为什么心脏钢地板支架 防静电大人不能做静电仪

电脑中频理疗仪对做过心脏支架的病人有无副作用
电脑中频理疗仪对做过心脏支架的病人有无副作用
基本信息:女&&
发病时间:不清楚
病情描述及疑问:心脏做过支架,现在出现腰椎间盘突出能用中频治疗仪吗
您输入的回答少于20个中文字,请补充输入。
擅长:针对内外科常见病的诊断和治疗有丰富的经验
网友满意:
回答速度:
某部队医院&&&全科
建议:尽量不要用电子仪器,有一定的影响,建议针灸,按摩,但也要注意力度,针感不要太强
有关的更多问题,
为保障患者权益,我们仅接受有资质的医学专业人士的回答,请您先认证为医生主任医师 教授
秋季身体静电能引发心脏病
作者:孟庆智|发布时间:|浏览量:389次
&进入十一月之后,随着冬季的来临,气候变得干燥、多风,人体容易产生静电,所以“触电”也就难免。秋冬天我们经常会遇到这样的现象,开车门或者拧水龙头的时候,会有啪、啪的响声和刺痛感。这是因为随着秋冬季的来临,气候变得干燥、多风,人体容易产生静电,所以触电也就难免。在日常生活中,我们经常碰到这些现象:见面握手时,手指刚一接触到对方,会突然感到指尖针刺般疼痛;拉门把手、开水龙头时,也会发出啪、啪的响声,并伴有刺痛感;早上梳头时,头发会经常飘起来,越理越乱这些都是人体体内静电对外放电的结果。由于老年人的皮肤比年轻人相对干燥,加上心血管系统老化、抗干扰能力减弱等因素,更容易受静电的危害,引发心脏病发、心血管疾病。上海远大心胸医院心血管内科孟庆智专家建议,为防止静电,室内要保持一定的湿度;少穿皮、毛和化纤质地的衣物,特别是中老年人,应尽量穿纯棉制品;脱衣服后,用手轻轻摸一下墙壁,摸门把手或水龙头之前也要用手摸一下墙,将体内静电放出去。
TA的其他文章:
擅长:冠心病、高血压、高血脂。
擅长:经导管治疗的介入性心脏病学专业技术。
擅长:冠心病、心绞痛、心功能不全、先天性心脏病、高...
给孟庆智医生写感谢信!
把感谢送给他(10-1000字)
请挑选您想赠送的礼物!
给孟庆智医生挑选的礼物是!
阳光向日葵心脏做了支架或者搭桥手术后能不能做一些理疗仪器_百度知道
心脏做了支架或者搭桥手术后能不能做一些理疗仪器
提问者采纳
强度不易过大手术一年内不用为好,一年后可以适当的用,但用的时间不易过长
其他类似问题
向医生提问
完善患者资料:*性别:
为您推荐:
其他1条回答
祝您健康快乐,以便巩固手术治疗的效果和避免复发。希望我的回答给您带来帮助,心脏做了支架或者搭桥手术后做一些理疗仪器最好是专业医生的指导下进行,配合药物治疗,注意定期的复查,不论是搭桥还是支架治疗您好
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁做了心脏支架手术的能使用激光治疗仪吗相关问题
提问时间: 13:26:14
患者性别:男患者年龄:35
病情分析: 牛皮癣皮损的自然规律是冬季加重,夏季缓解。北方地区牛皮癣患病率比南方患病率要高一些,其中一个因素就是与气候有关,具体来说就是与紫外线有关。尽管紫外线治疗银屑病有一定的效果,然而,并非是百利
回复医生:共1个回答
提问时间: 05:07:38
患者性别:女患者年龄:27岁
病情分析:你好,很高兴为你解答,对于你提到的308激光术是目前用的最多的,但是并非想选择此项技术治疗就可以的,还需经过专业的检查之后,然后看看个人的体质是否适合此项技术,避免盲目的治疗,给皮肤患处造成一
回复医生:所在医院:共8个回答
提问时间: 04:21:16
患者性别:男患者年龄:30岁
指导意见:您所说的利他林是中枢兴奋药,直接兴奋延脑呼吸中枢,作用较温和,往往适用于呼吸衰竭和各种原因引起的呼吸抑制。建议您最好在医生的指导下用药吧。
回复医生:共1个回答
提问时间: 12:54:44
患者性别:男患者年龄:21岁
问题分析:您好我建议坚持服用复方利血平片治疗就可以了饮食上宜清淡为主忌肥腻意见建议:要注意饮食您最重要的是一定要注意按时吃药定期检查少盐饮食低脂饮食多运动减肥按时服药
回复医生:共1个回答
提问时间: 09:15:09
患者性别:男患者年龄:27
病情分析: 你好,网上所卖的药物一般是保健品
大多没有什么治疗作用
另外,其真实性还是需要考究的。意见建议:如果有朋友用过向你推荐的 还是比较可以的。但是要根据自己情况来决定如何用药。
回复医生:共1个回答
提问时间: 11:10:48
患者性别:女患者年龄:19
外搽3%氢醌霜或双氧水,可以暂时有效,也可每日一次搽用3%的乳酸至退屑.还可由专业医师用60%左右三氯醋酸点涂进行化学剥脱,外售的雀斑霜有些也可用.除了上述的外用药物治疗外,还可使用短时间的液氮喷雾冷冻,中药外
回复医生:共2个回答
提问时间: 13:56:38
患者性别:男患者年龄:50岁
问题分析:你好,根据你的描述属于糖尿病引起的,需要正规治疗节制饮食易消化易吸收饮食意见建议:适当的运动增强体质,饮食控制应该低糖低脂,适当的补充维生素。水果蔬菜可以多吃些,保持乐观的心情,可以适当的
回复医生:共1个回答
提问时间: 15:44:04
患者性别:男患者年龄:15
病情分析: 鼻炎指的是鼻腔粘膜和粘膜下组织的炎症。表现为充血或者水肿,患者经常会出现鼻塞,流清水涕,鼻痒,喉部不适,咳嗽等症状。 可以口服通窍鼻炎片、鼻炎康等药物治疗,鼻腔使用复方薄荷油滴鼻液治疗。意
回复医生:共2个回答
提问时间: 09:09:03
患者性别:男患者年龄:60岁
意见建议:你的病是应该是由其他病vn引起的,如高血压、心脏病等导致的。所以要针对原发病的治疗,听从心血管医生的建议。
回复医生:共1个回答
提问时间: 14:00:34
患者性别:女患者年龄:23岁
病情分析: 鼻炎指的是鼻腔粘膜和粘膜下组织的炎症。表现为充血或者水肿,患者经常会出现鼻塞,流清水涕,鼻痒,喉部不适,咳嗽等症状意见建议:建议不要激光治疗,白萝卜煮水治鼻塞:取白萝卜3-4只放人锅中加清水
回复医生:共1个回答
无需注册&百万名医生在线为您免费解答
*性别:男女
保密,免费获得医生回复短信
*提问字数大于10字以上,描述越清楚医生回答越详细哦
向全国15万专家即时咨询上传用户:eouhspacab资料价格:5财富值&&『』文档下载 :『』&&『』学位专业:&关 键 词 :&&&&&&&&权力声明:若本站收录的文献无意侵犯了您的著作版权,请点击。摘要:(摘要内容经过系统自动伪原创处理以避免复制,下载原文正常,内容请直接查看目录。)组织工程学是一门新兴学科,以细胞生物学和资料学为基本,停止体外或体内构建组织器官的新兴学科,用以修复或重建毁伤组织或器官。组织工程的根本道理是从机体获得大批的活体组织,然后在体外栽种到生物相容性优越的支架资料上,使细胞粘附在生物资料上,并在生物反响器中停止造就扩增,在体外构成新的组织后移入患者体内,从而到达修复创伤的目标。是以选择适合的支架资料是组织工程胜利的症结身分之一,支架资料具有可以或许模仿自然组织细胞外基质的功效。组织工程心脏瓣膜也是应用该道理,本课题经由过程对机械机能优秀的热塑性聚氨酯和生物相容性优越的胶原卵白资料停止复合静电纺丝,从功效和构造上仿生自然瓣膜组织细胞外基质。本课题起首研讨了胶原卵白/热塑性聚氨酯(collagen/TPU)共混静电纺丝。混杂静电纺作为经常使用的电纺复合办法之一,曾经胜利运用多种聚合物资料与自然资料的复合。从复合电纺资料的各项表征看,混杂静电纺的复合后果较好,可以或许有用联合自然资料与聚合物资料各自的长处,用于构建仿生心脏瓣膜细胞外基质,并尽力到达自然心脏瓣膜的力学机能。经由过程调理试验的各个参数如电压、间隔、供液速度等来改良纺丝的工艺,并终究取得了复合纤维。在获得较稳固的纺丝参数后,经由过程SEM、ATM、FTIR、XPS、接触角、孔隙率和力学机能测定剖析该纳米纤维的各项物理、化学机能。试验中发明该复合纤维的直径随纺丝溶液中TPU在复合系统中的比例的增长而增年夜,别的在复合比例雷同,纤维直径也随溶液总浓度的递增而逐步增长;经由过程红外测试发明复合资料中的两种组分间没有产生反响,根本保持了原本的化学性质。经由过程接触角测定,发明单纺TPU纤维膜具有一个疏水的外面,而跟着胶原卵白组分的逐步增长纤维膜的亲水性顺次加强;力学机能测试注解该纤维织物的力学机能与两组分的复合比例相干。这些成果关于今后构建形状构造及机能上更优的仿生细胞外基质组织工程支架具有必定的指点感化。本论文同时采取了同轴静电纺丝的办法对两种资料停止复合静电纺丝,制备具有“壳芯”构造的纳米纤维。成果注解,同轴静电纺丝的进程参数与表里层纺丝溶液的推动速度、表里层纺丝溶液的浓度有较年夜关系。在早期试验中,得出了合适TPU/collagen同轴纺丝的工艺参数,表里层速度的关系及规模,并总结了适合的表里层纺丝溶液浓度。前期试验体系研讨了同轴电纺纤维的外面形状,采取了SEM、TEM、AFM相干电镜测试办法,证实了同轴电纺纳米纤维壳芯构造的存在,复合纳米纤维外面的凸凹不屈也注解了胶原卵白散布在复合纳米纤维的外面;XPS外面元素剖析注解氮元素在同轴复合纳米纤维外面的元素组成率与在胶原卵白外面的元素组成率简直雷同;FTIR成果注解了同轴电纺工艺中TPU与胶原卵白纤维无官能团的联合,然则一些成果注解在胶原卵白与TPU的接触面上有一些相似氢键的联合;机械机能测试注解,同轴电纺纳米纤维,绝对于混纺纳米纤维,有较好的机械机能,在拉伸的初始阶段杨氏模量较高,随后表示出TPU纤维的力学机能。这些成果关于今后构建形状构造及机能上更优的仿生细胞外基质组织工程瓣膜支架具有必定的指点感化,然则同轴静电纺丝不稳固,并且产量较低。若何进步其产量及稳固性,对今后同轴电纺支架的临盆有主要的意义。因为自然瓣膜组织的力学机能为各向异性,直接静电纺丝获得的纤维支架力学机能为各项异性。在肯定了两种复合工艺后,本论文上面的章节体系研讨了取向静电纺纳米纤维的搜集及机能。本试验中经由过程扭转滚轴吸收获得了TPU/collagen两种分歧复合办法制得的取向纳米纤维,并对其取向纤维的形状,取向度和机械机能停止了具体地表征与评论辩论。为获得具有分歧取向度和可控得纤维机械机能,本试验对扭转吸收装配停止了设计与制作,获得了直接成型为长度、厚度和管腔直径都可以依据须要调理的管状的纤维织物或带有精致取向和机械机能优化了的膜状织物支架。本试验构建的复合静电纺取向纳米纤维支架资料,经由形状不雅察可以发明其取向度与滚轴转速之间有亲密的关系,而且可以依据须要调理,作为组织工程支架具有必定的优胜性。别的将试验中获得的取向复合纳米纤维膜经由过程将扫描电镜图片转换为灰度照片,再经图象剖析软件Image J及其插件oval profile的处置和盘算终究胜利的对分歧分列度的纤维膜停止了表征。此种纤维膜因其奇特构造将更合适用作构建精致构造组织再生支架。本课题经由过程测验考试愿望挑选出一种生物相容性好,且具有优胜机械机能的三维多孔支架资料,进而作为可降解生物医用资料用于组织工程心脏瓣膜支架。种仔细胞与基质资料的互相感化是组织工程研讨的一个主要范畴。本论文上面一个研讨方面是从细胞粘附、铺展、增殖、细胞形状等方面着手,对猪髋动脉内皮细胞与TPU/collagen共混与同轴复合静电纺纤维资料的细胞相容性停止了研讨,并和盖玻片和细胞造就板做了比拟,得出以下结论:(1)MTT法测定共混电纺支架细胞粘附情形的成果注解,T/C(3:1)和T/C(1:1)的细胞粘附情形都比拟好,细胞粘附量都比细胞造就板高,而T/C(1:3)和collagen则绝对较差,重要是因为胶原卵白组分含量太高的话,支架在细胞造就液中没法坚持其纤维形状,故细胞增殖和粘附情形较差。(2)MTT法测定TPU/collagen同轴支架细胞增殖才能的成果注解,同轴电纺支架的细胞生物相容性好过其单纺支架,在粘赞同增殖方面都有较好的成果。同轴电纺支架芯层浓度较小时,细胞在初始的4h表示优越;其时间增加至七地利,芯层浓度高的电纺支架表示出较好的细胞增殖成果。(3) TPU/collagen取向纳米纤维支架对内皮细胞的发展有必定的取向引诱感化,然则感化不长短常显著。同轴电纺纳米纤维细胞取向发展机能好过共混电纺纳米纤维,须要在前期研讨中研讨在复合纳米纤维中参加发展因子等元素引诱细胞取向发展。(4)为了进步共混静电纺纤维的耐水性,采取戊二醛作为交联剂,在密闭枯燥器中经由过程戊二醛蒸气挥发对TPU/collagen复合静电纺纤维膜停止了交联,并对其机能停止了研讨。选择交联时光为2天,发明采取戊二醛作为交联剂其实不可以或许很好地处理胶原卵白组分消融于细胞造就液的情形,须要进一步对胶原卵白的交联停止研讨。论文的最初一部门为静电纺丝资料复合疾速成型制备组织工程支架。组织工程心脏瓣膜支架由两个部门构成,一部门为瓣膜环;别的一部门为瓣叶支架。因为瓣膜环支架的几何外形较为庞杂,而且对机械强度请求较高,本论文引入疾速熔融成型法制备组织工程心脏瓣膜支架中的瓣膜环部门,采取TPU/collagen静电纺复合资料作为瓣叶支架部门,构成了一种新型组织工程心脏瓣膜支架。并设计和改良了合适该瓣膜支架的体外生物反响器,停止了相干细胞增殖及在模仿心理流体情形下的细胞滞留试验,得出以下结论:FDM办法制备的支架机能与以下几个进程参数有亲密关系:层厚度(slice thickness)、任务路宽(road width)、光栅闲暇(raster gap)和光栅角度(raster angle)。体外内皮细胞发展试验及体外流体对细胞滞留支架试验注解静电纺支架有较好的生物相容性,其细胞增殖速度要显著好过PGA/PLA无纺资料和自然资料牛心包膜。支架于静态情况下造就三天后置于生物反响器中停止体外流体试验,以检测细胞在脉冲流体剪切力的情况下在支架上的滞留才能。成果发明静电纺支架在转变流体速度和感化时光的情形下,细胞在支架上的滞留才能较好,无明显性变更,注解静电纺支架可认为细胞供给一个三维发展情况,细胞可以较好的粘附在支架外面和外部,内部剪切应力对其发展影响较小。然则发明静电纺资料支架在长时光流体感化下,其瓣叶开闭才能降低,外面其机械机能能够没法知足应用请求,须要与其他资料停止复合以处理此成绩。总结以上本课题的结论,发明热塑性聚氨酯/胶原卵白复合静电纺丝可以或许较好地模仿自然瓣膜组织,两种复合办法各有其优缺陷:共混电纺纳米纤维工艺简略单纯,产量较年夜,而且可以经由过程掌握两者的混杂比例掌握纤维的机能;同轴电纺工艺较为庞杂并且产量较低,但可使得胶原卵白散布在复合纳米纤维外面,复合效力较高,且同轴纳米纤维机械机能好过共混纳米纤维。选择滚筒吸收办法制备取向纳米纤维,可以或许使得静电纺资料从无纺状况变成取向状况,从而模仿自然瓣膜组织各向异性的生物力学机能。静电纺与疾速成型相复合,并在体外生物反响器的检测下,注解静电纺组织工程心脏瓣膜支架有较好的生物相容性及细胞滞留才能。本课题研讨为自然资料/聚合物资料复合静电纺制备组织工程心脏瓣膜支架供给了参考,并为进一步展开组织工程化天然器官的研讨和前期的临床运用供给了相干迷信根据和试验数据。Abstract:Tissue engineering is a new subject in cell biology and materials science as the basic, stop in vitro or in vivo tissue organ and emerging disciplines, to repair or reconstruction of tissue or organ damage. The fundamental principle of tissue engineering is from the body get large number of living tissue, and in vitro plant to biocompatibility superior support information on and on biological data and in biological reactor to stop creating amplified the cell adhesion, forms the new tissue in vitro after moved within the patient, in order to reach the goal of wound repair. Is to select a suitable scaffold materials of tissue engineering is one of the key element of victory, support data with can mimic the natural extracellular matrix organization effect. Heart valve tissue engineering is the application of the truth, this topic through the process on the mechanical function of excellent thermal plastic polyurethane and biological compatibility advantages of the collagen material composite electrostatic spinning stop, from the function and structure of bionic natural heart valve tissue matrix. This topic first studied the collagen / thermoplastic polyurethane (collagen/TPU) blend electrospinning. As one of the hybrid electrospun electrospun composite method is often used, the use of a variety of polymer composite has been successful data and natural data. From the characterization of the composite electrospun materials, hybrid electrospun composite consequence good may be useful to their respective strengths combined with natural materials and polymer materials for constructing bionic heart valve extracellular matrix, and try to reach the mechanical function of natural heart valves. Through the various parameters such as voltage, interval, feed rate of conditioning test to improve the spinning process, and eventually achieved the composite fiber. In the spinning parameters more stable, through the process of SEM, ATM, FTIR, XPS, contact angle, porosity and mechanical properties determination analysis of various physical and chemical performance of the nano fiber. Test in the invention of the diameter of the composite fibers with the spinning solution in TPU in composite system in proportion of the growth and enlargement, in the proportion of the composite identical, fiber diameter also increases with the solution concentration increasing and t through infrared testing process invented composite materials in the two groups between produced no response, simply to keep the original chemical properties. Through contact angle determination, the invention of single spun TPU fiber membrane with a hydrophobic outside, and follow the collagen albumen group of growing fiber membrane hydrophilicity seq mechanics performance test the fiber fabric. The mechanical function and two groups of compound proportion coherent. These results have direct effect on certain future biomimetic extracellular matrix scaffolds for tissue engineering in shape and function better. This paper also adopted coaxial electrospinning method of electrostatic spinning of two kinds of composite materials, nano fiber prepared with the &core shell& structure. Results note, coaxial electrospinning process parameters and surface layer of spinning solution to promote greater speed and the relationship between the concentration of inside and outside layer of spinning solution. In early trials, the appropriate parameters of TPU/collagen coaxial spinning, and relationship layer speed and scale, and summarizes the exterior layer spinning solution for. The test system on the outside of coaxial electrospun fiber shape, SEM, TEM, AFM coherent electron microscopy to take, confirmed the coaxial electrospun nanofibers shell core structure, and unyielding outside composite nanofibers also notes outside collagen dispersed in
XPS element analysis of outside element comment the nitrogen element outside the coaxial composite nanofibers composed of collagen and the rate of outside elements r FTIR results illustrates the combined coaxial electrospinning process TPU and collagen fiber functional groups, but some results in annotation of collagen and TPU contact surface with simi mechanical the functional test notes, coaxial electrospun nanofibers, absolute blended nanofibers have good mechanical properties, high tensile modulus in the initial stage, then said The mechanical properties of TPU fiber. These results have direct effect on the future will construct the shape structure and function better biomimetic extracellular matrix tissue engineering scaffolds, but coaxial electrospinning is not stable, and low yield. How to improve the yield and stability, has a major significance for the future production of coaxial electrospun scaffold. Because the mechanical properties of the natural valve tissue anisotropy, direct electrostatic mechanical function for fiber spinning to obtain anisotropy. In the two kinds of composite technology, study system of this paper on collection and function orientation of the electrospun nanofibers. In this experiment through the process of reverse roller absorption of the TPU/collagen two different composite measures of oriented nanofibers, and the shape of the fiber orientation, orientation and mechanical function stopped specific characterization and comment on the debate. To obtain with different orientation and controllable fiber mechanical function, the test of reversed uptake assembly stopped design and production, obtained direct molding to the length, thickness and luminal diameter can be according to the need of the conditioning of the tubular fiber fabric or with fine orientation and mechanical function to optimize the membrane fabric support. This study construct composite electrostatic spinning orientation nanofiber scaffold materials, through observations shape can be invented a close relationship between the degree of orientation and the roller speed, and can according to the need of the conditioning, as tissue engineering scaffold has certain superiority. Anything else that would be obtained in the test oriented composite nano fiber membrane by scanning electron microscopy images conversion to grayscale photographs, and then by the image analysis disposal and calculation of Image J software and plug-ins oval profile eventually victory to different breakdown degree of fiber membrane characterization. This kind of fiber membrane because of its peculiar structure will be more suitable for the construction of fine structure of scaffolds for tissue regeneration. This topic through the process of examination wish selected a good biocompatibility and has superior mechanical performance of three-dimensional porous scaffold materials, and could be used as a biodegradable medical materials for tissue engineering heart valve scaffold. Seed cells and matrix material interaction is a major category of tissue engineering research. In this paper, one above research is to proceed from cell adhesion, spreading, proliferation, cell shape, the porcine iliac artery endothelial cells and TPU/collagen blend with the coaxial electrospun fiber composite materials biocompatibility was studied, and coverslips and cell culture plate were compared, draw the following conclusions: (1) determination of blending electric spun scaffolds MTT cell adhesion method results notes (3:1) and T/C T/C (1:1) cell adhesion is good, cell adhesion than cell culture plate, and T/C (1:3) and collagen is the absolute poor, is important because collagen content is too high. In the cell culture medium, stent could not adhere to the fiber shape, the cell proliferation and adhesion condition. (2) determination of TPU/collagen cell proliferation by MTT to support coaxial results annotations, coaxial electrospinning scaffold cell biocompatibility is better than the single spinning frame, in the sticky agree has good results of proliferation. Coaxial electric spinning core support layer concentration is small, cell in the initial 4 in the time increased to seven location, core layer of high concentration of electrospun scaffolds show better cell proliferation results. (3) there is a certain orientation to lure the role of growth orientation of TPU/collagen nanofiber scaffold on endothelial cells, but the effect is not very significant. The coaxial electrospun nanofibers cell orientation development function better than blending electrospun nanofibers, to study in the early research in development factor elements such as inducing cell orientation in composite nanofibers. (4) for the water resistance of the progress of blending electrospun fibers, glutaraldehyde as crosslinking agent, closed boring device through the process of glutaraldehyde vapor volatilization of TPU/collagen composite electrospun fiber membrane stopped crosslinking and the function was studied in. Choosing crosslinking time for 2 days, the invention adopts glutaraldehyde as crosslinking agent in fact can not perhaps well treatment collagen albumen component ablation in cells produced fluid situation, need further cross-linking of collagen research. The first part of the thesis is an electrostatic spinning composite forming rapid preparation of tissue engineering scaffolds. Tissue engineering heart valve consists of two departments, a department for other department leaflet scaffold. Because valvular ring stent geometry more complex and on the mechanical strength of the request is higher. This paper introduced rapid melt molding method preparing the scaffolds of tissue engineered heart valve in the valve ring sector, take TPU/collagen electrostatic spinning composite material as the valve leaflet scaffold Department constitute a new tissue engineering heart valve scaffold. And design and improved the fit the valve scaffold in vitro biological reactor, stop the coherent cell proliferation and in imitation of psychological fluid cell retention test, draw the following conclusion: FDM prepared support function with the following process parameters have a close relationship: layer thickness (slice thickness), task width (road width and grating leisure (raster gap) and raster angle (a raster angle). In vitro endothelial cell development and in vitro studies of fluid on cell retention support test annotation of electrospun scaffolds have good biocompatibility, the speed of cell proliferation to significantly better than a PGA / PLA nonwoven materials and natural materials bovine pericardium. In the case of creating static stent in vitro fluid test stop after three days in the biological reactor, to detect cells in the pulse of fluid shear stress in the case of stent retention ability. Inventions of electrospun scaffolds in transformation of fluid velocity and impact time, the cells on the scaffolds retention can be better, no obvious change, the annotation of electrospun scaffolds can be that supplies the cells with a three dimensional development, the cells can be good adhesion out of the bracket and the external and internal shear stress has little effect on the development. However invention electrospun data support under the action of the fluid for a long time, the valve vane closed to reduce, outside of its mechanical function to cannot satisfy the application request, needs and other data stop composite to deal with the problem. Summary above the subject's conclusion, the invention of thermal plastic polyurethane / collagen composite electrostatic spinning can perhaps better to mimic natural valve, two composite measures have their advantages and disadvantages: Blended electro spinning nano fiber process simple, yield is bigger and the function by the process in the hands of two hybri coaxial electrospinning process more complex and low yield, but can make collagen albumen to spread outside the composite nano fiber, composite high potency and coaxial nanofibers mechanical function better blend nanofibers. Select drum absorption method preparation of oriented nanofibers, could make electrospun data from spinning condition into orientation, thereby mimicking natural valvular tissue anisotropy biomechanical function of. With the rapid prototyping of electrospun composite, and the in vitro biological reactor under the annotation of electrospun tissue engineering heart valve scaffold has good biocompatibility and cell retention ability. The research for natural materials / polymer materials composite electrostatic spinning preparing the scaffolds of tissue engineered heart valve supply the reference, and for the further expansion of tissue engineering of natural organ of the preliminary study and clinical application to provide relevant scientific basis and experimental data.目录:摘要5-9Abstract9-14第一章 绪论20-68&&&&1.1 组织工程20-24&&&&&&&&1.1.1 组织工程学的建立21-22&&&&&&&&1.1.2 组织工程学的发展22-23&&&&&&&&1.1.3 组织工程支架23-24&&&&1.2 静电纺丝24-41&&&&&&&&1.2.1 静电纺丝起源24-25&&&&&&&&1.2.2 静电纺丝基本原理及装置25-27&&&&&&&&1.2.3 静电纺成丝理论分析27-31&&&&&&&&&&&&1.2.3.1 引言27&&&&&&&&&&&&1.2.3.2 聚合物射流的产生27-28&&&&&&&&&&&&1.2.3.3 聚合物射流的不稳定拉伸28-30&&&&&&&&&&&&1.2.3.4 聚合物射流固化为纳米纤维30-31&&&&&&&&1.2.4 静电纺丝的影响因素31-37&&&&&&&&&&&&1.2.4.1 体系参数31-33&&&&&&&&&&&&1.2.4.2 过程参数33-36&&&&&&&&&&&&1.2.4.3 环境参数36-37&&&&&&&&1.2.5 静电纺丝制备取向纳米纤维的最新进展37-41&&&&&&&&&&&&1.2.5.1 高速旋转的收集圆筒37-38&&&&&&&&&&&&1.2.5.2 高速旋转的金属丝制圆筒接收装置38&&&&&&&&&&&&1.2.5.3 有金属丝缠绕的圆柱体接收装置38-39&&&&&&&&&&&&1.2.5.4 内部带针尖的圆柱体接收装置39&&&&&&&&&&&&1.2.5.5 下部带有刀口电极的高速旋转管接收装置39&&&&&&&&&&&&1.2.5.6 飞轮型收集装置39&&&&&&&&&&&&1.2.5.7 平行电极接收装置39-40&&&&&&&&&&&&1.2.5.8 平行圆圈接收装置40&&&&&&&&&&&&1.2.5.9 十字形排列电极的接收装置40&&&&&&&&&&&&1.2.5.10 利用水浴收集40&&&&&&&&&&&&1.2.5.11 收集框40-41&&&&&&&&&&&&1.2.5.12 辅助电极/电场41&&&&&&&&&&&&1.2.5.13 单轴平行排列纤维收集装置41&&&&1.4 组织工程心脏瓣膜概述41-50&&&&&&&&1.4.1 概述41-42&&&&&&&&1.4.2 心脏瓣膜的结构及功能42-45&&&&&&&&&&&&1.4.2.1 主动脉瓣42-43&&&&&&&&&&&&1.4.2.2 瓣叶的结构及功能43-45&&&&&&&&&&&&1.4.2.3 瓣叶机械性能45&&&&&&&&1.4.3 组织工程心脏瓣膜的研究方法45-46&&&&&&&&1.4.4 组织工程心脏瓣膜支架的选择和要求46-50&&&&&&&&&&&&1.4.4.1 同种瓣膜支架46-47&&&&&&&&&&&&1.4.4.2 异种瓣膜支架47-48&&&&&&&&&&&&1.4.4.3 天然材料48-49&&&&&&&&&&&&1.4.4.4 合成材料49&&&&&&&&&&&&1.4.4.5 混合型支架材料49-50&&&&&&&&1.4.5 静电纺在组织工程心脏瓣膜上的应用50&&&&1.5 热塑性聚氨酯与胶原蛋白50-54&&&&&&&&1.5.1 热塑性聚氨酯50-53&&&&&&&&&&&&1.5.1.1 热塑性聚氨酯在生物医学中的应用50-51&&&&&&&&&&&&1.5.1.2 热塑性聚氨酯的结构特点51-53&&&&&&&&1.5.2 胶原蛋白53-54&&&&1.6 本文研究内容与意义54-55&&&&1.7 参考文献55-68第二章 热塑性聚氨酯/胶原蛋白共混静电纺丝制备组织工程瓣膜支架68-104&&&&2.1 引言68-69&&&&2.2 实验部分69-74&&&&&&&&2.2.1 实验材料及溶剂69&&&&&&&&2.2.2 实验设备69-70&&&&&&&&2.2.3 纺丝溶液的配制70&&&&&&&&2.2.4 共混静电纺纳米纤维的制备70&&&&&&&&2.2.5 纳米纤维的形态表征70-71&&&&&&&&2.2.6 纤维表面元素分析(XPS)71&&&&&&&&2.2.7 纳米纤维膜孔隙率测试71-72&&&&&&&&2.2.8 纳米纤维膜亲疏水性测试72-73&&&&&&&&2.2.9 纳米纤维膜力学性能测试73-74&&&&&&&&2.2.10 红外光谱测试(FTIR)74&&&&2.3 结果及讨论74-100&&&&&&&&2.3.1 共混静电纺丝溶剂的选择74-75&&&&&&&&2.3.2 纳米纤维形态学研究75-85&&&&&&&&&&&&2.3.2.1 纺丝液配比对纤维形态的影响75-79&&&&&&&&&&&&2.3.2.2 纺丝溶液浓度对纳米纤维形态的影响79-83&&&&&&&&&&&&2.3.2.3 纳米纤维表面形态分析83-85&&&&&&&&2.3.3 纳米纤维膜的化学构成分析85-88&&&&&&&&2.3.4 纳米纤维膜表面元素分析88-89&&&&&&&&2.3.5 纳米纤维膜的亲疏水性分析89-91&&&&&&&&2.3.6 纳米纤维膜的孔隙率分析91-97&&&&&&&&&&&&2.3.6.1 图像法测试91-95&&&&&&&&&&&&2.3.6.2 密度计算法测试95-97&&&&&&&&2.3.7 纳米纤维膜的力学性能分析97-100&&&&2.4 小结100-101&&&&2.5 参考文献101-104第三章 热塑性聚氨酯/胶原蛋白同轴静电纺丝制备组织工程瓣膜支架104-124&&&&3.1 引言104-105&&&&&&&&3.1.1 本章研究目标104&&&&&&&&3.1.2 同轴射流的产生和机理104-105&&&&3.2 实验部分105-110&&&&&&&&3.2.1 实验材料及溶剂105-106&&&&&&&&3.2.2 实验仪器106&&&&&&&&3.2.3 纺丝溶液的配置106&&&&&&&&3.2.4 "壳-芯"结构纳米纤维的制备106-108&&&&&&&&3.2.5 壳芯结构纳米纤维的形态表征108-109&&&&&&&&3.2.6 壳芯结构纳米纤维的表面元素测试109&&&&&&&&3.2.7 壳芯结构纳米纤维孔隙率测试109&&&&&&&&3.2.8 壳芯结构纳米纤维化学结构测定109&&&&&&&&3.2.9 壳芯结构纳米纤维力学性能测试109-110&&&&3.3 实验结果及讨论110-121&&&&&&&&3.3.1 同轴电纺丝工艺的探索110-111&&&&&&&&3.3.2 壳芯结构纳米纤维的形态分析111-116&&&&&&&&&&&&3.3.2.1 芯层纺丝溶液浓度对同轴纳米纤维形态的影响111-116&&&&&&&&3.3.3 壳芯结构纳米纤维的表面元素分析116-117&&&&&&&&3.3.4 壳芯结构纳米纤维孔隙率分析117-118&&&&&&&&3.3.5 壳芯结构纳米纤维化学结构分析118-120&&&&&&&&3.3.6 壳芯结构纳米纤维膜力学性能分析120-121&&&&3.4 小结121-122&&&&3.5 参考文献122-124第四章 取向复合纳米纤维的收集及其性能研究124-158&&&&4.1 引言124-125&&&&4.2 实验部分125-128&&&&&&&&4.2.1 实验材料及溶剂125&&&&&&&&4.2.2 实验设备125-126&&&&&&&&4.2.3 纺丝溶液的配制126&&&&&&&&4.2.4 取向纳米纤维的收集126-127&&&&&&&&4.2.5 取向纳米纤维的形态表征127&&&&&&&&4.2.6 取向纳米纤维的取向度测试127&&&&&&&&4.2.7 取向纳米纤维的力学性能测试127-128&&&&4.3 结果及分析128-154&&&&&&&&4.3.1 取向纳米纤维接收装置的设计128-129&&&&&&&&4.3.2 取向纳米纤维表面形态分析129-137&&&&&&&&&&&&4.3.2.1 共混静电纺取向纳米纤维表面形态分析129-133&&&&&&&&&&&&4.3.2.2 同轴静电纺取向纳米纤维表面形态分析133-137&&&&&&&&4.3.3 取向纳米纤维取向度分析137-145&&&&&&&&&&&&4.3.3.1 混合静电纺取向纳米纤维取向分析137-141&&&&&&&&&&&&4.3.3.2 同轴复合取向纳米纤维取向分析141-145&&&&&&&&4.3.4 取向纳米纤维力学性能分析145-154&&&&&&&&&&&&4.3.4.1 混纺取向纳米纤维力学性能分析145-149&&&&&&&&&&&&4.3.4.2 同轴取向纳米纤维力学性能分析149-154&&&&4.4 小结154-155&&&&4.5 参考文献155-158第五章 热塑性聚氨酯/胶原蛋白复合静电纺纤维的生物相容性评价158-184&&&&5.1 引言158-160&&&&&&&&5.1.1 生物相容性的影响因素158-159&&&&&&&&5.1.2 生物相容性评价方法的选择159-160&&&&5.2 实验部分160-165&&&&&&&&5.2.1 实验材料160-161&&&&&&&&5.2.2 实验设备161&&&&&&&&5.2.3 复合静电纺材料的制备161-163&&&&&&&&&&&&5.2.3.1 共混静电纺材料的制备161-162&&&&&&&&&&&&5.2.3.2 同轴静电纺材料的制备162&&&&&&&&&&&&5.2.3.3 细胞培养前的材料交联处理162-163&&&&&&&&5.2.4 细胞培养163-165&&&&&&&&&&&&5.2.4.1 材料处理163&&&&&&&&&&&&5.2.4.2 复苏细胞163&&&&&&&&&&&&5.2.4.3 消化细胞163-164&&&&&&&&&&&&5.2.4.4 细胞种植164&&&&&&&&&&&&5.2.4.5 MTT实验164-165&&&&&&&&5.2.5 细胞微观形态观察165&&&&5.3 实验结果及讨论165-180&&&&&&&&5.3.1 共混静电纺支架生物相容性评价165-172&&&&&&&&&&&&5.3.1.1 共混电纺支架细胞粘附实验165-167&&&&&&&&&&&&5.3.1.2 共混电纺支架细胞增殖实验167-168&&&&&&&&&&&&5.3.1.3 共混电纺支架细胞微观形态观察168-172&&&&&&&&5.3.2 同轴电纺支架生物相容性评价172-178&&&&&&&&&&&&5.3.2.1 同轴电纺支架细胞粘附实验172-173&&&&&&&&&&&&5.3.2.2 同轴电纺支架细胞增殖实验173-175&&&&&&&&&&&&5.3.2.3 同轴电纺支架细胞微观形态观察175-178&&&&&&&&5.3.3 复合纳米纤维支架对细胞生长取向的初步研究178-180&&&&5.4 小结180&&&&5.5 参考文献180-184第六章 静电纺复合快速成型制备组织工程心脏瓣膜支架及其体外生物反应器的初步建立和检测184-204&&&&6.1 引言184-189&&&&&&&&6.1.1 快速成型技术及其在组织工程支架制备中的应用184-186&&&&&&&&6.1.2 熔融沉积制造186-187&&&&&&&&6.1.3 生物反应器的设计与应用187-189&&&&&&&&&&&&6.1.3.1 生物反应器的种类187-188&&&&&&&&&&&&6.1.3.2 生物反应器的设计188-189&&&&6.2 快速成型制备瓣膜环189-194&&&&&&&&6.2.1 实验材料及设备189&&&&&&&&6.2.2 快速成型制备189-193&&&&&&&&&&&&6.2.2.1 快成成型准备工作189-190&&&&&&&&&&&&6.2.2.2 CAD模型制备准备工作190-191&&&&&&&&&&&&6.2.2.3 FDM制备过程191-192&&&&&&&&&&&&6.2.2.4 FDM支架微观形态192-193&&&&&&&&6.2.3 快速成型瓣膜环与静电纺材料进行复合193-194&&&&6.3 体外生物反应器的初步建立及体外动态培养194-200&&&&&&&&6.3.1 生物反应器的设计194-195&&&&&&&&6.3.2 生物反应器的体外动态培养195-200&&&&&&&&&&&&6.3.2.1 材料准备195-196&&&&&&&&&&&&6.3.2.2 细胞分离与培养196&&&&&&&&&&&&6.3.2.3 生长动力学测试196&&&&&&&&&&&&6.3.2.4 流体对细胞粘附影响测试196&&&&&&&&&&&&6.3.2.5 结果及分析196-200&&&&6.4 小结200-201&&&&6.5 参考文献201-204第七章 结论及后续工作建议204-209&&&&7.1 总结204-207&&&&7.2 后续工作建议207-209攻读博士期间发表论文及申请专利情况209-212致谢212-213分享到:相关文献|

我要回帖

更多关于 防静电地板支架规格 的文章

 

随机推荐