把两个全等的一副直角三角板满足ABC和DEF叠放在一起(如图1),且使三角板DEF的直角顶点D与三角板ABC的斜边(接下

问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图(1)所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,∠E=30°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N.(1)试判断线段OM与ON的数量关系,并说明理由;(2)将图(1)中的Rt△DEF沿着射线BA的方向平移至如图(2)的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连结OM、ON.试判断线段OM、ON的数量关系与位置关系,并写出证明过程.【考点】.【分析】(1)根据等腰三角形的性质,可得两底角相等,根据线段中点的性质,可得OA=OB,根据AAS,可得两个三角形全等,根据全等三角形的性质,可得结果;(2)根据四个角是直角的四边形是矩形,可得四边形DMCN是矩形,根据矩形的性质,可得对边相等,根据等腰三角形的判定,可得DM与AM的关系,根据根据SAS,可得三角形全等,根据全等三角形的性质,可得对应边相等,对应角相等,根据同角的余角相等,可得答案.【解答】证明:(1)∵CA=CB,∴∠A=∠B,∵O是AB的中点,∴OA=OB.∵DF⊥AC,DE⊥BC,∴∠AMO=∠BNO=90°,在△OMA和△ONB中,,∴△OMA≌△ONB(AAS),∴OM=ON.(2)解:OM=ON,OM⊥ON.理由如下:连结OC,∵BN⊥DE,FM⊥CM,CM⊥BN,∴四边形DMCN是矩形,∴CN=DM,∵∠DAM=∠CAB=45°,∠DMA=90°,∴DM=MA,∴CN=MA∵∠ACB=90°,O为AB中点,∴CO=AB=AO,∠BCO=45°,CO⊥AB,∴∠NCO=∠MAO=135°,在△NOC和△MOA,中,∴△NOC≌△MOA(SAS),∴OM=ON,∠AOM=∠NOC,∵∠NOC+∠AON=90°,∴∠AOM+∠AON=90°,∴∠MON=90°,即OM⊥ON.【点评】本题考查了全等三角形的判定与性质,(1)由SAS证明三角形全等,再由全等三角形的性质,得出答案;(2)先证明矩形,再由SAS证明三角形全等,证明全等三角形的对应边相等、对应角相等,同角的余角相等.声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。答题:老师 难度:0.75真题:1组卷:95
解析质量好中差
&&&&,V2.27761当前位置:
>>>两块完全相同的直角三角板ABC和DEF如图1所示放置,点C、F重合,且..
两块完全相同的直角三角板ABC和DEF如图1所示放置,点C、F重合,且BC、DF在一条直线上,其中AC=DF=4,BC=EF=3.固定Rt△ABC不动,让Rt△DEF沿CB向左平移,直到点F和点B重合为止.设FC=x,两个三角形重叠阴影部分的面积为y.(1)如图2,求当x=12时,y的值是多少?(2)如图3,当点E移动到AB上时,求x、y的值;(3)求y与x之间的函数关系式.
题型:解答题难度:中档来源:不详
(1)如图1:AB=DE=5,∵FC=x=12.∴DC=DF-FC=72.∵tanD=GCDC=EFDF=34,∴GC=218.∴y=12(EF+GC)oFC=4532.(2)当点E运动到AB上时,如图2;∵tanB=EFBF=ACBC=43,∴BF=94.∴x=FC=BC-BF=34.∵DC=DF-FC=134,GCDC=34;∴GC=3916.∴y=12(EF+GC)oFC=261128.(3)本题分两种情况:①当0<x≤34时,如图3;DC=4-x;∵tanD=GCDC=EFDF=34,∴GC=3-34x.∴y=12(EF+GC)oFC=-38x2+3x.②当34<x≤3时;如图4;y=S梯形EFCG-S△EHQ.由①知,梯形EFCG的面积为-38x2+3x.∵tanB=QFBF=ACCB=43,BF=3-x,∴QF=4-43x.∴EQ=3-QF=43x-1.∵S△DEF=6,Rt△EHQ∽Rt△EFD.∴S△EHQ:S△EFD=(EQ:ED)2;∴S△EHQ=625(43x-1)2;∴y=S梯形EFCG-S△EHQ=-38x2+3x-625(43x-1)2=-481600x2+9125x-625.
马上分享给同学
据魔方格专家权威分析,试题“两块完全相同的直角三角板ABC和DEF如图1所示放置,点C、F重合,且..”主要考查你对&&求二次函数的解析式及二次函数的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。
发现相似题
与“两块完全相同的直角三角板ABC和DEF如图1所示放置,点C、F重合,且..”考查相似的试题有:
195878182437129044176309195482925264把两个全等三角板ABC和DEF叠放在一起(如图1)且使三角板DEF的直角顶点D与三角板ABC的斜边的中点O重合.现将三角板DEF绕点O顺时针旋转a角(0度&小于&a&小于&90度),四边形CHDK是旋转过程中两个三角板的重叠部分(如图2).(1)在上述旋转过程中,BH与CK有怎样的数量关系?请说明你的猜想.(2)四边形CHDK的面积有何变化?请说明理由.
嗯哼若∠A=∠B=45°,(1)在上述旋转过程中,BH=CK;(2)四边形CHDK的面积不变化.若∠A<∠B,(1)在上述旋转过程中,BH>CK;(2)四边形CHDK的面积变小.若∠A>∠B,(1)在上述旋转过程中,BH<CK;(2)四边形CHDK的面积变大.
能详细一点吗?
不用了,谢谢。
为您推荐:
其他类似问题
扫描下载二维码把两个全等三角形的直角三角板ABC和DEF叠放在一起,且使三角板DEF的直角顶点D与三角板ABC的斜边的中点O重和,现将三角板DEF绕点O顺时针旋转α角(0<α<90)四边形CHDK是旋转过程中两个三角板的重叠部分,在上述过程中,BH与CK有怎样的数量关系?四边形CHDK有何变化
BH=CK,四边形CHDK越来越小
为您推荐:
其他类似问题
扫描下载二维码把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合.
唯yui一501
(1)∵∠A=∠C=45°,∠APD=∠QDC=90°,∴△APD∽△CDQ.∴AP:CD=AD:CQ.∴即AP×CQ=AD×CD,∵AB=BC=4,∴斜边中点为O,∴AP=PD=2,∴AP×CQ=2×4=8;故答案为:8.(2)AP•CQ的值不会改变.理由如下:∵在△APD与△CDQ中,∠A=∠C=45°,∠APD=180°-45°-(45°+α)=90°-α,∠CDQ=90°-α,∴∠APD=∠CDQ.∴△APD∽△CDQ.∴AP
.∴AP•CQ=AD•CD=AD2=(1
AC)2=8.(3)情形1:当0°<α<45°时,2<CQ<4,即2<x<4,此时两三角板重叠部分为四边形DPBQ,过D作DG⊥AP于G,DN⊥BC于N,∴DG=DN=2由(2)知:AP•CQ=8得AP=8
AB•BC-1
CQ•DN-1
AP•DG=8-x-8
(2<x<4)情形2:当45°≤α<90°时,0<CQ≤2时,即0<x≤2,此时两三角板重叠部分为△DMQ,由于AP=8
-4,易证:△PBM∽△DNM,∴BM
解得BM=2PB
.∴MQ=4-BM-CQ=4-x-8-4x
MQ•DN=4-x-8-4x
(0<x≤2).综上所述,当2<x<4时,y=8-x-8
.当0<x≤2时,y=4-x-8-4x
(或y=x2-4x+8
为您推荐:
其他类似问题
扫描下载二维码

我要回帖

更多关于 一副直角三角板满足 的文章

 

随机推荐