dsp芯片怎么与3d nand闪存芯片 flash连接

2982人阅读
今天一上午测试了下nandflash的各个管脚 发现wp引脚无法拉高,一直处于写保护状态,导致NANDFLASH id无法读取,直接将wp通过上拉电阻拉高不行 将控制WP的io隔断 分别上拉和下拉电阻才搞定,具体原因不明,接下来再分析吧!
&&&& nandflash id读取正确了 但是驱动外部flash发现R/B引脚一直为高电平(由于NANDFLASH的r/b引脚为OD输出 所以已经外接上拉电阻4.7k上拉) 但是发现R/B引脚在操作的时候一直为高电平 我不停的读nandflash ID发现R/B仍然是保持高电平 按时序应该有低电平出现啊& 不知道什么原因?这个检测R/B电平的IO口 也是OD门不知道是否这里有影响 。明天重新换下LPC2478的io口线试试看,因为这两个口线都是与2478的两OD引脚连接了 很是郁闷。
&&& 关于nandflash的R/B引脚摘抄点资料以便于理解:
R/B引脚端的上拉电阻电路图如下图所示:
图中电容CL的值为常量:若器件的供电电压为1.8V,则CL=30pF;若供电电压为3.3V,则CL=50pF。
R/B引脚的状态图如下图所示:
我们选用的芯片是3.3V的,所以R/B引脚的高电平判决门限为:Voh=2.4V,低电平判决门限为:Vol=0.4V。
图中Tf为高电平到低电平的下降时间,Tr为低电平到高电平的上升时间。
上拉电阻的工作示意图如下所示:
上拉电阻Rp的阻值选择:
上拉电阻阻值选择的要求是要满足引脚电平的判决门限,即能把R/B引脚的低电平拉到0.4V以下,也能把高电平拉到2.4V以上,满足判决要求。
分析上拉电阻电路:
Rp=(Vcc-Vol)/Iol,
Iol为output low current(R/B),是电压为Vol时电路中的电流值。对于Vol,必须满足Vol&=0.4V,而电流Iol的最小值为8mA,典型值为10mA。因此Rp的最小值为:
其中IL为连接到R/B引脚的其他设备的输入总电流,此处无其他设备与R/B相连,故IL=0。
经计算:Rp(min)=400ohm。
当R/B端输入高电平时,可把NAND的内阻设为R,则R/B引脚获得的电压Voh为Vcc在R上的分压,由于R的值很大,因此Rp的阻值的上限并不取决于相对于Rp相对于R的大小(即影响R的分压),而是取决于电平的上升沿时间tr。
Rp阻值的大小会影响到电平的上升沿时间tr,因为上拉电阻Rp与电容CL构成RC电路,存在RC延迟。电平上升沿时间tr与Rp阻值的关系如下图所示:
延迟时间tr的计算公式为:tr=Rp*CL。
图中tf基本保持不变的原因是电容CL的放电时间很快,基本不受Rp的影响,因此近似为常数。
由于Voh=Ibusy*Rp,故随着Rp阻值的升高,电流ibusy逐渐下降,与tr成反比。
随着Rp阻值的增大,电平上升沿时间会逐渐变长,但tr过大会影响到信号的时序判决,如下图所示:
在上图中,若R/B引脚的上升沿时间tr大于tRR(Ready to RE Low),则会影响信号速率,导致器件不能正常工作。
电阻阻值越小,消耗的功率越大;而阻值过大可能不能满足上拉要求。因此,根据经验,选择Rp的阻值为4.7kohm。
对于电容CL,一般不需要安装,因为容值为50pF,与PCB上的寄生电容大小相当。
延伸研究:
上拉电阻的使用范围: 1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。 2、OC门(集电极开路)电路必须加上拉电阻,才能使用。 3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。 5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。 6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。 7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻的阻值计算 上拉电阻阻值的选择原则包括: 1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。 2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。 3、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素: 1. 驱动能力与功耗的平衡。以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。 2. 下级电路的驱动需求。同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。 3. 高低电平的设定。不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。 4. 频率特性。以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。上拉电阻的设定应考虑电路在这方面的需求。 下拉电阻的设定的原则和上拉电阻是一样的。
open-drain output实际上是漏极开路输出,简称OD,是在CMOS电路中的。相应的,在TTL电路中,有集电极开路输出(open-collector output),简称OC.
开漏形式的电路有以下几个特点: 1. 利用外部电路的驱动能力,减少IC内部的驱动。 或驱动比芯片电源电压高的负载. 2. 可以将多个开漏输出的Pin,连接到一条线上。通过一只上拉电阻,在不增加任何器件的情况下,形成&与逻辑&关系。这也是I2C,SMBus等总线判断总线占用状态的原理。如果作为图腾输出必须接上拉电阻。接容性负载时,下降延是芯片内的晶体管,是有源驱动,速度较快;上升延是无源的外接电阻,速度慢。如 果要求速度高电阻选择要小,功耗会大。所以负载电阻的选择要兼顾功耗和速度。 3. 可以利用改变上拉电源的电压,改变传输电平。例如加上上拉电阻就可以提供TTL/CMOS电平输出等。 4. 开漏Pin不连接外部的上拉电阻,则只能输出低电平。一般来说,开漏是用来连接不同电平的器件,匹配电平用的。
参考知识库
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
访问:66879次
排名:千里之外
原创:14篇
转载:17篇
(2)(1)(2)(1)(1)(3)(9)(2)(10)处理器和DSP | 亚德诺半导体
Enable javascript
按下回车键或点击搜索按钮得到搜索结果点击此处指向搜索结果页面点击此处搜索您满意的结果使用右侧栏的删选功能精简搜索结果
ADI提供日渐增多的DSP、混合信号控制处理器、嵌入式处理器和模拟微控制器产品,适合广泛的通用和专用需求。
This document describes the basic concepts of Digital Signal Processing and also contains a variety of Recommended...
The Blackfin(R) SDK contains free applications software with source code and utilities information and tools that allow...
The metering of electric power coming into the home is going electronic, replacing the long-established...
Theory of sampled data systems, ADCs and DACs for DSP applications, FFT and digital filter fundamentals, DSP...
ADI ADSP-21xx系列处理器是代码兼容且引脚兼容的DSP,性能最高可达160 MHz,功率最低为184微安。
This document describes the basic concepts of Digital Signal Processing and also contains a variety of Recommended...
如果选错无源元件,再好的运算放大器或数据转换器也可能会表现不佳。
本文说明需要注意的一些基本陷阱
An article by Dr. Aengus Murray of Analog Devices printed in ECN Magazine, May 2000 issue. The article addresses...
ADI公司的精密模拟微控制器实现了高分辨率ADC和DAC、基准电压源、温度传感器和一系列其他外设等功能的完美结合。
This document describes the basic concepts of Digital Signal Processing and also contains a variety of Recommended...
... This application note describes the implementation of a single pin measurement of frequencies up to 500 kHz...
... There is a vast array of LCD displays available. Fortunately,a majority of them comply with the HD44780U...
Analog Dialogue, June 2010
The tools from these vendors have been developed in close partnership with Analog Devices and are endorsed by Analog...
Development Tools details on all tools available for all Precision Analog Microcontrollers
Analog Devices' optical and high speed networking ICs solve a depth and breadth of challenges faced by today's designers
Many discussions at OEMs, electronics suppliers and battery manufacturers focus on how best to structure battery...
by Aude Richard and Brian Moss, Analog Devices, Inc. (EE Times, 12/6/2004)
by Eamon Neary and Nobuhiro Matsuzoe, Analog Devices, Inc. (Information Quarterly, Volume 3, Number 2, 2004)
Blackfin(R) 16/32位嵌入式处理器提供软件灵活性和扩展能力,适合融合应用,包括多格式音频、视频、语音和图像处理。
This document describes the basic concepts of Digital Signal Processing and also contains a variety of Recommended...
UTAS医疗设备借助ADI公司技术确保高品质的病人护理
Nanjing Nari-Relays Electric Co., Ltd. Keeps the Lights On with SHARC and Blackfin.
FlexStack(TM) is a full-function embedded computing platform that is small, battery powered and is ideal for both...
Blackfin Processors have been designed to provide world-class benchmarks regarding compiler performance, code density...
This is a system solution for DAB/DAB+/DMB receivers.
Designed For A Wide Variety of Applications
Traditionally, embedded microcontroller engineers and digital signal processing engineers approached their crafts...
Dahua Embedded DVRs Get the picture with Blackfin(R).
Gemei's Powerful New Portable Media Player Is Driven by Blackfin(R)
leanXcam is an intelligent camera with a rich set of features that produces impressive performance with low...
Audi A5's In-Vehicle Audio Subsystems Being Driven by Blackfin(R) and SHARC(R) Processors
The Blackfin(R) SDK contains free applications software with source code and utilities information and tools that allow...
System Development and Programming with the Analog Devices Blackfin Processor Family.
Lockbox(TM) Secure Technology for Analog Devices Blackfin Processors is based upon the concept of authentication of digital
The uCBF54x-Start Kit and System Module by Arcturus Networks speeds development of a range of embedded media devices.
Analog Devices long-term commitment to the Blackfin Processor means each subsequent generation of Blackfin-based designs
Blackfin Processors are a new breed of 16-32-bit embedded microprocessor designed specifically to meet the computational
UG-400: ezLINX™ iCoupler® 隔离接口开发环境
By David Katz and Rick Gentile, Analog Devices, Inc.
The metering of electric power coming into the home is going electronic, replacing the long-established...
by Fabian Plepp
German Elektronik magazine
By Anders Norlin Frederiksen – Analog Devices
By David Katz and Rick Gentile, Blackfin Applications Group, Analog Devices, Inc.
By David Katz, Tomasz Lukasiak and Rick Gentile, Blackfin Applications Group, Analog Devices, Inc.
By Scot Robertson and Russell Rivin, Analog Devices, Inc.
By John Donovan
, May 2006
By Paul Beckmann and Timothy Stilson, Analog Devices
By David Katz, Tomasz Lukasiak and Rick Gentile, Analog Devices Reprinted with permission from Embedded Control...
By David Katz, Tomasz Lukasiak and Rick Gentile
Analog Dialogue, Volume 39 – February 2005
By David Katz, Ching Lam and Rick Gentile
Analog Dialogue, Volume 39 – January 2005
ADI的ADSP-CM4xx混合信号控制处理器集成高精度ADC、数字加速器和滤波器、SRAM和闪存以及丰富的外设。
This page provides product features and technical resources
This page provides product features, system evaluation and technical resources for motor control applications.
ADI数字接收器/发送器DSP器件包括一系列多通信应用所需的下变频器和上变频器。
ADI的SHARC(R)处理器系列在浮点DSP市场占据主导地位,拥有出色的内核和存储器性能以及优异的I/O吞吐能力。
Multicore SHARC+ARM(R) SOC Delivers 24GFLOPS Performance at Under 2W for Advanced Real-Time Audio and Industrial...
This document describes the basic concepts of Digital Signal Processing and also contains a variety of Recommended...
This manual will provide you with useful information about the evaluation process, Analog Devices tools, training,...
Nanjing Nari-Relays Electric Co., Ltd. Keeps the Lights On with SHARC and Blackfin.
Benchmarks are important in that they show how a particular DSP performs in the context of an application.
Audi A5's In-Vehicle Audio Subsystems Being Driven by Blackfin(R) and SHARC(R) Processors
Analog Devices' 32-Bit Floating-Point SHARC(R) Processors are based on a Super Harvard architecture that balances...
by Fabian Plepp
German Elektronik magazine
By Anders Norlin Frederiksen – Analog Devices
By Paul Beckmann and Timothy Stilson, Analog Devices
SigmaDSP(R)处理器是完全可编程的单芯片音频DSP,可以通过SigmaStudio(TM)图形开发工具轻松地进行配置。
This document describes the basic concepts of Digital Signal Processing and also contains a variety of Recommended...
SigmaDSP(R)处理器是完全可编程的单芯片音频DSP,可以通过SigmaStudio(TM)图形开发工具轻松地进行配置。
This document describes the basic concepts of Digital Signal Processing and also contains a variety of Recommended...
ADI的TigerSHARC(R)处理器提供领先的性能密度,适合多处理应用,峰值性能超过每秒10亿次浮点运算。
This document describes the basic concepts of Digital Signal Processing and also contains a variety of Recommended...
Flexibility without compromise—the TigerSHARC(R) Processor provides leading-edge system performance while keeping the...
Wireless Infrastructure manufacturers can consider many approaches when developing baseband modem solutions for third...
This document describes the key features of the TigerSHARC Processor architecture that combine to offer the highest...
By basing designs on a TigerSHARC programmable processor, applications in wireless communications, military, industrial,
Code examples highlighting features of the TigerSHARC Processor architecture.
By Patrick Mannion
Reprinted from
with permission.
Originally published in the April...
Reprinted with permission from
December 2003
By Jeffry Milrod, President, BittWare
Chuck Millet, TigerSHARC Product
Manager, Analog Devices
By Markus Levy Posted with permission of Reed Electronics Group. Originally published in the July 14, 2003 issue of...
A detailed signal integrity & timing analysis of cluster bus communication for a multiprocessing TigerSHARC system....
By Keld Lange, Alcatel Mobile Networks Division, Germany, Gero Blanke, Alcatel Research & Innovation, Germany and Rasekh
所有DSP处理器产品
& 按住Shift键进行二次排序1 SHARC, SHARC + 450M- <td data-value=" LPDDR1 1022 SHARC, SHARC + 450M- <td data-value=" LPDDR1 1023 SHARC, SHARC + 450M- <td data-value=" LPDDR1 804 SHARC, SHARC + 450M- <td data-value="--5 SHARC, SHARC + 450M- 900 LPDDR1 806 SHARC, SHARC + 450M- <td data-value=" LPDDR1 1027 SHARC, SHARC + 450M- <td data-value=" LPDDR1 808 SHARC, SHARC + 450M- <td data-value="--9 Blackfin, Blackfin+ 400M 1 800 DDR2/LPDDR (16-bit) 4710 Blackfin, Blackfin+ 400M 1 800 DDR2/LPDDR (16-bit) 4711 Blackfin, Blackfin+ 400M 1 800 DDR2/LPDDR (16-bit) 4712 Blackfin, Blackfin+ 200M 1 400 DDR2/LPDDR (16-bit) 4713 Blackfin, Blackfin+ 400M 1 800 DDR2/LPDDR (16-bit) 4314 Blackfin, Blackfin+ 400M 1 800 DDR2/LPDDR (16-bit) 4315 Blackfin, Blackfin+ 400M 1 800 DDR2/LPDDR (16-bit) 4316 Blackfin, Blackfin+ 200M 1 400 DDR2/LPDDR (16-bit) 4317 Blackfin 400M 1 800 Async, Mobile SDRAM, SDRAM 4018 Blackfin 400M 1 800 Async, Mobile SDRAM, SDRAM 4019 Blackfin 500M 2 <td data-value=" Async, DDR, LPDDR1 11220 Blackfin 500M 2 <td data-value=" Async, DDR, LPDDR1 11221 Blackfin 500M 2 <td data-value=" Async, DDR, LPDDR1 11222 Blackfin 400M 2 <td data-value=" Async, DDR, LPDDR1 11223 SHARC 200M- 400- 1624 Blackfin 400M 1 800- 3525 Blackfin 400M 1 800- 3226 SHARC 266M- 532 Async, SDRAM 1627 SHARC 266M- 532 Async, SDRAM 1628 Blackfin 400M 1 800- 3529 Blackfin 400M 1 800- 3530 SHARC 450M- 900 Async, SDRAM 1631 SHARC 400M- 800 Async, SDRAM 1632 SHARC 450M- 900 DDR 1633 Blackfin 400M 1 800 Async, Mobile SDRAM, NAND Flash, SDRAM 4834 Blackfin 400M 1 800 Async, Mobile SDRAM, NAND Flash, SDRAM 4835 Blackfin 400M 1 800 Async, Mobile SDRAM, NAND Flash, SDRAM 4836 Blackfin 400M 1 800 Async, Mobile SDRAM, NAND Flash, SDRAM 4837 Blackfin 400M 1 600 Async, Mobile SDRAM, NAND Flash, SDRAM 4838 Blackfin 400M 1 800 Async, Mobile SDRAM, NAND Flash, SDRAM 4839 Blackfin 400M 1 800 Async, Mobile SDRAM, SDRAM 4040 Blackfin 400M 1 800 Async, Mobile SDRAM, SDRAM 4041 Blackfin 400M 1 800 Async, Mobile SDRAM, SDRAM 4042 Blackfin 400M 1 800 Async, Mobile SDRAM, SDRAM 4043 Blackfin 600M 1 <td data-value=" Async, Mobile SDRAM, NAND Flash, SDRAM 4844 Blackfin 600M 1 <td data-value=" Async, Mobile SDRAM, NAND Flash, SDRAM 4845 Blackfin 600M 1 <td data-value=" Async, Mobile SDRAM, NAND Flash, SDRAM 4846 Blackfin 600M 1 <td data-value=" Async, Mobile SDRAM, NAND Flash, SDRAM 4847 Blackfin 600M 1 <td data-value=" Async, Mobile SDRAM, NAND Flash, SDRAM 4848 Blackfin 533M 1 <td data-value=" Async, DDR, Mobile DDR, NAND Flash 15249 Blackfin 533M 1 <td data-value=" Async, DDR, Mobile DDR, NAND Flash 15250 Blackfin 600M 1 <td data-value=" Async, DDR, Mobile DDR, NAND Flash 15251 Blackfin 533M 1 <td data-value=" Async, DDR, Mobile DDR, NAND Flash 15252 Blackfin 600M 1 <td data-value=" Async, DDR, Mobile DDR, NAND Flash 15253 Blackfin 600M 1 <td data-value=" Async, Mobile SDRAM, NAND Flash, SDRAM 4854 SHARC 266M- 532 Async, SDRAM 1655 Blackfin 533M 1 <td data-value=" Async, SDRAM 5456 Blackfin 533M 1 <td data-value=" Async, SDRAM 5457 Blackfin 533M 1 <td data-value=" Async, SDRAM 5458 Blackfin 533M 1 <td data-value=" Async, SDRAM 5459 SHARC 266M- 532 Async, SDRAM 1660 SHARC 400M- 800 Async, SDRAM 1661 SHARC 400M- 800 Async, SDRAM 1662 Blackfin 500M 1 <td data-value=" Async, SDRAM 4863 Blackfin 600M 1 <td data-value=" Async, SDRAM 4864 Blackfin 400M 1 800 Async, SDRAM 4865 SHARC 333M- 666 Async 1666 SHARC 333M- 666 Async 1667 SHARC 333M- 666 Async 1668 TigerSHARC 500M- <td data-value=" Async, SDRAM-69 TigerSHARC 500M- <td data-value=" Async, SDRAM-70 TigerSHARC 600M- <td data-value=" Async, SDRAM-71 SHARC 150M- 300 Async 1672 SHARC 200M- 400 Async 1673 Blackfin 600 1 <td data-value=" Async, Mobile SDRAM, SDRAM 1674 Blackfin 400M 1 800 Async, Mobile SDRAM, SDRAM 1675 Blackfin 400M 1 800 Async, Mobile SDRAM, SDRAM 1676 Blackfin 600M 2 <td data-value=" Async, SDRAM 4877 ADSP-21xx 160M----78 ADSP-21xx 160M----79 ADSP-21xx 160M----80 ADSP-21xx 160M----81 TigerSHARC 300M- <td data-value=" Async, SDRAM-82 ADSP-21xx <td data-value="M----83 ADSP-21xx <td data-value="M----84 ADSP-21xx <td data-value="M----85 ADSP-21xx <td data-value="M----86 ADSP-21xx <td data-value="M----87 ADSP-21xx <td data-value="M----88 ADSP-21xx <td data-value="M----89 ADSP-21xx <td data-value="M----90 ADSP-21xx <td data-value="M----91 ADSP-21xx <td data-value="M----92 ADSP-21xx <td data-value="M----
<a href="#" name='低输入偏置电流放大器_(低输入偏置电流放大器 (<100 pA)
<a href="#" name='低功耗放大器_(低功耗放大器 (<1mA/放大器)
<a href="/cn/products/amplifiers/operational-amplifiers/low-power-amplifiers-1ma-amp/low-power-amplifiers-1ma-amp.html" name='低功耗放大器_(低功耗放大器 (< 1mA/放大器)
<a href="#" name='低压放大器_(低压放大器 (<6V)
<a href="/cn/products/amplifiers/operational-amplifiers/low-voltage-amplifiers-6v/low-voltage-amplifiers-6v.html" name='低压放大器_(低压放大器 (<6V)
<a href="#" name='精密放大器_(Vos<1mV且TCVos精密放大器 (Vos<1mV且TCVos<2uV/C)
<a href="/cn/products/amplifiers/operational-amplifiers/precision-amplifiers-vos-1mv-tcvos-2uv-c/precision-amplifiers-vos-1mv-tcvos-2uv-c.html" name='精密放大器_(Vos<1mV且TCVos精密放大器 (Vos<1mV且TCVos<2uV/C)
<a href="#" name='高速比较器_(传播延迟高速比较器 (传播延迟<100ns)
<a href="/cn/products/linear-products/comparators/high-speed-comparators-lessthan-100ns-propagation-delay/high-speed-comparators-lessthan-100ns-propagation-delay.html" name='高速比较器_(传播延迟高速比较器 (传播延迟<100ns)
ADI拥有超过2,200项专利,并有近800项专利正在申请。在过去50年,ADI在信号处理的研发投入超过90亿美元。
ADI公司的前沿技术可向垂直细分市场提供完善的解决方案。
如今,ADI公司在航天市场上不再只能提供商用或军用B级产品,而是带来了具有尖端技术的数据转换和线性产品。
在这里,你可以找到所有ADI的设计资源,包括参考电路、参考设计、设计工具、仿真模型、评估板、软件驱动程序、封装信息及更多。
ADI公司提供硬件板和软件示例,简化您基于FPGA和基于MCU环境的连接设计工作。
欢迎访问EZChina!
ADI中文技术论坛全面支持各种产品技术和应用,资深的ADI亚洲技术支持中心专家团队坐镇,提供全面技术支持,48小时内快速解答各种技术疑问。
EngineerZone提供超过22,000个产品相关的讨论话题。
ADI拥有超过五十年的模拟电路设计经验可与您分享。
ADI拥有50年以上模拟电路设计经验,我们非常乐意与您分享。 |
在中文技术论坛,您可以与ADI的资深工程师及专家讨论问题及行业趋势ADI中文技术论坛使用条款
迅速获得销售、订单和网站反馈相关问题的回复。
向我们经验丰富的应用工程师提问,或者您也可以通过电子邮件或电话直接联系我们。              亚洲技术支持热线:
中文技术论坛注册会员现已超过20000名了!
上百名ADI工程师定期为中文技术论坛会员提供技术支持。
Do you consent to the use of cookies on your device as described in our ? You can change your
at any time but parts of this site will not function correctly without them.
I Accept CookiesI Refuse Cookies
Enable javascript
Enable javascript大容量闪存芯片与DSP接口设计_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
大容量闪存芯片与DSP接口设计
上传于||暂无简介
阅读已结束,如果下载本文需要使用1下载券
想免费下载本文?
你可能喜欢

我要回帖

更多关于 nand芯片进入假死状态 的文章

 

随机推荐