(a<b<2a)的圆,连接两圆交点,话说这些自己动动脑好一点..
谢谢的说~~
话说六楼给力呀
话说六楼给力呀,正五边形,也比较容易。哥们说说。
登录百度帐号推荐应用
为兴趣而生,贴吧更懂你。或【图文】用尺规作角_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
用尺规作角
上传于|0|0|暂无简介
大小:417.13KB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢当前位置:
>>>(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正..
(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上。(保留作图痕迹)
(2)写出你的作法。
题型:解答题难度:中档来源:新疆自治区中考真题
解:(1)所作菱形如图①、②所示:(答案不唯一)。(2)图①的作法:作矩形A1B1C1D1四条边的中点E1、F1、G1、H1;连接H1E1、E1F1、G1F1、G1H1四边形E1F1G1H1即为菱形。图②的作法:在B2C2上取一点E2,使E2C2>A2E2且E2不与B2重合;以A2为圆心,A2E2为半径画弧,交A2D2于H2;以E2为圆心,A2E2为半径画弧,交B2C2于F2;连接H2F2,则四边形A2E2F2H2为菱形。
马上分享给同学
据魔方格专家权威分析,试题“(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正..”主要考查你对&&尺规作图,菱形,菱形的性质,菱形的判定&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
尺规作图菱形,菱形的性质,菱形的判定
尺规作图:是指限定用没有刻度的直尺和圆规来完成的画图。一把没有刻度的直尺看似不能做什么,画一个圆又不知道它的半径,画线段又没有精确的长度。其实尺规作图的用处很大,比如单用圆规找出一个圆的圆心,量度一个角的角度,等等。运用尺规作图可以画出与某个角相等的角,十分方便。 尺规作图的中基本作图:作一条线段等于已知线段;作一个角等于已知角;作线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线。 还有:已知一角、一边做等腰三角形已知两角、一边做三角形已知一角、两边做三角形依据公理:还可以根据已知条件作三角形,一般分为已知三边作三角形,已知两边及夹角作三角形,已知两角及夹边作三角形等,作图的依据是全等三角形的判定定理:SSS,SAS,ASA等。 注意:保留全部的作图痕迹,包括基本作图的操作程序,只有保留作图痕迹,才能反映出作图的操作是否合理。 尺规作图方法:任何尺规作图的步骤均可分解为以下五种方法:·通过两个已知点可作一直线。·已知圆心和半径可作一个圆。·若两已知直线相交,可求其交点。·若已知直线和一已知圆相交,可求其交点。·若两已知圆相交,可求其交点。尺规作图简史:“规”就是圆规,是用来画圆的工具,在我国古代甲骨文中就有“规”这个字.“矩”就像现在木工使用的角尺,由长短两尺相交成直角而成,两者间用木杠连接以使其牢固,其中短尺叫勾,长尺叫股.矩的使用是我国古代的一个发明,山东历城武梁祠石室造像中就有“伏羲氏手执矩,女娲氏手执规”之图形.矩不仅可以画直线、直角,加上刻度可以测量,还可以代替圆规.甲骨文中也有矩字,这可追溯到大禹治水(公元前2000年)前.《史记》卷二记载大禹治水时“左准绳,右规矩”.赵爽注《周髀算经》中有“禹治洪水,……望山川之形,定高下之势,……乃勾股之所由生也.”意即禹治洪水,要先测量地势的高低,就必定要用勾股的道理.这也说明矩起源于很远的中国古代.春秋时代也有不少著作涉及规矩的论述,《墨子》卷七中说“轮匠(制造车子的工匠)执其规矩,以度天下之方圆.”《孟子》卷四中说“离娄(传说中目力非常强的人)之明,公输子(即鲁班,传说木匠的祖师)之巧,不以规矩,不能成方圆.”可见,在春秋战国时期,规矩已被广泛地用于作图、制作器具了.由于我国古代的矩上已有刻度,因此使用范围较广,具有较大的实用性.古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值.因此,在作图中对规、矩的使用方法加以很多限制,提出了尺规作图问题.所谓尺规作图,就是只有限次地使用没有刻度的直尺和圆规进行作图.古希腊的安那萨哥拉斯首先提出作图要有尺寸限制.他因政治上的纠葛,被关进监狱,并被判处死刑.在监狱里,他思考改圆成方以及其他有关问题,用来打发令人苦恼的无所事事的生活.他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来说,时间是不多了,因此他很自然地想到要有限次地使用尺规解决问题.后来以理论形式具体明确这个规定的是欧几里德的《几何原本》.由于《几何原本》的巨大影响,希腊人所崇尚的尺规作图也一直被遵守并流传下来.由于对尺规作图的限制,使得一些貌似简单的几何作图问题无法解决.最著名的是被称为几何三大问题的三个古希腊古典作图难题:立方倍积问题、三等分任意角问题和化圆为方问题.当时很多有名的希腊数学家,都曾着力于研究这三大问题,虽然借助于其他工具或曲线,这三大难题都可以解决,但由于尺规作图的限制,却一直未能如愿以偿.以后两千年来,无数数学家为之绞尽脑汁,都以失败而告终.直到1637年笛卡尔创立了解析几何,关于尺规作图的可能性问题才有了准则.到了1837年万芝尔首先证明立方倍积问题和三等分任意角问题都属于尺规作图不可能问题.1882年林德曼证明了π是无理数,化圆为方问题不可能用尺规作图解决,这才结束了历时两千年的数学难题公案.菱形的定义:在一个平面内,有一组邻边相等的平行四边形是菱形。菱形的性质:①菱形具有平行四边形的一切性质;②菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角;③菱形的四条边都相等;④菱形既是轴对称图形(两条对称轴分别是其两条对角线所在的直线),也是中心对称图形(对称中心是其重心,即两对角线的交点);⑤在有一个角是60°角的菱形中,较短的对角线等于边长,较长的对角线是较短的对角线的根号3倍。菱形的判定:在同一平面内,(1)定义:有一组邻边相等的平行四边形是菱形 (2)定理1:四边都相等的四边形是菱形 (3)定理2:对角线互相垂直的平行四边形是菱形 菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。菱形的面积:S菱形=底边长×高=两条对角线乘积的一半。
发现相似题
与“(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正..”考查相似的试题有:
389104157183389592352941365657916459

我要回帖

更多关于 怎么用正方形纸折心 的文章

 

随机推荐