已知sinacosa 1 8曲线c,x=2cosa,y=2sina和直线lx=t,y=t+b若曲线c上恰有三个点到直线l

当前位置:
>>>如图,已知抛物线y=x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为..
如图,已知抛物线y=x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H,若PB=5t,且0<t<1。
(1)填空:点C的坐标是____,b=____,c=___;(2)求线段QH的长(用含t的式子表示);(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由。
题型:解答题难度:偏难来源:河南省模拟题
解:(1)(0,-3),b=-,c=-3;(2)由(1),得y=x2-x-3,它与x轴交于A,B两点,得B(4,0),∴OB=4,又∵OC=3,∴BC=5,由题意,得△BHP∽△BOC,∵OC∶OB∶BC=3∶4∶5,∴HP∶HB∶BP=3∶4∶5,∵PB=5t,∴HB=4t,HP=3t,∴OH=OB-HB=4-4t,由y=x-3与x轴交于点Q,得Q(4t,0),∴OQ=4t,①当H在Q、B之间时,QH=OH-OQ=(4-4t)-4t=4-8t,②当H在O、Q之间时,QH=OQ-OH=4t-(4-4t)=8t-4,综合①,②得QH=|4-8t|;(3)存在t的值,使以P、H、Q为顶点的三角形与△COQ相似;①当H在Q、B之间时,QH=4-8t,若△QHP∽△COQ,则QH∶CO=HP∶OQ,得,∴t=,若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得,即t2+2t-1=0,∴t1=-1,t2=--1(舍去);②当H在O、Q之间时,QH=8t-4,若△QHP∽△COQ,则QH∶CO=HP∶OQ,得,∴t=,若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得,即t2-2t+1=0,∴t1=t2=1(舍去),综上所述,存在的值,t1=-1,t2=,t3=。
马上分享给同学
据魔方格专家权威分析,试题“如图,已知抛物线y=x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为..”主要考查你对&&求二次函数的解析式及二次函数的应用,相似三角形的判定,相似三角形的性质&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用相似三角形的判定相似三角形的性质
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。互为相似形的三角形叫做相似三角形。例如图中,若B'C'//BC,那么角B=角B',角BAC=角B'A'C',是对顶角,那么我们就说△ABC∽△AB'C'相似三角形的判定:1.基本判定定理(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。2.直角三角形判定定理(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。3.一定相似:(1).两个全等的三角形(全等三角形是特殊的相似三角形,相似比为1:1)(2).两个等腰三角形(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。) (3).两个等边三角形(两个等边三角形,三个内角都是60度,且边边相等,所以相似) (4).直角三角形中由斜边的高形成的三个三角形。相似三角形判定方法:证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。一、(预备定理)平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)二、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。三、如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似。& 四、如果两个三角形的三组对应边成比例,那么这两个三角形相似五(定义)对应角相等,对应边成比例的两个三角形叫做相似三角形六、两三角形三边对应垂直,则两三角形相似。七、两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。八、由角度比转化为线段比:h1/h2=Sabc易失误比值是一个具体的数字如:AB/EF=2而比不是一个具体的数字如:AB/EF=2:1相似三角形性质定理:(1)相似三角形的对应角相等。(2)相似三角形的对应边成比例。(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。(4)相似三角形的周长比等于相似比。(5)相似三角形的面积比等于相似比的平方。(6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方(7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项(8)c/d=a/b 等同于ad=bc.(9)不必是在同一平面内的三角形里①相似三角形对应角相等,对应边成比例.②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.③相似三角形周长的比等于相似比
定理推论:推论一:顶角或底角相等的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
发现相似题
与“如图,已知抛物线y=x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为..”考查相似的试题有:
90088616637522926784504422700549881当前位置:
>>>已知曲线C:y=x2与直线l:x-y+2=0交于两点A(xA,yA)和B(xB,yB),且..
已知曲线C:y=x2与直线l:x-y+2=0交于两点A(xA,yA)和B(xB,yB),且xA<xB。记曲线C在点A和点B之间那一段L与线段AB所围成的平面区域(含边界)为D。设点P(s,t)是L上的任一点,且点P与点A和点B均不重合,(1)若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程;(2)若曲线G:x2-2ax+y2-4y+a2+=0与点D有公共点,试求a的最小值。
题型:解答题难度:中档来源:广东省高考真题
解:(1)联立y=x2与y=x+2得,则AB中点,设线段PQ的中点M坐标为(x,y),则,又点P在曲线C上,∴,化简可得,又点P是L上的任一点,且不与点A和点B重合,则,∴中点M的轨迹方程为。 (2)曲线G:,即圆E:,其圆心坐标为E(a,2),半径,由图可知,当时,曲线G:与点D有公共点;当a<0时,要使曲线G:与点D有公共点,只需圆心E到直线l:x-y+2=0的距离,得,则a的最小值为。
马上分享给同学
据魔方格专家权威分析,试题“已知曲线C:y=x2与直线l:x-y+2=0交于两点A(xA,yA)和B(xB,yB),且..”主要考查你对&&曲线的方程,点与圆的位置关系&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
曲线的方程点与圆的位置关系
曲线的方程的定义:
在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点。那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线。 求曲线的方程的步骤: (1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标; (2)写出适合条件的p(M)的集合,P={M|p(M)}; (3)用坐标表示条件p(M),列出方程f(x,y)=0; (4)化方程f(x,y)=0为最简形式; (5)说明化简后的方程的解为坐标的点都在曲线上。求曲线的方程的步骤:
(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标; (2)写出适合条件的p(M)的集合,P={M|p(M)}; (3)用坐标表示条件p(M),列出方程f(x,y)=0; (4)化方程f(x,y)=0为最简形式; (5)说明化简后的方程的解为坐标的点都在曲线上。
求曲线方程的常用方法:
(1)待定系数法这种方法需要预先知道曲线的方程,先设出来,然后根据条件列出方程(组)求解未知数。(2)直译法就是把动点所满足的题设条件直接给表示出来,从而得到其横、纵坐标之间的关系式。(3)定义法就是由曲线的定义直接得到曲线方程。(4)交轨法:就是在求两动曲线交点轨迹方程时,联立方程组消去参数,得到交点的轨迹方程。在求交点问题时常用此法。(5)参数法就是通过中间变量找到y、x的间接关系,然后通过消参得出其直接关系。(6)相关点法就是通过所求动点与已知动点的关系,来求曲线方程的方法。点与圆的位置关系:
点与圆的位置关系:点在圆内、圆上、园外。&点与圆的位置关系的判定:
1.利用点到圆心的距离来判定:已知点与圆(r>0),若,则 (1)点P在圆外; (2)点P在圆上; (3)点P在圆内。2.利用圆的标准方程来判定:
发现相似题
与“已知曲线C:y=x2与直线l:x-y+2=0交于两点A(xA,yA)和B(xB,yB),且..”考查相似的试题有:
256910440035267147496389264477400792当前位置:
>>>已知A,B分别为曲线C:(y≥0,a&0)与x轴的左、右两个交点,直线..
已知A,B 分别为曲线C:(y≥0,a&0)与x轴的左、右两个交点,直线l过点B,且与x轴垂直,S为l上异于点B的一点,连结AS交曲线C于点T。
(1)若曲线C为半圆,点T为圆弧的三等分点,试求出点S的坐标;(2)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在a,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由。
题型:解答题难度:中档来源:福建省高考真题
解:(1)当曲线C为半圆时,a=1,由点T为圆弧的三等分点得∠BOT=60°或120°(i)当∠BOT=60°时,∠SAE=30°又AB=2故在△SAE中,有∴。(ii)当∠BOT=120°时,同理可求得点S的坐标为,综上,或。(2)假设存在,使得O,M,S三点共线由于点M在以SB为直线的圆上,故显然,直线AS的斜率k存在且k&0,可设直线AS的方程为由得设点∴故,从而亦即∵∴由得,∴由,可得即∵∴经检验,当时,O,M,S三点共线故存在,使得O,M,S三点共线。
马上分享给同学
据魔方格专家权威分析,试题“已知A,B分别为曲线C:(y≥0,a&0)与x轴的左、右两个交点,直线..”主要考查你对&&解三角形,两直线平行、垂直的判定与性质,直线与椭圆方程的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
解三角形两直线平行、垂直的判定与性质直线与椭圆方程的应用
解三角形定义:
一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫做解三角形。
主要方法:
正弦定理、余弦定理。 解三角形常用方法:
1.已知一边和两角解三角形:已知一边和两角(设为b、A、B),解三角形的步骤:&2.已知两边及其中一边的对角解三角形:已知三角形两边及其中一边的对角,求该三角形的其他边角时,首先必须判断是否有解,例如在中,已知&,问题就无解。如果有解,是一解,还是两解。解得个数讨论见下表:&3.已知两边及其夹角解三角形:已知两边及其夹角(设为a,b,C),解三角形的步骤:4.已知三边解三角形:已知三边a,b,c,解三角形的步骤:&①利用余弦定理求出一个角;&②由正弦定理及A +B+C=π,求其他两角.5.三角形形状的判定:判断三角形的形状,应围绕三角形的边角关系进行思考,主要看其是否是正三角形、等腰三角形、直角三角形、钝角三角形、锐角三角形,要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别,依据已知条件中的边角关系判断时,主要有如下两条途径:①利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;②利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数的恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A+B +C=π这个结论,在以上两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.6.解斜三角形应用题的一般思路:(1)准确理解题意,分清已知与所求,准确理解应用题中的有关名称、术语,如坡度、仰角、俯角、视角、象限角、方位角、方向角等;(2)根据题意画出图形;(3)将要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识建立数学模型,然后正确求解,演算过程要算法简练,计算准确,最后作答,&&& 用流程图可表示为: 利用正弦定理、余弦定理在解决三角形的综合问题时,要注意三角形三内角的一些三角函数关系:
两直线平行、垂直的判定的文字表述:
平行判断的文字表述:如果两条不重合的直线(存在斜率)平行,则它们的斜率相等;反之,如果两条不重合直线的斜率相等,则它们平行;垂直判断的文字表述:如果两条直线都有斜率,且它们互相垂直,那么它们斜率之积为-1;反之,如果两条直线的斜率之积为-1,那么它们互相垂直
两直线平行、垂直的判定的符号表示:
1、若,(1); (2)。 2、若,,且A1、A2、B1、B2都不为零, (1); (2)。 两直线平行的判断的理解:
成立的前提条件是两条直线的斜率存在,分别为&当两条直线不重合且斜率均不存在时,
两直线垂直的判断的理解:
&成立的前提条件是斜率都存在且不等于零.&②两条直线中,一条斜率不存在,同时另一条斜率等于零,则两条直线垂直,这样,两条直线垂直的判定就可叙述为:一般地,,或一条直线的斜率不存在,同时另一条直线的斜率等于零。
求与已知直线垂直的直线方程的方法:
(1)垂直的直线方程可设为垂直的直线方程可设为
&&(2)利用互相垂直的直线之间的关系求出斜率,再用点斜式写出直线方程。
求与已知直线平行的直线方程的方法:
(1)一般地,直线决定直线的斜率,因此,与直线
平行的直线方程可设为,这是常常采用的解题技巧。
重合。(2)一般地,经过点
(3)利用平行直线斜率相等,求出斜率,再用点斜式求出直线方程.
& 直线与椭圆的方程:
设直线l的方程为:Ax+By+C=0(A、B不同时为零),椭圆(a>b>0),将直线的方程代入椭圆的方程,消去y(或x)得到一元二次方程,进而应用根与系数的关系解题。椭圆的焦半径、焦点弦和通径:
(1)焦半径公式:①焦点在x轴上时:|PF1|=a+ex0,|PF2|=a-ex0;②焦点在y轴上时:|PF1|=a+ey0,|PF2|=a-ey0;(2)焦点弦:过椭圆焦点的弦称为椭圆的焦点弦.设过椭圆的弦为AB,其中A(x1,y1),B(x2,y2),则|AB|=2a+e(x1+x2).由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数.(3)通径:过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆的通径,其长为&
椭圆中焦点三角形的解法:
椭圆上的点与两个焦点F1,F2所构成的三角形,通常称之为焦点三角形,解焦点三角形问题经常使用三角形边角关系定理,解题中,通过变形,使之出现,这样便于运用椭圆的定义,得到a,c的关系,打开解题思路,整体代换求是这类问题中的常用技巧。关于椭圆的几个重要结论:
(1)弦长公式: (2)焦点三角形:上异于长轴端点的点, (3)以椭圆的焦半径为直径的圆必与以长轴为直径的圆内切.(4)椭圆的切线:处的切线方程为
(5)对于椭圆,我们有
发现相似题
与“已知A,B分别为曲线C:(y≥0,a&0)与x轴的左、右两个交点,直线..”考查相似的试题有:
846210849234747393883066769612781468您好!解答详情请参考:
菁优解析考点:.专题:函数思想;数形结合法;函数的性质及应用.分析:作出f(x)=x(x-3)2的函数图象,判断t的范围,根据f(x)的变化率判断c-a的变化情况,构造函数g(x)=x(x-3)2-t,根据根与系数的关系得出abc,a2+b2+c2,c-a的值进行判断.解答:解:令f(x)=x(x-3)2=x3-6x2+9x,f′(x)=3x2-12x+9,令f′(x)=0得x=1或x=3.当x<1或x>3时,f′(x)>0,当1<x<3时,f′(x)<0.∴f(x)在(-∞,1)上是增函数,在(1,3)上是减函数,在(3,+∞)上是增函数,当x=1时,f(x)取得极大值f(1)=4,当x=3时,f(x)取得极小值f(3)=0.作出函数f(x)的图象如图所示:∵直线y=t与曲线C:y=x(x-3)2有三个交点,∴0<t<4.令g(x)=x(x-3)2-t=x3-6x2+9x-t,则a,b,c是g(x)的三个实根.∴abc=t,a+b+c=6,ab+bc+ac=9,∴a2+b2+c2=(a+b+c)2-2(ab+bc+ac)=18.由函数图象可知f(x)在(0,1)上的变化率逐渐减小,在(3,4)上的变化率逐渐增大,∴c-a的值先增大后减小,故c-a存在最大值,不存在最小值.故①,②正确,故选:C.点评:本题考查了导数与函数的单调性,函数的图象,三次方程根与系数的关系,属于中档题.答题:zhczcb老师 
&&&&,V2.26469高二数学题(求详解T_T)已知曲线C的方程为x^2+y^2=9当b为何值时,直线L:2x-y+b=0与曲线中C有两个不同交点?一个交点?没有交点?
哦哦哈喲945
楼主你好y=2x+b 带入曲线c的方程中,x&#178;+(2x+b)&#178;=9x&#178;+4x&#178;+4bx+b&#178;-9=05x&#178;+4bx+(b&#178;-9)=0△=16b&#178;-4*5*(b&#178;-9)=180-4b&#178;若有两个不同交点,判别式大于零,得-3√5<b<3√5若有一个交点,判别式等于零,得b=±3√5若无交点,判别式小于零,得b3√5满意请点击屏幕下方“选为满意回答”,谢谢.
为您推荐:
其他类似问题
扫描下载二维码

我要回帖

更多关于 sina cosa 的文章

 

随机推荐