细胞膜的空间普朗克常数推导怎么推导

【图文】第二章2电压钳制和膜片钳制技术._百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
第二章2电压钳制和膜片钳制技术.
上传于|0|0|暂无简介
大小:5.41MB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
脉冲电场食品非热处理的理论与实验研究.pdf113页
本文档一共被下载:
次 ,您可免费全文在线阅读后下载本文档
文档加载中...广告还剩秒
需要金币:300 &&
你可能关注的文档:
··········
··········
大连理工大学
博士学位论文
脉冲电场食品非热处理的理论与实验研究
申请学位级别:博士
专业:机械电子工程
指导教师:邹积岩
非热食品处理技术因为能最大限度地保持食品的天然风味,正受到越来越多的
关注,其中最具有发展前景的脉冲电场处理技术更是近年来的研究热点之一。
由于需求牵引,国外对此技术比较注重实验系统的研究。迄今仍未见到系统理论证
明的报道。本文从理论和实验两方面进行了系统的研究,为脉冲电场食品非热处理
技术在我国的实用化做了一系列研究工作。
为了对微生物脉冲电场效应进行理论上的分析,首先,本文从细胞膜的结构、
组成及功能入手,建立了微生物细胞的介电模型,求出了细胞膜的介质极化时间常
数,并通过系统状态空间方程对其进行了验证。同时利用状态空间方程,推导出了
系统的简化等效电路。然后,根据法拉第、高斯和电荷守恒三大定律,对理想细胞
模型进行了分析、计算,比较详尽地描述了脉冲电场和静电场作用下跨膜电压的大
小和分布,并给出了具有非热效应脉冲电场的最佳条件。在这一基础上,本文分别
通过麦克斯韦应力张量法和库伦虚功法分析了外加电场对细胞膜的径向应力。在理
论分析的最后.对已有的脉冲电场非热效应的机理研究进行了综述,并依据跨膜电
压的大小,归纳出了细胞膜介质电击穿效应、电场力效应和跨膜信息紊乱效应等三
种脉冲电场非热效应的理论解释。
非热食品处理的关键技术之一是设计、制造大功率高精度的高压脉冲电源。
以往利用脉冲电容储能、触发放电,或?脉冲成型网络等方式产生的脉冲高压都
不能满足食品处理技术应用的要求。本文采用大功率绝缘栅极晶体管
配合脉冲变压器的技术路线
正在加载中,请稍后... 上传我的文档
 下载
 收藏
自从投入教育界,兢兢业业,对于自己的工作非常满意并充满信心,多年来积累了丰富的工作经验。
 下载此文档
正在努力加载中...
细胞生理学 (2)
下载积分:3000
内容提示:细胞生理学 (2)
文档格式:PPT|
浏览次数:6|
上传日期: 12:34:36|
文档星级:
该用户还上传了这些文档
细胞生理学 (2)
官方公共微信细胞膜电压-学术百科-知网空间
细胞膜电压
细胞膜电压
transmembrane voltage血管是一个由多种组织细胞组成的器官,包括血管平滑肌、血管内皮、结缔组织、神经末梢等。...[Ca2+]i的升高有赖于胞外Ca2+的内流(通过细胞膜上的电压依赖性钙通道或受体活化钙通道)与胞内钙库(线粒体、内质网)的Ca2+释放。[Ca2+
与"细胞膜电压"相关的文献前10条
目的研究毫米波辐射过程中细胞浓度对K562悬液细胞膜电压变化的影响。方法不同浓度的K562细胞用膜电压荧光探针标记后,用频率为41.32 GHz,功率密度为2 mW/cm2的毫米
用细胞膜电压荧光技术及荧光显微技术,研究了毫米波场辐射下悬液中K562细胞膜电压的变化。结果表明,在相同辐射条件下,不同细胞浓度组的K562细胞膜电压变化规律是不相同的。然后用场
电磁场与生物系统的相互作用能导致不同生物层次上形态、结构、功能等方面的变化。采用连续电磁波对生活污水进行二次消毒,细胞内有一定偶极矩的微观分子和介电特性生物分子聚集体在外加电磁场
采用连续微波与瞬态电磁脉冲对食用酱油和中草药丸进行灭菌实验研究,从微生物细胞的介电特性、膜离子通透率和外电场引起的膜电压变化进行了生物热效应和非热效应分析。微波连续波的灭菌主要是
目的:探讨电压敏感染料DiBAC4(3)用于检测胚胎细胞膜电位变化的可行性。方法:分别取单细胞期胚胎、二细胞期胚胎、囊胚期胚胎,用M16孵育0.5 h后加入终浓度5μmol/L的
基于经典球形单细胞五层介电模型,并考虑电穿孔过程中细胞膜电导率的变化,对微秒脉冲电场作用下的细胞内外膜跨膜电压进行了仿真分析,以及脉冲电场诱导人宫颈癌细胞系Hela凋亡的实验研究
为了研究脉冲电场作用下细菌细胞膜响应,建立了单个细菌的球状模型,通过求解拉普拉斯方程推导跨膜电压表达式。根据表达式进行了跨膜电压的频域和时域分析。通过分析表达式中跨膜电压与外电场
根据有效介质理论,用M axwell-W agner等效公式计算细胞悬液中的平均场.然后基于时变场中单细胞膜电压第二计算模型,用场近似等效方法,建立了毫米场辐射下悬液中细胞膜电压
目的 :研究人淋巴细胞膜电压依赖性钾〔K(v)〕通道的特性 ,为某些疾病状态下该通道特性变化提供对照。并试观察该通道是否存在不同亚型。方法 :膜片钳全细胞电流记录方法。结果 :在
本文以针刺内关穴效应为指标,观察了Mn(NO_3)_2、硝苯吡啶阻断内关穴细胞细胞膜上电压门控性Ca~(2+)通道(VOCs)对针刺内关效应的影响。结果表明,用Mn~(2+)阻断
"细胞膜电压"的相关词
快捷付款方式
订购知网充值卡
<font color="#0-819-9993
<font color="#0-
<font color="#0-生理学教案
精品课程生理学教案
第四章 血液循环(上)心脏生理
[目的要求]
掌握心脏的功能及实现其功能的原理
[讲授重点]
1.心肌细胞动作电位的特点和产生机制
2. 心肌细胞电生理特性及其影响因素
3. 心脏泵血机制及过程
4. 心脏泵血功能评价的基本指标
5. 影响心脏泵血功能的因素
[讲授难点]
1. 心肌细胞动作电位的产生机制
2. 影响因素心肌细胞电生理特性的机制
3. 心脏泵血功能调节机制
生理学(5版),姚泰主编,人民卫生出版社,2000,北京
第四章 血液循环(上)
案例:两青年男性患者,每搏输出量均为75ml、心率均为90次/分,二人左室舒张末容积均为160ml,其中甲患者身高1.5m,体重50kg,体表面积1.4m2;乙患者身高1.6m,体重68kg、体表面积1.7m2,如何判断两患者的心功能?
第一节 心脏的生物电活动
心脏的主要功能是泵血。与骨骼肌一样,细胞膜的兴奋是触发心肌收缩的始动因素。心肌的动作电位也与骨骼肌动作电位有明显差异,使得心脏的收缩也具有自身特点。因此,掌握心肌生物电活动规律,对于理解心肌的生理特性、心脏收缩活动规律及心律失常的发生机制都有重要意义。
一、 心肌细胞的分类
二、 心肌细胞的电活动
(一) 工作细胞
1.静息电位(resting potential)
心室肌细胞的静息电位约为-90mV,
形成机制 主要是Ek,K+经IK1通道外流
但Ek 为-94 mV,而RP为-90mV,表明还有其它因素参与(如Na+的内流)
2.动作电位(action potential)
(1)去极化过程:又称为0期(phase 0)从-90mV→+30mV,约1ms
去极化到阈电位(-70mV)→快Na+通道开放,出现再生性Na+内流Na+顺电-化学梯度进入细胞内→去极化
快通道(fast channel)
快反应细胞(fast response cell)
快反应动作电位(fast response action potential)
(2)复极过程:从0期去极化→静息电位
1期(phase 1) 从+30mV→0mV 约10ms,由短暂的一过性外向电流(transient outward current,
Ito通道在去极化到约-20mV时激活,为K+外流
2期(Phase 2):又称缓慢复极期。膜内电位停滞于0mV左右,常称平台期(plateau),持续约100~150ms
平台期初期,内向Ca2+电流与外向K+电流处于相对平衡状态,膜电位稳定在0mV左右。
平台期晚期,内向Ca2+电流逐渐减弱,外向K+电流逐渐增强,出现一种随时间推移而逐渐增强的微弱的净外向电流,导致膜电位缓慢地复极化。
* Ca2+通道 主要是L型Ca2+通道
心肌细胞膜的电压门控Ca2+通道:
T型(transient channel)Ca2+通道:阈电位为-50~-60mV,激活和失活均快,其单通道电导小于L型Ca2+通道,所形成的Ca2+内流参与0期去极,因其微弱和失活快,分别在0期去极和平台期的形成中作用不大。
L型(long-lasting channel)Ca2+通道:①阈电位为-30~-40mV。②激活、失活和复活均慢,Ca2+内流起始慢,持续时间长,又称为慢通道(slow
channel),在平台期形成中起重要作用。③可被Mn2+和维拉帕米(verapamil)阻断。
问题 Ca2+通道阻断剂对平台期有何影响?
Ca2+通道阻断剂可使平台期提前结束而使之缩短,并降低平台期的电位水平。
* K+通道 主要是IK通道
IK通道在+20mV时激活,-40~-50mV时失活,其激活和失活缓慢,可持续数百毫秒,又称延迟整流电流(delayed rectifier)。尽管IK通道在0期去极末开始激活,但通透性增加缓慢,从而形成平台期逐渐增大的外向K+电流。
3期(phase 3):又称快速复极末期。0mV左右→ -90mV,约100~150ms。
机制:L型Ca2+通道关闭,Ca+内流停止,而K+外流进行性增加所致。
参与3期复极的K+通道
* IK 在平台期逐渐增大的IK电流导致平台期的终止和触发3期复极,直至3期复极到-50mV左右才关闭。
* IK1 去极化关闭,复极化恢复开放,膜对K+通透性进行性增大,K+外流不断增强,为再生性正反馈过程,导致膜快速复极化。
4期(phase 4):又称恢复期。膜电位稳定于-90mV,恢复细胞内外离子的正常分布
Na+-K+泵 排Na+,摄K+,恢复Na+、K+的分布
Na+-Ca2+交换体(Na+-Ca2+ exchanger)Na+顺浓度梯度入,Ca2+逆浓度梯度外排。Na+-Ca2+交换是以跨膜Na+内向性浓度梯度为动力,最终也依赖于Na+-K+泵提供能量。
问题 给予洋地黄类药物抑制Na+-K+泵的活性,对心肌收缩有何影响?
洋地黄类药物抑制Na+-K+泵就可降低Na+的内向浓度梯度而使Na+-Ca2+交换减弱,Ca2+的外排减少,进而可加强心肌收缩力量。
2. 浦肯野细胞 最大复极电位约为-90mV,其动作电位的0、1、2、3期的形态及离子机制与心室肌细胞相似,但有4期自动去极化
4期自动去极化的离子基础 随时间而逐渐增强的内向离子电流(即If电流),通常被称为起搏电流(pacemaker current)。If主要为Na+(也有少量K+)。
If在复极至-60mV时开始激活,至-100mV时完全激活。因其激活缓慢,并随时间的延长而增大,在4期内进行性增大。当4期自动去极达阈电位时,便可产生新的AP,而If在0期去极化至-50mV时因通道的失活而终止
3.窦房结P细胞
生物电活动特点:①最大复极电位(-70mV)和阈电位(-40mV)均高于浦肯野细胞;②0期去极化幅度低(仅70mV),速度慢(约10v/s),时程长(7ms左右),0期只去极化到0mV左右,无明显的极化倒转;③无明显复极1期和2期;④4期自动去极化速度快(约0.1v/s),明显快于浦肯野细胞(0.02V/s)。
生物电活动的形成机制
RP 因窦房结P细胞缺乏Ik1通道,膜对K+的通透性相对较低,PNa相对高,故最大复极电位小
0期去极 L型Ca2+通道激活, Ca2+内流。由于L型Ca2+通道激活、失活缓慢,故0期去极化缓慢,持续时间长。
3期复极 L型Ca2+通道逐渐失活,Ca2+内流相应减少,及IK通道的开放,K+外流增加。
4期自动去极化
IK:复极至-60mV时,因失活逐渐关闭,导致K+外流衰减,是最重要的离子基础。
ICa:在4期自动去极化到-50mV时,T型Ca2+通道激活,引起少量Ca2+内流参与4期自动去极化后期的形成。
If: 因P细胞最大复极电位只有-70mV,If不能充分激活,在P细胞4期自动去极化中作用不大。
二、心肌的电生理特性
心肌细胞主要跨膜离子流小结
三、心肌的电生理特性
(一)兴奋性
兴奋性(excitability)是指具有对刺激产生兴奋的能力或特性,兴奋性的高低可用阈值作为衡量指标。阈值大表示兴奋性低,阈值小表示兴奋性高。
1、决定和影响心肌兴奋性的因素
(1)静息电位与阈电位之间的差值:静息电位(或最大复极电位)绝对值增大或阈电位水平上移,→二者间差值增大→兴奋性降低。
(2)离子通道的性状:
Na+通道是否处于备用状态,是快反应细胞当时是否具有兴奋性的前提,
正常静息电位水平又是决定Na+通道能否处于或复活到备用状态的关键
问题 高血钾对心肌兴奋性有何影响?
轻度高K+(约为5至7mmol/L)时,由于静息电位仅略有减小,与阈电位水平之间差减小,兴奋性增高。当细胞外K+显著增高(&7mmol/L),则因静息电位显著降低而引起Na+通道处于失活状态,兴奋性反而降低。若静息电位持续低于-50mV时,Na+通道将全部于失活状态,此时将不能产生快反应动作电位,快反应兴奋性丧失。但由于此时Ca2+通道尚未失活,受刺激时仍可产生慢反应动作电位。
2、兴奋性的周期性变化
(1)有效不应期(effective refractory period, ERP): 0期去极化到3期复极至-60mV,
绝对不应期(absolute refractory period) 0期去极化到3期复极化至-55mV
(2)相对不应期(relative refractory period):复极化-60mV至-80mV的时间
(3)超常期(supernormal period):膜内电位由-80mV恢复到-90mV
3、心肌兴奋性变化特点--有效不应期长
*保证了心肌收缩和舒张交替进行,有利于心室的充盈和射血
*与期前收缩(premature systole)后代偿性间歇(compensatory pause)的产生有关。
(二)自律性
组织、细胞能够在没有外来刺激的条件下自动发生节律性兴奋的特性称为自动节律性(auto-rhythmicity),简称自律性。具有自动节律性的组织或细胞称为自律组织或自律细胞。自律性的高低可用单位时间(每分钟)内自动发生兴奋的次数,即自动兴奋的频率来衡量。
1.心脏的起搏点
正常起搏点(normal pacemaker)
潜在起搏点(latent pacemaker)
*安全因素,当正常起搏点活动障碍时,作为备用起搏点仍能以较低的频率保持心脏跳动
*潜在的危险因素,当其自律性增高并超过窦房结时,可引起心律失常,
异位起搏点(ectopic pacemaker)
窦房结对潜在起搏点的控制
①抢先占领(capture)
②超速压抑或超速驱动压抑(overdrive suppression)。
超速压抑的意义:
* 当一过性窦性频率减慢时,使潜在起搏点自律性不能立即表现出来,有利于防止异位搏动。
*当窦房结细胞停止起搏时,潜在起搏点不能立即起搏,将引起心脏短时停搏和脑缺血,甚至危及生命。在人工起搏时,如需要暂停人工起搏器,应逐渐降低其驱动频率,以免发生心搏停止。
2.决定和影响自律性的因素
(1)最大复极电位与阈电位之间的差距:间差距小,自律性增高
(2)4期自动去极化速度:4期自动去极化速度增快,自律性增高
NA可促进窦房结细胞If通道和Ca2+通道的开放,使If和ICa增大,4期自动去极化速度和自律性增高。
Ach提高膜对K+的通透性,使4期膜对K+的通透性增大,K+外流衰减减慢;同时,Ach还可抑制If和L型Ca2+通道的开放,均使4期自动去极化速度减慢,自律性降低。
(三)传导性
心肌细胞具有传导兴奋的能力,称为传导性(conductivity)。传导性的高低可用兴奋的传播速度来衡量
1、心脏内兴奋传播的特点
(1)心肌细胞间直接电传递:心肌细胞间存在闰盘,相邻细胞间可通过缝隙连接(gap junction)处的细胞间通道相互联系,兴奋可在细胞间迅速传播,以实现其同步性活动,使整个心室(或整个心房)构成一个功能上互相联系的功能性合胞体(functional
syncytium)。
(2)通过特殊传导系统有序传播兴奋
(3)心脏内兴奋传导速度不均一:
传导最慢:房室结-房室延搁(atrioventricular delay)
意义:房室不同时收缩,心室收缩紧跟在心房收缩完毕后进行
传导最快:心室内浦氏纤维
意义:保证心室肌几乎完全同步收缩,产生较好的射血效果
(4)特殊传导系统对快速兴奋具有过滤保护作用:房室交界的细胞不应期长,当室上性心动过速、心房颤动时,使部分心房传来的快速兴奋不能下传。末梢浦肯野纤维的不应期长,也可防止心室肌的兴奋向浦肯野纤维逆向传播。
2、决定和影响传导性的因素
(1)心肌细胞的结构
细胞直径:细胞直径大,细胞内的电阻降低,则空间常数增大,兴奋部位的电位变化所引起的电紧张扩布的范围也越远,传导速度增快。
细胞间通道数目:细胞间通道数目多,使纵向细胞内电阻小,传导快。
结区细胞直径小,细胞间通道数目少,故传导慢,窦房结及房室交界区为慢反应细胞,其0期去极速度慢、幅度低,也决定其传导速度慢
(2)0期去极化的速度和幅度
0期去极的速度愈快,局部电流的形成也将愈快,兴奋传导愈快。
0期去极的幅度愈大,兴奋与未兴奋部位间的电位差愈大,向前影响的范围也愈广,兴奋传导愈快。
0期去极的速度和幅度取决于Na+通道开放的速度和数量。Na+通道被激活后开放的速度和数量称为Na+通道的效率或可利用率。Na+通道的效率是电压依从性的,取决于临受刺激前的静息电位值。
静息电位绝对值降低,Na+通道开放的速度和数量降低, 0期去极速度减慢,幅度降低,传导减慢。
(3)邻近未兴奋部位的兴奋性 邻近未兴奋部位的静息电位与阈电位的差距增大时,兴奋性降低,此时膜去极化达到阈电位水平产生动作电位所需时间延长,传导减慢。
四、心电图
心电图(electrocardiogram)是指将测量电极置于人体表面一定部位记录到的心脏电变化曲线。
1、正常心电图的波形及其生理意义
(1)P波(P wave):反映左右两心房的去极化过程。
(2)QRS波群(QRS complex):反映左右两心室去极化过程的电位变化。
(3)T波(T wave):反映心室复极过程中的电位变化,
(4)PR间期(PR interval):是指从P波起点到QRS波起点之间的时程,代表由窦房结产生兴奋经心房、房室交界、房室束及左右束支、浦肯野纤维传到心室并引起心室开始兴奋所需时间,也即代表从心房去极化开始至心室去极化开始的时间。
(5)QT间期(QT interval):指从QRS波起点到T波终点的时程,代表心室开始兴奋去极化至完全复极的时间。QT间期的长短与心率呈负相关。这主要是因为心室肌动作电位时程因心率增快而缩短所致。
(6)ST段(ST Segment):指从QRS波群终点到T波起点之间的线段。正常心电图上ST段应与基线平齐。ST段代表心室各部分心肌均已处于动作电位的平台期,各部分之间没有电位差存在。
2.心电图与心肌细胞动作电位的关系
第二节 心脏的泵血功能
一、 心肌收缩的特点
1. 对细胞外液Ca2+的依赖性 心肌收缩强度因细胞外Ca2+内流量而变化
在心肌的兴奋-收缩脱耦联中有赖于平台期细胞外Ca2+的内流→钙诱导钙释放(calcium-induced calcium release)触发肌浆网释放大量的Ca2+→收缩。
心肌肌浆网上的钙释放通道(Ca2+ release channel)
* Ryanodine受体 最重要
问题 为什么低血钙心机收缩无力?
2、&全或无&式收缩 当刺激强度达到阈值后所有心肌细胞都参加收缩,反之则都不兴奋
机制 心肌间存在闰盘,兴奋可在细胞间迅速传播
意义 心肌收缩的强度将不因参加活动的肌细胞数目的不同而改变。
3.不发生完全强直收缩
机制 在心肌细胞有效不应期特别长
意义 保证心肌收缩和舒张交替进行,有利于心室的充盈。
二.心脏的泵血机制
(一)心动周期的概念
心动周期(cardiac cycle):心脏一次收缩和舒张构成的一个机械活动周期
1. 房室不同时收缩,心室收缩紧跟在心房收缩完毕后进行
2. 有一个全心舒张期
3. 舒张期长于收缩期 : 有利于心脏充盈与心脏供血
(二)心脏的泵血过程
(三)心房在心脏泵血活动中的作用
1.心房的接纳和初级泵(primer pump)作用
心房舒张:接纳、储存从静脉回流的血液
心房收缩:可使心室充盈增加10%~30%,有利于心室的射血
心房其他功能:
*内分泌功能:分泌具有利尿、利钠、扩血管作用的心房钠利尿肽
*机械感受器:参与对心血管活动的调节
三.心脏泵血功能的评价
(一)心脏的排出量
1、每搏排出量和射血分数
每搏排出量(stroke volume):一次心跳一侧心室射出的血液量,正常人约70 ml,简称为搏出量。
射血分数(ejection fraction):搏出量与心室舒张末期容积的百分比称为,即
正常人约55%~65%。
2. 每分排出量和心指数
每分排出量(minute volume):一侧心室每分钟射出的血液量称,简称心排出量(cardiac output),等于心率与搏出量的乘积。健康成年男性静息状态下约为5L/min,(4.5~6.0L/min)。
心指数(cardiac index):以单位体表面积(m2)计算的心排出量,正常人约为3.0~3.5L/min?m2。
(二)心脏作功量
每搏功(搏功,stroke work):室一次收缩所作的功称为每搏功(搏功,stroke work)
每搏功=搏出量×射血压力+动能
每分功(minute work):指心室每分钟作的功,等于搏功乘以心率。
(三)心脏泵功能的贮备
泵功能贮备或心力贮备(cardiac reserve):心排出量随机体代谢需要而增加的能力。心力贮备的大小可反映心泵血功能对机体代谢需求的适应能力。
1.搏出量的贮备
舒张期贮备
收缩期贮备
2.心率贮备
四.影响心排出量的因素
(一) 前负荷
前负荷(preload):肌肉收缩前所负载的负荷,决定肌肉的初长度(initial length)。
衡量心室前负荷的指标
*心室舒张末期容积
*心室舒张末期压力
1. 前负荷对搏出量的影响
(1)心室功能曲线(ventricular function curve)
① 充盈压12~15 mmHg为最适前负荷.
静息时为5~6mmHg,远离最适前负荷,有较大的前负荷储备
② 充盈压在15~20 mmHg,曲线平坦
说明此范围内充盈压对泵血影响不大
③ &20mmHg曲线平坦或轻度下倾,无明显的降支
(2)异长自身调节(heterometric autoregulation)
通过心肌细胞本身初长度的改变而引起心肌收缩强度的变化称为。
(3)为什么心室功能曲线无明显的降支?
心肌细胞外间质内含有大量劲度较大的胶原纤维,加之心室由多层肌纤维组成,肌纤维有多种走势和排列方向,使得心肌的伸展性较小,静息被动张力大,从而阻止心肌细胞过度拉长,使心肌肌小节的初长度一般不会超过2.25~2.30μm,而不出现降支。
可使心脏不致于在前负荷明显增加时出现搏出量和作功能力的下降。
2.影响前负荷的因素
(1)心室充盈时间:心率增快,心室舒张期和充盈时间均缩短,心室充盈减少,
(2)静脉回流速度:静脉回流增快,心室充盈量增多,搏出量增大。
(3)心包内压:心包积液时,心包内压增高,可妨碍心脏充盈,搏出量减少。
(4)心室顺应性:心室顺应性高时,心室充盈量增多,反之,充盈量减少
(二)后负荷
后负荷(afterload)是指在肌肉开始收缩时才遇到的负荷或阻力。它不增加肌肉的初长度,但能阻碍收缩时肌肉的缩短。
衡量心室后负荷的指标-----动脉压
后负荷对搏出量的影响
问题 在整体条件下,正常人主动脉血压于80~170mmHg范围内变化时,心排出量为什么并无明显改变
l BP增高→搏出量的减少→左心室残余血量增多→左心室舒张末期容积增大,通过异长自身调节使心肌收缩增强,
l 心肌收缩能力增强
(三)心肌收缩能力
心肌收缩能力(myocardial contractility):心肌不依赖于负荷而改变其力学活动(包括收缩的强度和速度)的内在特性,又称为心肌的变力状态(intropic
等长自身调节*(homeometric autoregulation):机体通过心肌收缩能力这个与初长度无关的心肌内在功能变数的改变而调节泵血功能
1.影响心肌收缩能力的因素
(1) 活化横桥数
* 胞浆中的Ca2+浓度
* Ca2+与肌钙蛋白的亲合力
凡能增加兴奋后胞浆Ca2+浓度和(或)肌钙蛋白对Ca2+亲和力的因素,均可提高活化横桥的比例,引起收缩能力的增强。
儿茶酚胺提高L型Ca2+通道的通透性,促进Ca2+内流,心肌收缩能力增强;儿茶酚胺也能降低肌钙蛋白对Ca2+亲和力而促进Ca2+与肌钙蛋白的解离,促进心肌舒张。
(2) 横桥ATP酶活性
* 甲状腺激素和体育锻炼能够提高横桥ATP酶活性,可增强心肌收缩能力
* 老年人和甲状腺功能减退,横桥ATP酶活性降低,收缩能力减弱。
(四)心率(heart rate)
心率 × SV = 每分输出量
心率增快(<170~180次/min) 心率↑↑ SV↓ 每分输出量↑
心率过快(& 170~180次/min)心率↑↑↑ SV↓↓↓↓ 每分输出量↓
心率过慢(< 40次/min) 心率↓↓↓ SV↑ 每分输出量↓
影响心率的因素
(1) 神经调节
l 交感神经活动增强心率增快
l 迷走神经活动增强时心率减慢
(2) 体液调节
肾上腺素、去甲肾上腺素和甲状腺激素均可增快心率
(3) 体温
体温升高1℃,心率将增加12~18次
三、 自主神经对心脏的影响
1. 钙通道阻断剂对心肌细胞生理特性分别有何影响?试说明其机制。
2. 心脏为什么能有节律地、有序地收缩与舒张?
3. 肾上腺素和钠泵抑制剂强心甙对心肌收缩与舒张分别有何影响?试说明其机制。
4. 试说明血钾变化对心肌细胞生理特性的影响。
5. 试说明血钙变化对心肌细胞生理特性的影响。
6. 交感神经兴奋时,心率增快,为什么心输出量通常增高?
1.姚泰主编,生理学(5版),人卫出版社,2000
2.姚泰主编,人体生理学(3版),人卫出版社,2001
3.贺石林,李俊成、秦晓群主编.临床生理学.北京:科学出版社,2001.
4. 苏静怡,李澈,苏哲坦主编. 心脏-从基础到临床. 北京:北京医科大学、中国协和医科大学联合出版社,1999
5.Berne RM, Levy MN. Principles of physiology. 3rd edition, St.Louis,
Mosby, 2000
6.Guyton AC, Hall JE.Textbook of medical physiology. 10th edition,
Philadephia, WB Saunders, 2000
7.Opie LH. The heart physiology, from cell to circulation. 3rd edition,
Philadelphia, Lippincott Williams and Wilkins,1998

我要回帖

更多关于 自由空间损耗公式推导 的文章

 

随机推荐