在一篇文献里看到反应材料那里有:PLGA (3 g, 50:50 PLGA acid wash jeansEnd Group; i.v. ~0.67 dL/g; ,求翻译

PLGA_百度百科
声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。
聚乳酸-羟基乙酸共聚物(poly(lactic-co-glycolic acid),PLGA)由两种单体——乳酸和羟基乙酸随机聚合而成,是一种可降解的功能高分子有机化合物,具有良好的生物相容性、无毒、良好的成囊和成膜的性能,被广泛应用于制药、医用工程材料和现代化工业领域。在美国PLGA通过FDA认证,被正式作为药用辅料收录进美国药典。
不同的单体比例可以制备出不同类型的PLGA,例如:PLGA 75:25表示该聚合物由75%乳酸和25%羟基乙酸组成。所有的PLGA都是非定型的,其在40-60 °C之间。纯的乳酸或羟基乙酸聚合物比较难溶,与之不同的是,PLGA展现了更为广泛的溶解性,它能够溶解于更多更普遍的溶剂当中,如:氯化溶剂类,,丙酮或等。
破坏酯键会导致PLGA的降解,降解程度随比不同而有差异,比例越大越易降解。也存在特例,当两种单体比为50:50时,降解的速度会更快,差不多需要两个月。
PLGA的是乳酸和羟基乙酸,同时也是人的副产物,所当它应用在医药和中时不会有毒副作用。当然,乳糖缺陷者除外。通过调整单体比,进而改变PLGA的降解时间,这种方法已广泛应用于生物医学领域中,如:皮肤移植,伤口缝合,体内植入,微纳米粒等。 市售的治疗晚期前列腺癌的Lupron Depot即是用PLGA充当。
聚乳酸-(PLGA); 制备; 降解
Synthesis and Degradation of Poly(lactic-co-glycolic acid)
Zhou Chao,YanYuhua. Biomaterials and Engineering Research Center,Wuhan University of Technology, Wuhan 430070
[Abstract] Methods often used for synthesizing poly(lactic-co-glycolic acid) was described in this paper. The degradation mechanism of poly(lactic-co-glycolic acid) was also discussed.
[Keywords] poly(lactic-co-glycolic acid); synthesis; degradation
聚乳酸-(PLGA)有良好的和生物降解性能且降解速度可控,在领域有广泛的用途。目前已被制作为人工导管,,[1,2]。各种PLGA药物微球制备应用多见报道,其中PLGA微球作为蛋白质、酶类药物的载体,是研究的热点[3~8]。寻求一种成本低廉工艺简单的生产无(低)生物毒性的PLGA的工艺,具有重大的意义。
PLGA合成过程
1.1传统开环聚合法制备无规聚(Ran2PLGA)
目前PLGA 的制备多采用开环聚合法[9,10,11]。常见的开环聚合是将和乳酸分别脱水,合成乙交酯(GA) 、丙交酯(LA) 两种,再由GA 和LA 开环聚合得PLGA 无规共聚物。 反应示意如下图1:图1,开环聚合法制备无规聚乙交酯丙交酯反应示意图1.2三步法制备交替聚乙交酯、丙交酯(Alt2PLGA)[12,13]
该法也是一种法,是将乙醇酸(实验中用氯乙酸) 和乳酸两种聚合单体制成六元环状,再开环聚合得PLGA 的。具体过程如下:
1)O - - DL - 乳酸的制备
在装有分水器、恒压滴液漏斗的三颈瓶中, 加入适量的, 强酸型和; 回流加热, 机械搅拌下滴加等量的乳酸, 以出水量控制反应进程。滤出树脂, 升华除去未反应的氯乙酸; 然后在110~120℃/0.11MPa下收集O - 氯乙酰- DL - 乳酸的粗产品。甲苯重结晶3~4 次得白色晶体, 熔点72~74 ℃。
2)DL - 3 - 甲基- 的制备
将0.102 mol Na2CO3 溶于N ,N - (DMF) 溶液, 加入三颈瓶中;另用适量的DMF 溶解0.1038 mol O - 氯乙酰- DL - 乳酸, 恒压缓慢滴加到含Na2CO3 的DMF 溶液中, 80 ℃反应2 h , 冷却至室温。减压蒸出DMF 后, 残余物加适量丙酮; 滤去析出的无机盐, 滤液浓缩后得棕色固体。和甲苯中重结晶, 得DL - 3 - 甲基- 乙交酯晶体, 熔点56~60℃。
3)Alt2PLGA 的制备
把一定质量比的单体DL - 3 - 甲基- 乙交酯和辛酸亚锡置入经的小聚合管中, 在保护下, 130~150℃。产物用溶解,在甲醇中沉析, 经洗涤后真空干燥备用。反应式示意如下图2:图2,三步法制备交替聚乙交酯、反应示意图该规整、组成固定、降解性能较稳定。但是工艺流程过长,生产成本高,不利于大规模生产。
1.3直接熔融聚合法合成聚乙交酯丙交酯
博士[14,15]用不同构型乳酸与羟基乙酸直接熔融共聚制得了不同的熔融共聚产物,并分析了它们各自的反应机理。该工艺简单,化学原料及试剂使用量少,有利于降低PLGA 的成本。
方法如下:分别以(L2LA) 、外消旋乳酸(D ,L2LA) 为原料与( GA),按不同摩尔比投料,先进行除水处理,之后加入催化剂SnCl2 (用量为反应物质量的0. 5 %) ,在温度165 ℃、压力70Pa下反应10h。反应结束后,提纯、得到白色固体即为聚乳酸-乙醇酸。君,已阅读到文档的结尾了呢~~
聚乳酸-乙醇酸(plga)合成工艺及结构性能的研究
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
聚乳酸-乙醇酸(plga)合成工艺及结构性能的研究
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='http://www.docin.com/DocinViewer--144.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口6-生物降解材料PLGA50的直接法合成与表征_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
6-生物降解材料PLGA50的直接法合成与表征
&&生物降解材料PLGA50的直接发合成
阅读已结束,下载文档到电脑
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,方便使用
还剩1页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢From Wikipedia, the free encyclopedia
This article needs additional citations for . Please help
by . Unsourced material may be challenged and removed. (September 2013) ()
Structure of poly(lactic-co-glycolic acid). x= y= number of units of .
PLGA or poly(lactic-co-glycolic acid) is a
which is used in a host of
(FDA) approved therapeutic devices, owing to its
and . PLGA is synthesized by means of ring-opening co-polymerization of two different , the cyclic dimers (1,4-dioxane-2,5-diones) of
and . Polymers can be synthesized as either random or block copolymers thereby imparting additional polymer properties. Common catalysts used in the preparation of this polymer include , tin(II) , or . During polymerization, successive monomeric units (of glycolic or lactic acid) are linked together in PLGA by
linkages, thus yielding a linear,
as a product.
Depending on the ratio of lactide to glycolide used for the polymerization, different forms of PLGA can be obtained: these are usually identified in regard to the molar ratio of the monomers used (e.g. PLGA 75:25 identifies a copolymer whose composition is 75% lactic acid and 25% glycolic acid). The crystallinity of PLGAs will vary from fully
depending on block structure and molar ratio. PLGAs typically show a
in the range of 40-60 °C. PLGA can be dissolved by a wide range of , depending on composition. Higher lactide polymers can be dissolved using
solvents whereas higher glycolide materials will require the use of fluorinated solvents such as .
PLGA degrades by
of its ester linkages in the presence of . It has been shown that the time required for degradation of PLGA is related to the monomers' ratio used in production: the higher the content of glycolide units, the lower the time required for degradation as compared to predominantly lactide materials. An exception to this rule is the copolymer with 50:50 monomers' ratio which exhibits the faster degradation (about two months). In addition, polymers that are end-capped with esters (as opposed to the free ) demonstrate longer degradation half-lives.
PLGA has been successful as a biodegradable polymer because it undergoes hydrolysis in the body to produce the original monomers, lactic acid and glycolic acid. These two monomers under normal physiological conditions, are by-products of various
in the body. Since the body effectively deals with the two monomers, there is minimal systemic
associated with using PLGA for drug delivery or biomaterial applications. Also, the possibility to tailor the polymer degradation time by altering the ratio of the monomers used during synthesis has made PLGA a common choice in the production of a variety of biomedical devices, such as, , , , , surgical sealant films, micro and . Specific examples of use include:
successful in the delivery of
for the treatment
(treatment of Listeria monocytogenes infection).
a commercially available drug delivery device using PLGA is
Depot for the treatment of advanced .
delivery of the antibiotic
when applied to the surface of the brain after brain surgery
Other biodegradable polymers:
Astete, C. E. & Sabliov, C. M. (2006). "Synthesis and characterization of PLGA nanoparticles". Journal of Biomaterials Science - Polymer Edition. 17 (3): 247–289. :.  .
Samadi, N.; Abbadessa, A.; Di Stefano, A.; van Nostrum, C. F.; Vermonden, T.; Rahimian, S.; Teunissen, E. A.; van Steenbergen, M. J.; Amidi, M. & Hennink, W. E. (2013). "The effect of lauryl capping group on protein release and degradation of poly(D,L-lactic-co-glycolic acid) particles". Journal of Controlled Release. 172 (2): 436–443. :.  .
Pavot, V; Berthet, M; Rességuier, J; Legaz, S; Handké, N; Gilbert, SC; Paul, S; Verrier, B (December 2014). "Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery". Nanomedicine (Lond.). 9 (17): 2703–18. :.  .
. Scientific Computing. Advantage Business Media. August 28, .
: Hidden categories:君,已阅读到文档的结尾了呢~~
生物降解材料PLGA50的直接法合成与表征和,表征,材料,直接合成,生物降解,PLGA,制备与,合成,PLGA的,生物材料
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
生物降解材料PLGA50的直接法合成与表征
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='http://www.docin.com/DocinViewer--144.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口

我要回帖

更多关于 acid wash jeans 的文章

 

随机推荐