请教大神求一数学问题:P=0.64X+0.89Y,要求XY均为整数,已知全集u 非零整数他们的和P,求X和Y的值

1.已知两直线L1:A1X+B1Y+1=0和 L2:A2X+B2Y+1=0 的交点为P(2,3),求过 A(A1,B1),B(A2,B2)两点的直线方程.2.对于直线L上任一点(X,Y),点(4X+2Y,X+3Y)还在直线L上,求L的方程.
神之谜题tm袒
1.将点P(2,3)代入L1、L2的直线方程得:2A1+3B1++1=02A2+3B2++1=0显然点A(A1,B1),B(A2,B2)都满足方程2X+3Y+1=0所以过 A(A1,B1),B(A2,B2)两点的直线方程为2X+3Y+1=02.设L的方程为aX+bY+c=0 .(1)则由题意有:a(4X+2Y)+...
为您推荐:
其他类似问题
扫描下载二维码当前位置:
>>>(本小题满分共12分)已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线..
(本小题满分共12分)已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2(Ⅰ)求a,b,c,d的值(Ⅱ)若x≥-2时,f(x)≤kg(x),求k的取值范围。
题型:解答题难度:中档来源:不详
(1)因为曲线y=f(x)和曲线y=g(x)都过点P(0,2),所以b=d=2;因为,故;,故,故;所以,;(2)令,则,由题设可得,故,令得,(1)若,则,从而当时,,当时,即在上最小值为,此时f(x)≤kg(x)恒成立;(2)若,,故在上单调递增,因为所以f(x)≤kg(x)恒成立(3)若,则,故f(x)≤kg(x)不恒成立;综上所述k的取值范围为.(1)利用导数的几何意义进行求解;(2)构造函数“”,对k的取值范围进行分类讨论,进而得到答案.本题考查导数的几何意义、导数与函数的最值、导数与函数的单调性,考查学生的分类讨论能力以及化归与转化思想.
马上分享给同学
据魔方格专家权威分析,试题“(本小题满分共12分)已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线..”主要考查你对&&导数的运算,20以内数的连加,四边形的分类,函数的单调性与导数的关系,函数的极值与导数的关系,函数的最值与导数的关系&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
导数的运算20以内数的连加四边形的分类函数的单调性与导数的关系函数的极值与导数的关系函数的最值与导数的关系
常见函数的导数:
(1)C′=0&;(2);(3);(4);(5);(6);(7);(8)
导数的四则运算:&
(1)和差:(2)积:(3)商:
复合函数的导数:
运算法则复合函数导数的运算法则为:复合函数的求导的方法和步骤:
(1)分清复合函数的复合关系,选好中间变量; (2)运用复合函数求导法则求复合函数的导数,注意分清每次是哪个变量对哪个变量求导数; (3)根据基本函数的导数公式及导数的运算法则求出各函数的导数,并把中间变量换成自变量的函数。求复合函数的导数一定要抓住“中间变量”这一关键环节,然后应用法则,由外向里一层层求导,注意不要漏层。&连加的定义:3个以上(含3个)的数连续相加,即:连加。解题方法:先算出前两个加数的和,再用这个和去和第三个加数相加,以此类推。例如:13+9+7=(&&& )13+9=22,22+7=29动动脑:在下列算式中移动2根火柴棒,使算式成立:想知道正确答案吗?请到魔方格“试题搜索”找找看吧!下列图形哪些是平行四边形,哪些是梯形?平行四边形:两组对边分别平行的四边形梯形:只有一组对边平行的四边形&四边形的分类:导数和函数的单调性的关系:
(1)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)&0的解集与定义域的交集的对应区间为增区间; (2)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)&0的解集与定义域的交集的对应区间为减区间。 利用导数求解多项式函数单调性的一般步骤:
①确定f(x)的定义域; ②计算导数f′(x); ③求出f′(x)=0的根; ④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)&0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)&0,则f(x)在对应区间上是减函数,对应区间为减区间。
函数的导数和函数的单调性关系特别提醒:
若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)&0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)&0是f(x)在此区间上为增函数的充分条件,而不是必要条件。&极值的定义:
(1)极大值: 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点; (2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。
极值的性质:
(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小; (2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个; (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值; (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。 判别f(x0)是极大、极小值的方法:
若x0满足,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点, 是极值,并且如果在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值。
求函数f(x)的极值的步骤:
(1)确定函数的定义区间,求导数f′(x); (2)求方程f′(x)=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。
对函数极值概念的理解:
极值是一个新的概念,它是研究函数在某一很小区域时给出的一个概念,在理解极值概念时要注意以下几点:①按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).如图②极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小,如图.&&③若fx)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.④若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,⑤可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点,&&&函数的最大值和最小值:
在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。
&利用导数求函数的最值步骤:
(1)求f(x)在(a,b)内的极值; (2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值。
&用导数的方法求最值特别提醒:
①求函数的最大值和最小值需先确定函数的极大值和极小值,因此,函数极大值和极小值的判别是关键,极值与最值的关系:极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值;②如果仅仅是求最值,还可将上面的办法化简,因为函数fx在[a,b]内的全部极值,只能在f(x)的导数为零的点或导数不存在的点取得(下称这两种点为可疑点),所以只需要将这些可疑点求出来,然后算出f(x)在可疑点处的函数值,与区间端点处的函数值进行比较,就能求得最大值和最小值;③当f(x)为连续函数且在[a,b]上单调时,其最大值、最小值在端点处取得。&生活中的优化问题:
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题,解决优化问题的方法很多,如:判别式法,均值不等式法,线性规划及利用二次函数的性质等,不少优化问题可以化为求函数最值问题.导数方法是解这类问题的有效工具.
用导数解决生活中的优化问题应当注意的问题:
(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去;(2)在实际问题中,有时会遇到函数在区间内只有一个点使f'(x)=0的情形.如果函数在这点有极大(小)值,那么不与端点比较,也可以知道这就是最大(小)值;(3)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.
利用导数解决生活中的优化问题:
&(1)运用导数解决实际问题,关键是要建立恰当的数学模型(函数关系、方程或不等式),运用导数的知识与方法去解决,主要是转化为求最值问题,最后反馈到实际问题之中.&(2)利用导数求f(x)在闭区间[a,b]上的最大值和最小值的步骤,&&①求函数y =f(x)在(a,b)上的极值;& ②将函数y=f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.&&(3)定义在开区间(a,b)上的可导函数,如果只有一个极值点,该极值点必为最值点.
发现相似题
与“(本小题满分共12分)已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线..”考查相似的试题有:
624849889366886707887685862889870183当前位置:
>>>已知P(x,y)为圆C:x2+y2-4x-14y+45=0上的动点,(1)求x2+y2+4x-6y..
已知P(x,y)为圆C:x2+y2-4x-14y+45=0上的动点,(1)求x2+y2+4x-6y+13的最大值和最小值;(2)求的最大值和最小值。
题型:解答题难度:中档来源:0114
解:(1)设Q(-2,3),则x2+y2-4x+6y+13=(x+2)2+(y-3)2=|PQ|2,∴ |PQ|max=|CQ|+R=6,|PQ|min=|CQ|-R=2, 所以,原式的最大值为72,原式的最小值为8。 (2)依题意,k为(-2,3)与圆C上任意一点连线的斜率,它的最大值和最小值分别是过(-2,3)的圆C的切线的斜率,所以,kmax=tan(45°+30°)=2+,kmin=tan(45°-30°)=2-,(注意kQC=1)。
马上分享给同学
据魔方格专家权威分析,试题“已知P(x,y)为圆C:x2+y2-4x-14y+45=0上的动点,(1)求x2+y2+4x-6y..”主要考查你对&&两点间的距离,求过两点的直线的斜率&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
两点间的距离求过两点的直线的斜率
两点间的距离公式:
设,是平面直角坐标系中的两个点,则。特别地,原点O(0,0)与任意一点P(x,y)的距离为 两点间的距离公式的理解:
(1)在公式中,的位置是对称的,没有先后之分,即间的距离也可表示为 (2)
&过两点的直线的斜率公式:
过两点P1(x1,y1),P2(x2,y2)的直线的斜率公式:,即,&过两点的直线斜率公式的理解:
(1)k的值与P1,P2& 两点的顺序无关
求直线的斜率的方法:
确定直线的斜率一般有两种情况,即已知直线的倾斜角,由求斜率;已知两点,由斜率公式求斜率.在实际问题中,应注意结合图形分析,准确求解并注意斜率不存在的情况.
斜率公式的应用:
(1)三点共线的证明斜率是反映直线相对于x轴正方向的倾斜程度的,直线上任意两点所确定的方向不变,即在同一直线上任何不同的两点所确定的斜率相等,这正是利用斜率可证三点共线的原因.三点共线的判定方法:已知三点,则判定三点A,B,C在一条直线上的常用方法是:&& (2)利用斜率公式构造斜率,灵活解决形如之类的问题。
发现相似题
与“已知P(x,y)为圆C:x2+y2-4x-14y+45=0上的动点,(1)求x2+y2+4x-6y..”考查相似的试题有:
625794267696246651259789470662268169当前位置:
>>>已知射线l1:y=4x(x≥0)和点P(6,4),试在l1上求一点Q使得PQ所在直..
已知射线l1:y=4x(x≥0)和点P(6,4),试在l1上求一点Q使得PQ所在直线l和l1以及直线y=0在第一象限围成的面积达到最小值,并写出此时直线l的方程.
题型:解答题难度:中档来源:不详
设点Q坐标为(a,4a),PQ与x轴正半轴相交于M点.由题意可得a>1,否则不能围成一个三角形.PQ所在的直线方程为:y-4=4a-4a-6(x-6),令y=0,x=5aa-1,∵a>1,∴S△OQM=12×4a×5aa-1,则S△OQM=10a2a-1=10(a2-2a+1+2a-2+1a-1)=10[(a-1)+1a-1+2]≥10×4,当且仅当(a-1)2=1取等号.所以a=2时,Q点坐标为(2,8);PQ直线方程为:x+y-10=0.
马上分享给同学
据魔方格专家权威分析,试题“已知射线l1:y=4x(x≥0)和点P(6,4),试在l1上求一点Q使得PQ所在直..”主要考查你对&&直线的图像特征与倾斜角、斜率的关系&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
直线的图像特征与倾斜角、斜率的关系
直线的图像与倾斜角、斜率的关系:
利用直线的倾斜角或者斜率判定函数的图象的形状或者位置。直线的倾斜角、斜率对直线的图像的影响:
(1)直线在y轴上的截距大于0时:若倾斜角为锐角,则斜率大于0,这时直线的图像过第一二三象限,并且倾斜角越大斜率就越大,直线相对于x轴的正方向的倾斜程度也就越大;&若倾斜角为钝角,则斜率小于0,这时直线的图像过第一二四象限,并且倾斜角越大斜率就越大,直线相对于x轴的正方向的倾斜程度也就越大;&(2)直线在y轴上的截距小于0时:若倾斜角为锐角,则斜率大于0,这时直线的图像过第一三四象限,并且倾斜角越大斜率就越大,直线相对于x轴的正方向的倾斜程度也就越大;&若倾斜角为钝角,则斜率小于0,这时直线的图像过第二三四象限,并且倾斜角越大斜率就越大,直线相对于x轴的正方向的倾斜程度也就越大;&(3)当直线的倾斜角为直角时,斜率不存在,直线的图线与x轴垂直;&(4)当直线的倾斜角为0度时,斜率为0,直线的图线与x轴平行或重合。
发现相似题
与“已知射线l1:y=4x(x≥0)和点P(6,4),试在l1上求一点Q使得PQ所在直..”考查相似的试题有:
625310291314488284340648326664470584当前位置:
>>>已知函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)..
已知函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.
题型:解答题难度:中档来源:不详
(1)a=4,b=2,c=2,d=2(2)[1,e2](1)∵曲线y=f(x)和曲线y=g(x)都过点P(0,2),∴b=d=2.∵f′(x)=2x+a,故f′(0)=a=4.∵g′(x)=ex(cx+d+c),∴g′(0)=2+c=4,故c=2.从而a=4,b=2,c=2,d=2.(2)令F(x)=kg(x)-f(x),则F′(x)=(kex-1)(2x+4),由题设可得F(0)≥0,故k≥1,令F′(x)=0得x1=-ln k,x2=-2,①若1≤k<e2,则-2<x1≤0,从而当x∈[-2,x1)时,F′(x)<0,当x∈(x1+∞)时,F′(x)>0,即F(x)在[-2,+∞)上最小值为F(x1)=2x1+2-x22-4x1-2=-x1(x1+2)≥0,此时f(x)≤kg(x)恒成立;②若k=e2,F′(x)=(ex+2-1)(2x+4),故F(x)在[-2,+∞)上单调递增,因为F(-2)=0,所以f(x)≤kg(x)恒成立;③若k>e2,则F(-2)=-2ke-2+2=-2e-2(k-e2)<0,从而当x∈[-2,+∞)时,f(x)≤kg(x)不可能恒成立.综上所述k的取值范围为[1,e2].
马上分享给同学
据魔方格专家权威分析,试题“已知函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)..”主要考查你对&&导数的运算,20以内数的连加,四边形的分类,函数的单调性与导数的关系,函数的极值与导数的关系,函数的最值与导数的关系&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
导数的运算20以内数的连加四边形的分类函数的单调性与导数的关系函数的极值与导数的关系函数的最值与导数的关系
常见函数的导数:
(1)C′=0&;(2);(3);(4);(5);(6);(7);(8)
导数的四则运算:&
(1)和差:(2)积:(3)商:
复合函数的导数:
运算法则复合函数导数的运算法则为:复合函数的求导的方法和步骤:
(1)分清复合函数的复合关系,选好中间变量; (2)运用复合函数求导法则求复合函数的导数,注意分清每次是哪个变量对哪个变量求导数; (3)根据基本函数的导数公式及导数的运算法则求出各函数的导数,并把中间变量换成自变量的函数。求复合函数的导数一定要抓住“中间变量”这一关键环节,然后应用法则,由外向里一层层求导,注意不要漏层。&连加的定义:3个以上(含3个)的数连续相加,即:连加。解题方法:先算出前两个加数的和,再用这个和去和第三个加数相加,以此类推。例如:13+9+7=(&&& )13+9=22,22+7=29动动脑:在下列算式中移动2根火柴棒,使算式成立:想知道正确答案吗?请到魔方格“试题搜索”找找看吧!下列图形哪些是平行四边形,哪些是梯形?平行四边形:两组对边分别平行的四边形梯形:只有一组对边平行的四边形&四边形的分类:导数和函数的单调性的关系:
(1)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)&0的解集与定义域的交集的对应区间为增区间; (2)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)&0的解集与定义域的交集的对应区间为减区间。 利用导数求解多项式函数单调性的一般步骤:
①确定f(x)的定义域; ②计算导数f′(x); ③求出f′(x)=0的根; ④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)&0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)&0,则f(x)在对应区间上是减函数,对应区间为减区间。
函数的导数和函数的单调性关系特别提醒:
若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)&0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)&0是f(x)在此区间上为增函数的充分条件,而不是必要条件。&极值的定义:
(1)极大值: 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点; (2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。
极值的性质:
(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小; (2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个; (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值; (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。 判别f(x0)是极大、极小值的方法:
若x0满足,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点, 是极值,并且如果在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值。
求函数f(x)的极值的步骤:
(1)确定函数的定义区间,求导数f′(x); (2)求方程f′(x)=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。
对函数极值概念的理解:
极值是一个新的概念,它是研究函数在某一很小区域时给出的一个概念,在理解极值概念时要注意以下几点:①按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).如图②极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小,如图.&&③若fx)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.④若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,⑤可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点,&&&函数的最大值和最小值:
在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。
&利用导数求函数的最值步骤:
(1)求f(x)在(a,b)内的极值; (2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值。
&用导数的方法求最值特别提醒:
①求函数的最大值和最小值需先确定函数的极大值和极小值,因此,函数极大值和极小值的判别是关键,极值与最值的关系:极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值;②如果仅仅是求最值,还可将上面的办法化简,因为函数fx在[a,b]内的全部极值,只能在f(x)的导数为零的点或导数不存在的点取得(下称这两种点为可疑点),所以只需要将这些可疑点求出来,然后算出f(x)在可疑点处的函数值,与区间端点处的函数值进行比较,就能求得最大值和最小值;③当f(x)为连续函数且在[a,b]上单调时,其最大值、最小值在端点处取得。&生活中的优化问题:
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题,解决优化问题的方法很多,如:判别式法,均值不等式法,线性规划及利用二次函数的性质等,不少优化问题可以化为求函数最值问题.导数方法是解这类问题的有效工具.
用导数解决生活中的优化问题应当注意的问题:
(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去;(2)在实际问题中,有时会遇到函数在区间内只有一个点使f'(x)=0的情形.如果函数在这点有极大(小)值,那么不与端点比较,也可以知道这就是最大(小)值;(3)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.
利用导数解决生活中的优化问题:
&(1)运用导数解决实际问题,关键是要建立恰当的数学模型(函数关系、方程或不等式),运用导数的知识与方法去解决,主要是转化为求最值问题,最后反馈到实际问题之中.&(2)利用导数求f(x)在闭区间[a,b]上的最大值和最小值的步骤,&&①求函数y =f(x)在(a,b)上的极值;& ②将函数y=f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.&&(3)定义在开区间(a,b)上的可导函数,如果只有一个极值点,该极值点必为最值点.
发现相似题
与“已知函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)..”考查相似的试题有:
406336513999771375887729882445860689

我要回帖

更多关于 已知全集u 非零整数 的文章

 

随机推荐