求助编辑百科名片∵fx=fx/y fy=9设L6的方程为:y=kx 6

当前位置:
>>>已知曲线C的方程为kx2+(4-k)y2=k+1(k∈R).(1)若曲线C是椭圆,求k的..
已知曲线C的方程为kx2+(4-k)y2=k+1(k∈R).(1)若曲线C是椭圆,求k的取值范围;(2)若曲线C是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程;(3)满足(2)的双曲线上是否存在两点P、Q关于直线l:y=x-1对称,若存在,求出过P、Q的直线方程;若不存在,说明理由.
题型:解答题难度:中档来源:不详
(1)当k=0或k=-1或k=4时,C表示直线;当k≠0且k≠-1且k≠4时方程为x2k+1k+y2k+14-k=1,①方程①表示椭圆的充要条件是k+1k>0&k+14-k>0k+1k≠k+14-k即是0<k<2或2<k<4.(2)方程①表示双曲线的充要条件是k+1kok+14-k<0,即k<-1或-1<k<0或k>4.①当k<-1或k>4时,双曲线焦点在x轴上,a2=k+1k,b2=k+1k-4,其一条渐近线的斜率为ba=k+1k-4k+1k=3,得k=6.②当-1<k<0时,双曲线焦点在y轴上,a2=k+14-k,b2=-k+1k,其一条渐近线的斜率为ab=-k+1kk+14-k=3,得k=6(舍),综上得双曲线方程为x276-y272=1.(3)若存在,设直线PQ的方程为:y=-x+m.由y=-x+m6x2-2y2=7,消去y,得4x2+4mx-2m2-7=0.②设P、Q的中点是M(x0,y0),则x0=-m2y0=3m2M在直线l上,∴3m2=-m2-1,解得m=-12,方程②的△>0,∴存在满足条件的P、Q,直线PQ的方程为y=-x-12.
马上分享给同学
据魔方格专家权威分析,试题“已知曲线C的方程为kx2+(4-k)y2=k+1(k∈R).(1)若曲线C是椭圆,求k的..”主要考查你对&&椭圆的标准方程及图象,双曲线的标准方程及图象,圆锥曲线综合&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
椭圆的标准方程及图象双曲线的标准方程及图象圆锥曲线综合
椭圆的标准方程:
(1)中心在原点,焦点在x轴上:;(2)中心在原点,焦点在y轴上:。椭圆的图像:
(1)焦点在x轴:;(2)焦点在y轴:。巧记椭圆标准方程的形式:
①椭圆标准方程的形式:左边是两个分式的平方和,右边是1;②椭圆的标准方程中,x2与y2的分母哪一个大,则焦点在哪一个轴上;③椭圆的标准方程中,三个参数a,b,c满足a2= b2+ c2;④由椭圆的标准方程可以求出三个参数a,b,c的值.
待定系数法求椭圆的标准方程:
求椭圆的标准方程常用待定系数法,要恰当地选择方程的形式,如果不能确定焦点的位置,那么有两种方法来解决问题:一是分类讨论,全面考虑问题;二是可把椭圆的方程设为n)用待定系数法求出m,n的值,从而求出标准方程,双曲线的标准方程:
(1)中心在原点,焦点在x轴上:;(2)中心在原点,焦点在y轴上:。双曲线的图像:
(1)焦点在x轴上的双曲线的图像 ;(2)焦点在y轴上的双曲线的图像。判断双曲线的焦点在哪个轴上:
判断双曲线的焦点在哪个轴上的方法看未知数前的系数,哪一个为正,焦点就在哪一个轴上.
定义法求双曲线的标准方程:
求动点的轨迹方程时,可利用定义先判断动点的轨迹,再写出方程.平面几何中的定理性质在解决解析几何问题时起着简化运算的作用,一定要注意应用,根据双曲线的定义,到两个定点的距离之差的绝对值是一个常数的点的轨迹是双曲线,可以求双曲线的标准方程,
待定系数法求双曲线的标准方程:
在求双曲线标准方程时,可先设出其标准方程,再根据双曲线的参数a,b,c,e的取值及相互之间的关系,求出a,b的值,已知双曲线的渐近线方程,求双曲线方程时,可利用共渐近线双曲线系方程,再由其他条件求λ.若焦点不确定时,要注意分类讨论.
利用双曲线的性质求解有关问题:
要解决双曲线中有关求离心率或求离心率范围的问题,应找好题中的等量关系或不等关系,构造出离心率的关系式,这里应和椭圆中a,b,c的关系区分好,即 几种特殊的双曲线:
圆锥曲线的综合问题:
1、圆锥曲线的范围问题有两种常用方法: (1)寻找合理的不等式,常见有△>0和弦的中点在曲线内部; (2)所求量可表示为另一变量的函数,求函数的值域。 2、圆锥曲线的最值、定值及过定点等难点问题。直线与圆锥曲线的位置关系:
(1)从几何角度来看,直线和圆锥曲线有三种位置关系:相离、相切和相交,相离是直线和圆锥曲线没有公共点,相切是直线和圆锥曲线有唯一公共点,相交是直线与圆锥曲线有两个不同的公共点,并特别注意直线与双曲线、抛物线有唯一公共点时,并不一定是相切,如直线与双曲线的渐近线平行时,与双曲线有唯一公共点,但这时直线与双曲线相交;直线平行(重合)于抛物线的对称轴时,与抛物线有唯一公共点,但这时直线与抛物线相交,故直线与双曲线、抛物线有唯一公共点时可能是相切,也可能是相交,直线与这两种曲线相交,可能有两个交点,也可能有一个交点,从而不要以公共点的个数来判断直线与曲线的位置关系,但由位置关系可以确定公共点的个数.(2)从代数角度来看,可以根据直线方程和圆锥曲线方程组成的方程组解的个数确定位置关系.设直线l的方程与圆锥曲线方程联立得到ax2+bx+c=0.①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行或重合.②若当Δ&0时,直线和圆锥曲线相交于不同两点,相交.当Δ=0时,直线和圆锥曲线相切于一点,相切.当Δ&0时,直线和圆锥曲线没有公共点,相离.
直线与圆锥曲线相交的弦长公式:
若直线l与圆锥曲线F(x,y)=0相交于A,B两点,求弦AB的长可用下列两种方法:(1)求交点法:把直线的方程与圆锥曲线的方程联立,解得点A,B的坐标,然后用两点间距离公式,便得到弦AB的长,一般来说,这种方法较为麻烦.(2)韦达定理法:不求交点坐标,可用韦达定理求解.若直线l的方程用y=kx+m或x=n表示.&
发现相似题
与“已知曲线C的方程为kx2+(4-k)y2=k+1(k∈R).(1)若曲线C是椭圆,求k的..”考查相似的试题有:
448004276884526048329964526002281642已知一次函数y=x+b的图象与x轴,y轴交于点A、B.(1)若将此函数图象沿x轴向右平移2个单位后经过原点,则b=&&&&&;(2)若函数y1=x+b图象与一次函数y2=kx+4的图象关于y轴对称,求k、b的值;(3)当b&0时,函数y1=x+b图象绕点B逆时针旋转n°(0°<n°<180°)后,对应的函数关系式为y=-x+b,求n的值.
已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是-2≤y≤4,则kb的值为
已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是-4≤y≤8,则kb的值为________.
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对答案更方便,扫描上方二维码立刻安装!请在这里输入关键词:
科目:高中数学
已知椭圆E:x2a2+y23=1(a>3)的离心率e=12.直线x=t(t>0)与曲线E交于不同的两点M,N,以线段MN为直径作圆C,圆心为C.(1)求椭圆E的方程;(2)若圆C与y轴相交于不同的两点A,B,且△ABC的面积为52,求圆C的标准方程.
科目:高中数学
如图,已知圆C的圆心坐标为(1,-1),且过点M(2,-1).(1)求圆C的标准方程;(2)过点N(-1,-2)且斜率为1的直线l与圆C相交于A、B两点,求线段AB的长.
科目:高中数学
已知椭圆x2a2+y23=1(a>3)的离心率e=12.直线x=t(t>0)与曲线E交于不同的两点M,N,以线段MN为直径作圆C,圆心为C.(1)求椭圆E的方程;(2)若圆C与y轴相交于不同的两点A,B,且△ABC的面积为52,求圆C的标准方程.
科目:高中数学
已知圆C的圆心C为(-3,4),且与x轴相切.(1)求圆C的标准方程;(2)若关于直线y=k(x-1)对称的两点M,N均在圆C上,且直线MN与圆x2+y2=2相切,试求直线MN的方程.
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对答案更方便,扫描上方二维码立刻安装!(2010o西城区二模)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为63,椭圆C上任意一点到椭圆两个焦点的距离之和为6.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l:y=kx-2与椭圆C交与A,B两点,点P(0,1),且|PA|=|PB|,求直线l的方程. - 跟谁学
在线咨询您好,告诉我您想学什么,15分钟为您匹配优质老师哦马上咨询
搜索你想学的科目、老师试试搜索吉安
在线咨询您好,告诉我您想学什么,15分钟为您匹配优质老师哦马上咨询&&&分类:(2010o西城区二模)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为63,椭圆C上任意一点到椭圆两个焦点的距离之和为6.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l:y=kx-2与椭圆C交与A,B两点,点P(0,1),且|PA|=|PB|,求直线l的方程.(2010o西城区二模)已知椭圆2a2+y2b2=1&(a>b>0)的离心率为,椭圆C上任意一点到椭圆两个焦点的距离之和为6.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l:y=kx-2与椭圆C交与A,B两点,点P(0,1),且|PA|=|PB|,求直线l的方程.科目:最佳答案解:(Ⅰ)由已知2a=6,,解得a=3,,所以b2=a2-c2=3,所以椭圆C的方程为29+y23=1.(Ⅱ)由29+y23=1y=kx-2得,(1+3k2)x2-12kx+3=0,直线与椭圆有两个不同的交点,所以△=144k2-12(1+3k2)>0,解得2>19.设A(x1,y1),B(x2,y2),则1+x2=12k1+3k2,1x2=31+3k2,计算1+y2=k(x1+x2)-4=ko12k1+3k2-4=-41+3k2,所以,A,B中点坐标为2,-21+3k2),因为|PA|=|PB|,所以PE⊥AB,kPEokAB=-1,所以2-16k1+3k2ok=-1,解得k=±1,经检验,符合题意,所以直线l的方程为x-y-2=0或x+y+2=0.解析(1)根据椭圆的定义首先求得椭圆的短半轴,进而根据离心率求得椭圆的半焦距,根a,b和c的关系求得b,则椭圆方程可得.(2)把直线方程与椭圆方程联立消去y,根据直线与椭圆的两个交点判断出判别式大于0,求得k的范围,设A,B的坐标,则根据韦达定理求得x1+x2,x1x2的表达式,根据直线方程求得y1+y2的表达式,进而可表示出AB中点的坐标,根据|PA|=|PB|推断出PE⊥AB,可知kPEokAB=-1,求得k,则直线方程可求得.知识点:&&&&&&基础试题拔高试题热门知识点最新试题
关注我们官方微信关于跟谁学服务支持帮助中心当前位置:
>>>已知抛物线y=kx2-2kx+9-k(k为常数,k≠0),且当x>0时,y>1。(1)求..
已知抛物线y=kx2-2kx+9-k(k为常数,k≠0),且当x>0时,y>1。(1)求抛物线的顶点坐标;(2)求k的取值范围;(3)过动点P(0,n)作直线l⊥y轴,点O为坐标原点。①当直线l与抛物线只有一个公共点时,求n关于k的函数关系式;②当直线l与抛物线相交于A、B两点时,是否存在实数n,使得不论k在其取值范围内取任意值时,△AOB的面积为定值?如果存在,求出n的值;如果不存在,说明理由。
题型:解答题难度:偏难来源:广东省中考真题
解:(1)∵,,∴抛物线的顶点坐标为(1,-2k+9);(2)依题意可得,解得0<k<4,即k的取值范围是0<k<4;(3)①当直线l与抛物线只有一个公共点时,即直线l过抛物线的顶点,由(1)得n关于k的函数关系式为n=-2k+9(0<k<4);②结论:存在实数n,使得△AOB的面积为定值,理由:n=kx2-2kx+9-k,整理,得(x2-2x-1)k+(9-n)=0,∵对于任意的k值,上式恒成立,∴,解得,∴当n=9时,对k在其取值范围内的任意值,抛物线的图象都通过点(1-,9)和点(1+,9),即△AOB的底AB=2,高为9,因此△AOB的面积为定值9。
马上分享给同学
据魔方格专家权威分析,试题“已知抛物线y=kx2-2kx+9-k(k为常数,k≠0),且当x>0时,y>1。(1)求..”主要考查你对&&求二次函数的解析式及二次函数的应用,求一次函数的解析式及一次函数的应用,二次函数的图像&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用求一次函数的解析式及一次函数的应用二次函数的图像
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。待定系数法求一次函数的解析式:先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。一次函数的应用:应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。(1)有图像的,注意坐标轴表示的实际意义及单位;(2)注意自变量的取值范围。 用待定系数法求一次函数解析式的四个步骤:第一步(设):设出函数的一般形式。(称一次函数通式)第二步(代):代入解析式得出方程或方程组。第三步(求):通过列方程或方程组求出待定系数k,b的值。第四步(写):写出该函数的解析式。 一次函数的应用涉及问题:一、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。
二、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数
三、概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。(2)理清题意是采用分段函数解决问题的关键。生活中的应用:1.当时间t一定,距离s是速度v的一次函数。s=vt。2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)一次函数应用常用公式:1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:(x1+x2)/23.求与y轴平行线段的中点:(y1+y2)/24.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]5.求两个一次函数式图像交点坐标:解两函数式两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)(x,y)为 + ,+(正,正)时该点在第一象限(x,y)为 - ,+(负,正)时该点在第二象限(x,y)为 - ,-(负,负)时该点在第三象限(x,y)为 + ,-(正,负)时该点在第四象限8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b29.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-110.y=k(x-n)+b就是直线向右平移n个单位y=k(x+n)+b就是直线向左平移n个单位y=kx+b+n就是向上平移n个单位y=kx+b-n就是向下平移n个单位口决:左加右减相对于x,上加下减相对于b。11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。 抛物线的主要特征:①有开口方向,a表示开口方向:a&0时,抛物线开口向上;a&0时,抛物线开口向下;②有对称轴;③有顶点;④c 表示抛物线与y轴的交点坐标:(0,c)。 二次函数图像性质:轴对称:二次函数图像是轴对称图形。对称轴为直线x=-b/2a对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。a,b同号,对称轴在y轴左侧b=0,对称轴是y轴a,b异号,对称轴在y轴右侧顶点:二次函数图像有一个顶点P,坐标为P ( h,k )当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。h=-b/2a, k=(4ac-b^2)/4a。开口:二次项系数a决定二次函数图像的开口方向和大小。当a&0时,二次函数图像向上开口;当a&0时,抛物线向下开口。|a|越大,则二次函数图像的开口越小。决定对称轴位置的因素:一次项系数b和二次项系数a共同决定对称轴的位置。当a&0,与b同号时(即ab&0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a&0,所以 b/2a要大于0,所以a、b要同号当a&0,与b异号时(即ab&0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a&0, 所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当a与b同号时(即ab&0),对称轴在y轴左;当a与b异号时(即ab&0 ),对称轴在y轴右。事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。决定与y轴交点的因素:常数项c决定二次函数图像与y轴交点。二次函数图像与y轴交于(0,C)注意:顶点坐标为(h,k), 与y轴交于(0,C)。与x轴交点个数:a&0;k&0或a&0;k&0时,二次函数图像与x轴有2个交点。k=0时,二次函数图像与x轴只有1个交点。a&0;k&0或a&0,k&0时,二次函数图像与X轴无交点。当a&0时,函数在x=h处取得最小值ymin=k,在x&h范围内是减函数,在x&h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y&k当a&0时,函数在x=h处取得最大值ymax=k,在x&h范围内是增函数,在x&h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y&k当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。
发现相似题
与“已知抛物线y=kx2-2kx+9-k(k为常数,k≠0),且当x>0时,y>1。(1)求..”考查相似的试题有:
902465312107151134930878917544924362

我要回帖

 

随机推荐