天文望远镜怎么用镜筒设计:焦距37cm,透镜直径:9cm需镜筒长度多少?

天文望远镜自造公式我想造一个天文望远镜,但不知道透镜的搭配,有没有相应的公式,最好反射式折射式的都有我数学必修都学完了,公式最好在我能力范围内
吖有蚊子120
一、镜身的装配  牛顿式反射望远镜的镜身(结构见下图)主要由镜筒、主镜、副镜和目镜构成,下面就分别说说镜筒、物镜座、副镜支架和目镜调焦座的设计与制作.  镜筒  镜筒是光路中各大部件的支撑物,特别是要支撑重量较大的物镜和物镜座,因此必须有足够的强度.镜筒的内径一般比物镜直径大2~3厘米,以方便物镜的安装和调节.镜筒的长度一般至少等于物镜的焦距,如果太短,将来主镜焦点伸出镜筒会太长,除非副镜尺寸足够大,否则当用广角目镜观测时,视场边缘肯定会有光线损失.  如果找不到大小合适的金属或塑料筒做镜筒,那么可以因地制宜,根据自己所具有的加工能力来选材制作.如果附近工厂有卷板机,可以请人用1.5mm厚的铝板按需要的长度和直径卷成圆筒,接口处可焊接或拉铆(我的镜筒就是用这种方法做的,结实而且轻便,效果非常满意).也可以请白铁匠用铁皮或1.5mm厚的铝板卷制镜筒,在筒口处弯边可以增加强度(张大庆先生用的就是这种方法).杨世杰老师介绍过在圆柱型芯子上用多层厚纸条按相互交错了的方向卷制镜筒的方法,我以前尝试卷过直径10厘米的镜筒,强度很大,效果很好.但要卷直径大于20厘米的镜筒时,会有几个实际的困难:首先是芯子不好找,其次是随着镜筒直径的增加,手工卷制的工作量和难度也会加大,各层纸粘合不紧密时,镜筒的强度会受影响,很难支撑20厘米的物镜和物镜座,将来也很难接相机拍照.除了圆形镜筒,还可以考虑方形筒.很多爱好者用木板制作方形镜筒,对于能找到木匠的爱好者来说这也是一种不错的方法;辽宁的张健同学在98年第一期《星空观测者》上介绍过用铝合金型材制作方形镜筒的方法,也很有新意.  物镜座  物镜座是自制望远镜中的一个重点,它不但要牢固固定物镜,同时还要允许物镜的指向可以在一定范围内调节,另外还有一点容易被人忽视的是,不能将物镜卡得太紧,否则物镜会产生形变,影响成像质量.  杨世杰老师介绍过两种物镜的固定方法.第一种是最简单的方法(下图A):找一个与镜筒内径相同的木板(底板),在上面相距120°的位置上贴上三块有弹性的泡沫橡皮或塑料垫片,把物镜放在上面,然后用三个金属片弯成的小钩将物镜固定在底板上(不要卡得太紧,以免物镜变形),最后用三个角铁把底板固定在镜筒上即可.这种方法制作简单,镜片固定牢靠,但物镜的指向只能安装时调节好,以后再想改变很麻烦.对于短焦比的望远镜,校准光轴是很重要而且时常需要做的事,所以我觉得不太合适用这种方法.第二种方法(下图B)首先将物镜固定在一个小板上,小板通过三个螺栓与底板相连,螺栓中间加上弹簧,通过调节底板背后的螺母可以很方便地调节物镜的方向.这种方法制作相对复杂些,但使用效果却非常好,也是现在十分流行并且使用最多的一种方法.  而随着物镜口径的增大,其重量也在增加,上述第二种方法中所用的螺栓和弹簧的强度必须增加,这最终会导致物镜座的重量随物镜口径的变大而急剧增加.因此对于较大口径的物镜,又有了一种新的固定方法.这种方法使用一块底板,没有小板,没有弹簧,但底板上却保留三个螺栓,螺母嵌入底板中,物镜片是直接放在螺栓的三个顶点上的,调节螺栓可以调节物镜的指向(螺栓顶点要打磨光滑,与镜片之间要垫上薄的耐磨物质,以防止划伤镜片);为防止镜片滑动,要在底板上钉三个小木块(防侧滑木块)挡在镜片边上(不可将镜片卡得太紧,应留有1~2毫米的间隙);为防止运输时物镜片翻倒(正常观测时镜筒开口都是朝上的,物镜重量落在三个螺栓上,不会翻倒),三个小木块上还要各加一个木片,木片末端要超出物镜边缘3、4毫米(见下图).观测时,物镜片的底面落在螺栓的三个顶点上,侧面只与三个防侧滑木块中靠下部的两个接触,与三个防翻倒木片不接触,没有任何外力卡住物镜,因此物镜不会产生任何形变.  固定20厘米的反射镜片,用上述第二种和第三种方法都行.我选用的是第三种方法.实际制作时,底板可以选用1厘米厚的整块木板或多层胶合板制作,如果是方镜筒,可以直接将木板锯成方形,如果是圆镜筒,可以请人用线锯或自己直接用钢锯条锯出圆形.底板应比镜筒内径小1~2毫米,能在镜筒内方便地进出.为防止木板受潮,有条件的可以对它作浸蜡处理,至少也要刷一层油漆.调节物镜方向的螺栓可以到五金店买M5规格的,为防止划伤镜片,我在镜片背后与螺丝接触的地方贴了三层透明胶条;为防止螺丝的松动,我没有使用螺母,直接在底板上钻直径略小于螺丝直径的孔,将螺丝旋入,借助木头的弹性和张力,可以将螺丝紧固,同时借助改锥(起子)也可方便地对其进行调节.连接镜筒和底板的角铁必须牢固,我选用了2.5毫米厚、15毫米宽的角铁,用两个螺栓与底板连接(其强度比直接用木螺钉要大得多),与镜筒之间也用螺栓连接.镜筒上和角铁上钻的孔应注意位置对齐,孔径以刚好穿过固定螺丝为好,确保以后每次安装物镜座时物镜与镜筒的相对位置不变,为以后调节光轴打下良好的基础.防侧滑木块和防翻倒木片的制作可以根据实际情况采用不同的方法,注意要确保物镜的安全,同时要让物镜有一定自由活动的空间.  目镜调焦座  目镜调焦座的位置是由主镜筒直径、主镜焦距以及主镜焦平面伸出主镜筒的距离决定的,可以按比例画图,然后从图上量出具体位置.  目镜调焦座要求能稳定支撑目镜,并可在一定范围内(2~3厘米)方便地调焦.它的轴心(也就是目镜的轴心)要求尽可能与主镜筒轴心垂直并相交,如果以后打算接相机拍照,那它还必须有足够的强度.  如果感觉到在圆形镜筒上固定目镜调焦座比较困难,可以分成两部分来做:首先做出一个平面,然后在此平面的基础上固定目镜调焦筒.  如何做出平面呢?到装修店找一小段铝型材,用螺栓固定在主镜筒外壁(如下图),是一种容易实现而且使用效果很好的方法.注意最好找厚度不小于1毫米的铝型材,这样其强度才有保证.  这里再介绍一种做平面的方法:在主镜筒的内壁固定一块托板(见下图).一般主镜与镜筒之间有1~2厘米的间隙,所以不必担心托板和目镜调焦座会挡住主镜光线.  我采用的就是这种方法,托板由一块120毫米×100毫米×2毫米的钢板制成(见下图),两侧折弯,各打四个安装孔,然后在镜筒上打上相应的孔,就可以用螺栓将托板固定在镜筒的内壁上.考虑到将来会接照相机,托板上会受较大的力,所以安装孔较多,所用材料也较厚.如果发现目镜调焦筒轴心有些歪,可以改变各螺栓所用垫片的厚度.(图中有一个长条形的"副镜托杆安装孔",这是为下一步安装副镜作准备的.)  有了平面,目镜调焦座就很容易固定了.可以用铝管车制一个法兰盘,然后用螺栓固定在平面上.至于调焦,可以使用抽拉调焦,调好后用顶丝固定,实际使用效果也不错.  副镜支架  副镜的安装有两个基本要求,一是其方向、位置可以在一定范围内调节,这是为以后调整光轴作准备的;二是要固定牢靠,避免以后经常重新调整其位置的麻烦,使我们可以把更多的精力用在欣赏望远镜带给我们的美丽星空上.  下面介绍一种设计,它是以上文提到的托板为基础的,注意了副镜各方向的可调节性,同时兼顾了牢靠性,具体可参考下图.  所用四个零件草图如下:  装配方法如下:T型体的一面插入圆柱体的槽中,用一个M3螺栓连接T型体和圆柱体.将圆柱体和副镜托杆用连接件连接,副镜托杆的攻丝的一端用两个螺母固定在托板的副镜托杆安装孔中.  副镜托杆安装孔实际上不是孔而是槽,副镜托杆可以左右移动;连接件可以沿着副镜托杆上下滑动;圆柱体可以在连接件的孔中前后移动,左右转动;副镜可以绕圆柱体的螺栓转动以调节仰角.副镜指向的方便调节为以后光轴的精确调整打下了基础.  以上这种设计对加工条件要求较高,而张大庆先生的设计则要简洁一些.  找长铁片,两端弯90度联结镜筒;找一木块,一端中央锯夹缝,夹住长铁片,另一端锯成45度斜面;副镜夹形状为椭圆,与副镜大小相当,四边伸出四个爪,弯曲90度后可以抓住副镜;副镜夹用薄铁片剪成,通过两个木螺钉与木块联结.  这个设计用很普通的工具就可以完成,而且对主镜遮挡很少;只要加工精确,打孔时再适当留些余量,以后调整光轴也不成问题.  到此,镜筒的设计制作完成了.在使用之前,最好先取下主、副镜,在镜筒内壁均匀地喷一层黑色亚光漆(装饰材料商店有售,罐装,北京地区售价16圆左右),效果还可以.  二、镜架的制作  对于20厘米反射式望远镜,如果没有足够大的赤道仪,那么应该毫不犹豫地选择一种称为道布森结构的地平式支架.  这种结构是美国的约翰?道布森在七十年代发明的,简单、轻便、稳定、实用,早已风靡全球.  下面是道布森结构的分解草图.它主要有三个部分:  耳朵(上图左)  耳朵是望远镜在垂直方向旋转的轴,它可以用直径不小于10厘米的圆形塑料或圆形铝块制成,对称固定于镜筒重心处的两侧,可以直接固定在主镜筒上,也可以在镜筒外套上一个木框,耳朵固定在木框上(这样耳朵的位置可以调节,更有利于主镜的平衡).  箱子(上图中)  用木板制成,上部有两个"V"形槽,正好与耳朵配合,底部中心穿孔.  底板(上图右)  用木板制成,均布三个凸块(可以用塑料块做),中心有轴.  使用时,箱子放在底板上,被三个塑料块支撑,底板上的轴穿过箱子底部的中心孔,这样,箱子可以绕底板的轴灵活而稳定地做360度水平转动;将镜筒的耳朵放在箱子的"V"形槽上,镜筒可以在90度范围内垂直转动.这样,道布森支架就做好了.  只要底板上三个塑料块分得较开,各接触面摩擦系数合适,道布森装置用起来非常顺手,找目标时望远镜转动灵活,找到目标后,一松手,望远镜不会有*.实际使用表明,即使在高倍率下,目标在目镜视场中仍然非常稳定.  不能自动跟踪是它的缺点,国外很多爱好者在它的两个轴上加了电机,通过计算机控制电机转速,实现了自动跟踪,而且效果不错,有兴趣的同好不妨一试.  三、光轴的调整  望远镜做好后,当我们满怀希望投入观测,却发现像质平平,甚至恒星都不能聚成一个点,这个时候先别怀疑镜子有问题,很可能问题仅仅出在镜片装配上,经过对光轴的重新调整,望远镜里展现出的可能是完全不同的景象.  抛物面反射镜的成像有个特点,在光轴上成像很完美,没有像差,但离开光轴就会有明显的彗差(星点带了小尾巴).在光轴上,使用一般视场的目镜,视场中心的星点是很锐利的,实际上视场边缘的像差也不易察觉.而如果在光轴外,整个视场中的星点可能都不实,而且离光轴越远这一点越严重.  怎样才算调好光轴了?  当反射镜的光学系统中的两个光轴:主镜(物镜)光轴和目镜光轴都经过副镜上的同一点,且被副镜反射后二者完全重合,也就是成了一个光轴,那么光轴就算调好了.  在缺乏检验手段时,可以通过实际观测来判断光轴是否调好.找一个大气宁静度较好的晴夜,用望远镜的最高倍率(用毫米表示的主镜的直径数)看一颗恒星(如果没有赤道仪则可以看北极星).把星点放在目镜视场中心(以减少目镜带来的像差),仔细调整焦距,从焦点外调到焦点,然后调到焦点内.如果光轴调整没有问题,可以看到如下图所示的从左到右一系列图象(图中的圆环是光的衍射引起的,散焦后实际上还会看到副镜及其支架的影子,图中没有画出).  在焦点上星像是否凝结得很实、很细、很锐利,散焦后衍射环是否是同心圆,这些都反映了望远镜的像质.如果散焦后可以看到几圈衍射环,但不象上图中那样完美,四周均匀地带有一些"毛刺",这说明反射镜面的精度稍差,但光轴调整的还是好的.如果散焦后星点变成了一个小的扇形,而且在目镜视场中移动星象,扇形的发散方向不变,这说明望远镜的光轴需要调整了.  光轴调整步骤及辅助工具  光轴调整可按如下步骤进行:  1. 调节目镜调焦筒使之垂直于主镜筒轴线  2. 调节副镜使之位于主镜筒轴线上  3. 调节副镜使之位于目镜调焦筒正下方  4. 调节副镜指向,使目镜光轴经副镜反射后指向主镜中心  5. 调节主镜指向,使其光轴与目镜光轴重合  以上只是调光轴的*,具体操作的过程中会有一些问题,有时很难控制精度这里首先介绍几个辅助工具:  1. 带双十字线的窥管:  管的外直径同目镜接口直径,管的一端加盖,盖的正中心挖2mm直径的圆孔,管的另一端用白色棉线对称地拉上双十字线,两线间距3~4mm.管长用如下方法确定:从目镜调焦筒中放入窥管(窥孔在外),窥孔一端与目镜调焦筒外端口平齐,双十字线一端距副镜20~30mm.  做窥管的材料不限(如果你使用的是31.7mm目镜接口,可以考虑用柯达胶卷的黑色包装盒来做窥管),关键是插入目镜调焦筒后要稳固,不能晃动太大.双十字线要拉正,相交处的小正方形与窥孔的连线应该是目镜调焦筒的轴线.  2. 主镜中心定位点  剪一片直径5mm的黑纸,用两面胶准确地粘在物镜的正中心.(因为主镜的中心区域并不参与成像,所以这个黑点不会有负面影响)  3. 主镜筒开口处十字线  在主镜筒开口处用粗线拉十字线,要求两线相互垂直,交点过主镜筒轴线.(在主镜开口处拉上十字线可能会影响对副镜的操作,所以最好标记出十字线与镜筒的四个交点的位置,觉得十字线碍事时可以先把它拆下来,必要时再重新拉上.)  这三个工具制作并不复杂,但你很快会发现它们很有用.借助它们,现在我们可以开始一步一步地调整望远镜光轴了.  0.预调主镜指向  取下副镜,调节主镜后面的螺栓,直到从镜筒开口前看过去,十字线交点、物镜中心黑点、十字线交点在物镜中所成的像三者成一条直线时,表明主镜指向基本正确.(下面专门有一步是调主镜的,预先加这一步操作可以使下面的操作更容易.)  1. 调节目镜调焦筒使之垂直于主镜筒  将窥管装入目镜调焦筒中,从窥孔中观察,可以看到从窥孔到双十字线的连线(实际就是目镜调焦筒轴线)再延长,会与主镜筒壁交于某一点,标记出这一点,用尺子测量其位置,再参考目镜调焦筒在主镜筒的位置,我们就可以判断出目镜调焦筒是否与主镜筒垂直.  2. 调节副镜使之位于主镜筒轴线上  取下窥管,装上副镜,大致调节副镜指向,使眼睛从目镜调焦筒中可以看到经副镜反射所成的主镜的像,同时也应该可以看到副镜和十字线经两次反射后所成的像.从这些像中我们可以看出副镜和十字线的相对位置,如果副镜的圆心和十字线交点重合,说明副镜位于主镜筒轴线上,否则就需要做相应的调节.  3. 调节副镜使之位于目镜调焦筒正下方  从目镜调焦筒方向看进去,副镜显然已经位于调焦筒的下方,但经过这样看精度无法保证.此时,装入窥管,眼睛从窥孔看到的,最外圈是窥管的内壁(双十字线现在不起作用,可以不管),中间是副镜.副镜的外圆轮廓和窥管的内壁轮廓如果是同心圆,说明满足要求,否则要在主镜轴线方向调节副镜.(如果因窥孔太小、光线太暗而看不清楚,可以在窥管正对的主镜筒壁垫上一张白纸,如果窥管太细,看不到副镜的外圆轮廓,可以把窥管往外抽或缩短其长度.)  4. 调节副镜指向,使目镜光轴经副镜反射后指向主镜中心  在上一步的基础上,一面用眼睛从窥孔中观察,一面调节副镜指向,直到主镜在副镜中所成的像的外圆轮廓、副镜的外圆轮廓二者同心.  5. 调节主镜指向,使其光轴与目镜光轴重合  用手电筒照亮窥管的双十字线,眼睛从窥孔看进去,可以看到双十字线、主镜的中心点所成的像以及双十字线经两次反射所成的像.调节主镜背后的螺栓,使上述三者同心.  至此,反射镜光轴调节完毕.下面给出从窥孔中所能看到的图象,以供参考.  上述各个调节步骤中,根据副镜支架的不同设计,下一步操作会对前一步的结果带来或多或少的影响,所以必要时可以返回前面的操作,可能要有几次反复,最后才能得到满意的结果.第一次调节会费一些工夫,一旦调好后,只要副镜支架稳固,以后的工作就轻松得多,即使为了运输而将主镜重装,一般也只需调节主镜后的螺栓就行了,借助于窥管,可以很快将望远镜调整至最佳状态.  最后有一点需要补充说明,一般认为光轴与副镜的交点在副镜的中心.在长焦距的望远镜中可以认为如此,但在大口径、短焦距的牛顿式反射望远镜中,副镜的尺寸也较大,副镜长边的两端到目镜的距离已经不能再近似认为是一样的了,请看下面的示意图:  光轴相交于副镜的B点,而不是副镜中心所在的A点.这相当于副镜从中心位置向主镜方向和远离目镜的方向都有一个位移.这两个方向的位移量可以用如下公式计算:  位移量=副镜短边长/(4*主镜焦比)  例如我的望远镜副镜短边长35mm,主镜焦比为5,则两个方向的位移量都是1.75mm.  如果有此类短焦距的望远镜,需要把这种情况考虑进去.计算出位移量,在上述第2步调节中,应让副镜稍稍远离目镜方向;在第3步调节中,当我们看到副镜的外圆轮廓和窥管的内壁轮廓是同心圆时,实际上副镜已经向主镜方向有了位移,不需再额外做调节了.
为您推荐:
其他类似问题
扫描下载二维码【图解教程】自制天文望远镜
【图解教程】自制天文望远镜
&自制天文望远镜
记得小的时候,夏天的晚上常常停电,没电的晚上人们只能坐在门口乘凉,在美丽的星空下闲聊等待睡意的来临,在那漆黑的晚上,明亮的繁星显得异常的美丽,引人无限联想,好奇的心一直想弄明白,宇宙的深处有些什么奇妙的场景,有没有外星人,他们是不是比我们更加发达等等。可惜在工业发达的今天,霓虹灯下再难看到那美丽的星空。
在那物资和信息匮乏的年代,一部天文望远镜就觉得好像好高科技一样,只有电视里那些科学家才能使用,而那些有能力自己制造望远镜的人更是像偶像一样令人敬佩,在今天这一切随着信息的高度流通,大家可以自己动手制做一架属于自己的天文望远镜,亲自领略一下那美丽的银河繁星和那壮观的河外星系,还有我们那些近邻,太阳系的各大行星。
记得第一次拥有望远镜的时候,还是在读小学,在一本科普刊物上看到有邮购望远镜镜片的套件,拿到套件后那个激动呀,真的没法形容。也就是在那时制做了第一架属于自己的天文望远镜,第一次看到了月球上的环形山、天女座大星云、三叶星云、星团等。
说到望远镜,我们先来大略的说一说它们的分类,按光路来说总的分两大类,一类是折射式,一类是反射式,发展到后面,又多出一种折反射式。先来说说开普勒折射式,它最低由两块凸透镜组成,它是望远镜的最早形式之一,它的视场大,可以观看很大的范围,比伽利略式(一块凸透镜加一块凹透镜组成)相对较窄的视场而言,使观察更加方便,而且保养也非常方便,只要镜片不损伤和划花,一般不用怎么护理,缺点是色差的产生,对观测造成的不便。另一类是反射式,它最大的优点是没有色差,使成像非常的清楚,缺点是反射面在空气中的氧化,每隔三年左右要重新镀一次反射膜,不然随着反射率的下降,使观察的对像明显暗淡,对护理不便,退膜和重新镀膜对于一般的人而言是件相当困难的事,除非那些发烧级玩家,一般不会为了一块反射镜的镀膜而去采购那些硝酸银之类的化学药品,那类药品非常贵,一小瓶25克的都差不多在一百大洋左右,须知现在银子涨价了,一克的市场价在8元左右,不像2000年那时,认识人的可以拿到1块5一克,而硝酸银又是个见不得光的药品,保存不好会因为光照效果而全部变黑失效。
在这里我给大家介绍的是镜片材料易找的开普勒式的折射望远镜,这类望远镜也是最容易制作的,它没有太高的要求,视场较大,容易找到被观察对象,凸透镜在今天这个社会里也是比较容易找到的,不像反射式,凹面镜不是从厂家购买,就只能通过自己艰苦的磨制了,而且还不一定一次就磨成功。我们这架望远镜是属于入门级的,它不能与那些高档的相比,但也能够满足一般的观察要求。对提高对天文的兴趣和认识还是有一定的帮助的。
首先是望远镜的放大倍率,因为是入门级的,为了保证画质和清晰度(即分辨率),我们不要一度的贪图追求放大倍数,宁愿小倍率清晰的观察对像也不愿意大倍率的摸糊的观察对像,那是对视觉的污辱。在这里我给大家介绍的是一架30倍左右的望远镜,它能清晰的看到月球上的环形山,最大的行星木星看起来像一小圆盘,在观测条件好的时候能看到它上面的大红斑,至于土星光环,如果你的镜片质量和手工制作做得足够好,在晴朗的夜空土星大距的时候,勉强能看到它周围有一些不寻常的东西,没错,那就是它的光环,一个令人激动的画面。河外星系最著名的就要数仙女座大星云了,记得有一年,我用20倍的望远镜看,在它的周围看不到什么其它的东西,当换另一部放大45倍的来观察,在它的旁边发现了一个激动的画面,那有一颗慧星刚好运行到那里,长长的慧尾,非常漂亮,几分钟后可以看到慧星在视野中由星云的一侧移动到了另一侧。
长焦平凸透镜一块,短焦平凸(双凸也行)透镜1-4块,纸筒(或用纸自己卷制),胶水等。
一、首先是物镜,口径在5厘米左右焦距在50-80厘米都行,主要是看各位能找到什么样的焦距,理论上口径越大焦距越长越好,能找到1米到1米2的更加好,这类镜片现在比较难找,不像以前,有邮购的套件,邮购一块口径10厘米焦距1米2的镜片还不是一件非常难的事,现在不行了,没这类镜片邮购了,大家可以到网购上搜索一下,找一块焦距80厘米的镜片应该也不是一件很难的事,我这部望远镜用的是一块口径5厘米焦距80厘米的平凸透镜,是以前邮购的,切记一定要平凸透镜,双凸和新月型的凹凸透镜不好,做出来的效果很差,主要是色差大和琦变非常厉害。一块合用的镜片一般是口径和焦距比为1:8或1:15之间,比如口径为5厘米的镜片,按1:15来算,5X15=75厘米,我们这块是80厘米还是可以的。如果按1:8来算即5X8=40厘米,意思是说一块口径5厘米的镜片,焦距在40-80厘米之间都是合用的,做出来的望远镜成像还是好的,低于或者超过这个范围太多做出来的望远镜成像就会很差了,就像你到二元店买一块口径10厘米的放大镜,它的焦距只有30多厘米这样,它的比例远远低于1:8的范围,只有1:3这样子,这种镜片是不行的,做出来观察到的图像琦变非常厉害,除非你只打算做一个给小孩子玩的玩具。
镜片我用白板纸(厚纸)来卷制外筒,主要是为了方便安装到物镜筒身上,卷的厚度由你所拥有 的物镜筒内径来决定,卷到直径大小刚好放进物镜筒内为准。如果你的物镜筒也是自己卷制的,那就可以省掉这一步了,直接把物镜筒卷到和物镜的直径大小一样即可。物镜口径5厘米,要做一个3厘米的光栅,因为不是消色差镜片,色差还是有的,只能以牺牲口径的办法来消除了。如果你从网上花个几百块钱弄一块消色差的镜片那这个光栅就可以省了,还不会牺牲口径的集光量。
物镜筒我是用一些硬纸筒来做的,大家可以到喷绘的地方去问人家要,这些废纸筒对于喷绘工场的人来说只是一些废物,占他工场的地方,你问他们要他们是非常没有意见的,而且还不用你花钱,相当于你帮他处理垃圾,呵呵。
用此种硬纸筒来做镜筒是非常不错的,有硬度还有一定的强度和吸潮性,有一些朋友可能会建议用白色PVC下水管来做镜筒,这种塑料管有强度又薄,做下水管很好,做望远镜不行,因为它光滑的内壁,加上是白色,对光的反射太厉害,通过透镜光会在内壁里造成多次漫反射,对成像的质量影响不是一般的大,而是毁灭性的破坏,在此奉劝大家一句,此法不可取,如果你一定要用此法也不是没有解决的办法,那就是在内壁贴一层黑色的绒纸,如此一来就显得非常的麻烦。我们这块物镜的焦距是80厘米,物镜筒的长度只能比焦距略短20厘米左右,因为每个人的视力不一样,我们还要制作一目镜筒来调节,以应对不同视力的人观看。一般在工场得到的硬纸筒都比较长,大家可以用锯子根据镜片焦距来锯短纸筒。
接下来做目镜,此类镜片是大家最容易找得到的,几乎地摊上都可以买到,在这里我用的是修理钟表的那种放大镜,大家看过我发表的“自制复式生物显微镜”就知道它是什么样子的了,因为我做这个望远镜用的目镜和那个显微镜的一样,是通用的,当然,你也可以用其它的镜片,镜片的来源就是多种多样了,焦距用3厘米左右的两块可以组成一个焦距2.5厘米左右的复合目镜,如果要做到消色差,两片镜片的距离是单片焦距的三分之二,焦距可以缩短到原来单片焦距的四分之三,这个比例是在其它制作望远镜的书上看到的,但按我的经验,把两块镜片直接问隔三毫米左右,可以缩短一半的距离。像图中这种大倍率放大镜用来做目镜也是非常不错的,它的放大倍率在5倍左右,焦距和修钟表的放大镜一样,在4厘米左右,用三块,其时用两块也是可以的,用一块也行,但放大倍率就小了,如果有单块焦距3厘米的镜片更加好,两块就可以了,把焦距做到2厘米左右就可以了,这样这部望远的放大倍数就是80厘米÷2.5厘米=32倍,如果目镜焦距做到2厘米,那么它的放大倍数就是40倍,如果你得到焦距为1厘米的放大镜,那这台望远镜的放大倍率就达到80倍。望远镜的放大倍率是物镜焦距除以目镜焦距等于放大倍数,我们不能为了一味的追求放大的倍数而忽略了成像质量,在口径相同的情况下,放大倍数越高,画面越暗,大倍数在白天观景和晚上看月亮还可以,看星星就没有必要了,就算你的放大倍数是200倍,从望远镜中看去仍然是一个小光点。
接下来我们要制作目镜筒,因为物镜筒我们用了喷绘材料的硬纸筒,目镜筒只能自己卷制来配合物镜筒了。目镜筒用250克左右的白板卡纸(牛皮纸之类的厚纸也行)来做,多卷几层,达到一定的厚度,感觉有一定的强度就行了。我一般是卷4-6层这样子,因为白板卡纸本身有一定的硬度,又方便卷曲,卷出来的镜筒有强度又带点弹性,非常适合。卷好后可在内壁做一光栅,最好是几个光栅,根据镜筒的长度来制作,我做最多达到三个,即在目镜筒里隔几厘米就做一个光栅,这样子可有效的减少光在内壁的漫反射,令观察不再受到杂光的影响,对成像质量有很大的保障。接着就做一个目镜接筒,主要是把目镜插入,方便更换不同焦距的目镜以组成不同的放大倍率。
目镜接筒可按图示方法来做,最后用胶水粘在目镜筒上即可,为了美观可在物镜筒和目镜筒的外面粘上一层音箱纸、墙纸之类的胶纸,颜色可以根据个人自己的喜好来粘贴,不一定要黑色,其时贴红木那木纹也是很好看的,或者银白色的铝箔纸也是不错的,不过本人还是比较喜欢传统的黑色。
至此一架望远镜基本完成,不过此时观看的景物是倒的,就是上下颠倒的,这对天文观测影响不大,因为星星和行星基本都是圆形的,也无所谓正反了,如果白天用来观景的话,在视觉上感觉就没那么舒服了,此时可以做一个正向镜来改善这种视觉,正向镜其时就是一面镜子,通过它可以把倒转的图像再倒一次变成正向的了,但左右却癫倒了,不过这对观看来说影响也不大了。正向镜的外壳用包装纸箱的瓦楞纸来做,有厚度和一定的强度而且材料易找和便于粘贴,里面粘一块小镜子,最好是那种镀铝镀在表面的镜子,比如很投影机或幻灯机里面拆出来那种,一般的普通镜子也行,但只能用来白天观景,晚上用来看星星和月亮之类的不好,因为镀膜在玻璃的下面,加上玻璃有一定的厚度,光线在斜射时,会在玻璃表面和玻璃下面的镀银层之间发生多次反射,镜子越厚,多次反射的现象越明显,此时观看到的星光会由一个按渐变的距离变成多个。这对观察造成不必要的影响,所以最好能用银子或铝镀在表面的那种反射镜,而且镜面要平,不然图像会琦变的。
上面那些都做好后,一架望远镜基本上就完成了,但是只能用手握着来观察对像,这对观测来说是一件很吃力的事,一直用手举着来观察对象,会因为手的抖动影响对被观测物细节的观测,时间长了手也会感觉很酸,此时一个望远镜镜架就显得非常重要。
望远镜的支架可以多种方式,最常见的是三角架形式,在这里我把它简化了,用一根方条跟一块厚木板搞掂了,其结构可以从图中看到。结构简单但它实用,制作也简便,材料易找。
在此说一下,正向镜用普通小镜子也是可以的,要求不高的也看得过去,白天观景没有一点影响,你几乎看不出多次反射的影响。因为工作忙的缘故,一直没有完成和发表此篇文章,让大家久等了,在此说声抱歉了,如果看不清楚图片,注册了极客迷网站会员的朋友可以在我的会员相册中观看或下载更多的高清相片,因为版面和篇幅所限,很多图片不能在此一一上传,喜欢的朋友可到我相册里观看。
其时在心中一直都想自己磨制天文望远镜的镜片,可惜时间不足,只有不断的在心中叨念有空了找齐材料自己磨制镜片,必竟现在想找一块称心的镜片不是那么好找的了,自己磨制镜片也不是一件很难的事,主要是你要有耐心和细心,自制还可以让自己学到更多的东西和锻炼动手的能力,希望有磨制镜片历程的朋友也能把自己的过程和方法心得介绍分享一下,让更多的人能够喜欢上DIY。
大家看到的图片可能显示不完整,不过不要紧,可用鼠标点击一下图片即可跳出完整大图,可能是因为图片太大的缘故吧,上次发制作显微镜的文章也是这样,没办法,大家只好辛苦一点了。
发表评论:
馆藏&99822
TA的推荐TA的最新馆藏

我要回帖

更多关于 天文望远镜镜筒 的文章

 

随机推荐